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POINCARE'S THEOREM AND TEICHMULLER 
THEORY FOR OPEN SURFACES* 

JURGEN ElCHHORNt 

Abstract. Let M2 be an open oriented surface the isolated ends of which are trumpets or 
half ladders (t^T2,?12 the 2-torus. The completed space M.TXE*B>k) of metrics of bounded geometry 
splits into components, M.r = J2t- comP(9i)- We define for a component comp(go) with K(go) = 

-l,nnj(po) > 0,m/cre(A^o) > 0 the Teichmiiller space Tr(comp{go)) = corap(£o)-i/£>o+1(#o)) 

where comp(go)-i is the submanifold of metrics with K(g) = — 1 and X>Q
+1

(^O) is the identity 
component of the diffeomorphism group. Thereafter we show Tr — (comp(go)/comp(l))/VQ+1 ^ 
comp(Jo)/T>Q . Here co77ip(l) are conformal factors with Sobolev norm \eu — l\gQ,r < oo and 
J0 = J(go) is the almost complex structure associated to go- The first isomorphism is just Poincare's 
lemma. 

MR classification 58D27, 58D17, 58G03 

1. Introduction. The definition and the study of Teichmiiller spaces Ear closed 
or compact surfaces with boundaries or surfaces with punctures has for a long time 
been a frequent topic in geometry and analysis. There are many approaches. First 
we must mention Ahlfors in [1] and Bers in [2] which rely heavily on the theory 
of quasiconformal maps. Another more geometric fibre bundle approach has been 
established by Earle and Eells in [10], [11]. Finally, an approach which relies on 
methods of differential geometry and global analysis has been presented by Fischer 
and Tromba in [22], [29]. What they are doing is in a certain sense canonical and at 
the same time very beautiful. Let M2 be a closed oriented surface of genus p > 1, 
M its set of Riemannian metrics, Mr its Sobolev completion, MLi the submanifold 
of metrics g with scalar curvature K(g) = —l,Vr the completed space of positive 
conformal factors, Ar the completed space of almost complex structures, Vr+1 the 
completed diffeomorphism group, VQ

+1
 C X)r+1 the component of the identity. Then 

Fischer and Tromba define as Teichmiiller space 

Tr(M2):=Ar/Vr
0
+1 (1.1) 

and prove VQ^
1
 -equivariant isomorphisms 

Mr/Vr £* Ar (1.2) 

and 

MLx = Mr/Vr. (1.3) 

Hence there are three models for the Teichmiiller space: 

Tr = Ar/Vr
0
+1 = (MrIVr)IVl+1 ** MLdVl*1. 

The isomorphism Mr_i = MT jVT is known as Poincare's theorem. Thereafter they 
prove the existence of a slice for the action of £>S+1 on M^x thus obtaining charts for 
a manifold structure on Tr. In [29], [30] Tromba proves that Tr is diffeomorphic to 
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whole approach uses standard results of global analysis on compact manifolds, such 
as the properness of the Vr+1 -action on Mr, the closed image property of elliptic 
operators, the discreteness of the spectrum, the index theorem, the maximum principle 
and others. 

We study Teichmiiller spaces for open oriented surfaces of infinite genus M2. At 
the beginning it is totally unclear how to define completed spaces Mr, Mr_n Tr, 
Ar, Vr+l. A second striking obstruction is the fact that the used results, e.g. the 
properness of the Vr+l -action and the theorems of elliptic theory are totally wrong. 

Nevertheless, the general uniformization theorem tells us that there are many 
complex = almost complex structures and metrics of curvature —1, i.e. there should 
be a Teichmiiller space which "counts" this structures. The main question is how to 
count them, how to define a Teichmiiller space? In this paper, we present a canonical 
and natural approach but under certain restrictions. We restrict ourselves to open 
oriented surfaces of the following kind. Start with a closed oriented surface and form 
the connected sum with a finite number of half ladders jt^T2, where T2 is the 2- 
torus. Now we allow the repeated addition of a finite number of half ladders in such a 
manner that there arises a surface with at most count ably many ends. Surfaces of the 
admitted topological type can be built up by F-pieces which guarantees the existence 
of a metric #0 satisfying K(go) = —1 and rinj(go) > 0. We exclude metric cusps, but 
we admit additionally metric trumpets, i.e. topological punctures. To define Mr we 
restrict to metrics of bounded geometry, i.e. metrics g satisfying 

(I) UnjiM71^) =   inf rinj(x) > 0, 
xGMn 

(Bk) IVtR'l^CuQKiKk. 

Denote by M{I, Bk) the set of all such metrics on Mn. (I) implies completeness. We 
defined in [12] a uniform structure IT and obtained a completion Mr(I,Bk),r < k. 
Mr(I,Bk) has a representation as topological sum 

Mr(I, Bk) = ^2 comP(9i) 
iei 

and for k > r > § + 1 each component comp(gi) is a Hilbert manifold. To each g 
we adapt a diffeomorphism group /Dr+1

1 k >r + l> § + 1. The identity component 
VQ+l(g) is an invariant of comp(g). V^1 acts on comp(g) by (#,/) -> f*g. Similarly 
we define a completed space Vr(g) of positive conformal factors. 

Vr = YJComp(eUi) 
i 

and comp(l) C Vr{g) is an invariant of comp(g). comp(l) acts on comp(g). If Mn is 
compact then Mr = Mr(I)B00)1M'r and Vr consist of only one component, Mr = 
comp(g) for any g, Vr = comp(l). Finally we define a complete space Ar(g) of almost 
complex structures, 

^(d) = ^2comp(Ji). 
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Return now to M2 of the above topological type. Denote by comp(g)-i C comp(g) 
the subspace of all metrics g' € comp(g) such that K^') = -1. Then we would define 

Tr(comp(g)) := comp(^)_i/P5+1 

and expect 

comp{g)-i = comp(g) / comp(l). (1.4) 

But there are simple examples of components comp(g) with comp(g)-i = 0. Moreover, 
we don't see any chance to prove (1.4) for arbitrary g. To have comp(g)-i / 0, we 
start with a metric go € .M(^#oo) with if(#o) = —1- To #o we attach an almost 
complex structure JQ = J(^o) := 9o1lJ'(9o)> where /i(^o) is the volume form. Then we 
can summarize our main results in the following 

THEOREM. Suppose go € M{I,B00),K(go) = -1, inf ae(Ago) > 0,r > 3. 
T/ien comp(^o)-i C comp(go) C ^(/J-BQO) W a submanifold. There is a ^S+1(^o) 
-equivariant isomorphism 

comp(go)-i = comp(go) / comp(l) = comp(Jo). (1.5) 

// w;e define the Teichmuller space Tr(comp(go)) of comp(go) as 

Tr(comp{go)) := comp{Jo)/V^1 (1.6) 

rr(comp(^o)) = comp(^o)-i/^S+1 = (comp(po)/comp(l))/PS+1. (1.7) 

The first isomorphism in (1.5) is Poincare's theorem for the open case. Its proof 
occupies the major part of the paper. Moreover, we establish an ILH-version of (1.5)- 
(1.7). The paper is organized as follows. In section 2 we recall the main facts concern- 
ing spaces of Riemannian metrics and Sobolev spaces needed in this paper. In section 
3 and 4 we define the space Vr and Ar of conformal factors and almost complex struc- 
tures. Section 5 is devoted to the diffeomorphism group £>r+1 and section 6 contains 
the ILH-version of the considered spaces. In section 7 we prove Poincare's theorem. 
The sections 8, 9, 10 are devoted to the proof of (1.5), (1.7). In the concluding section 
11 we announce and discuss results concerning the topology of Tr(comp(go) which are 
the topic of an also long paper in preparation. 

We remark, there are other approaches to define a universal Teichmuller space 
for open surfaces. The advantage of our approach is to couple those metrics resp. 
complex structures together which belong in a natural sense together, i.e. are elements 
of the same component in the space of metrics of bounded geometry. For each such 
component comp(go)_i /VQ

+1
 , there is a good chance to establish a Hilbert manifold 

structure. The only existing gap is a slice theorem, where parts of a slice theorem are 
already proven. 

But there are uncountably many components containing complete metrics of cur- 
vature — 1. Fitting them together in a universal Teichmuller space offers absolutely 
no chance to introduce a manifold structure, modeled over a separable Hilbert space 
(Sobolev space). 

To introduce such a structure and to make Riemannian geometry in the Teich- 
muller space is one of the advantages of our approach. 
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The author is deeply indebted to the Max-Planck-Institut fiir Mathematik for 
hospitality and good working conditions. 

2.   Spaces of Riemannian metrics of bounded geometry and Sobolev 
spaces. Let (Mn, #) be open. Consider the following two conditions (/) and (Bk). 

(I) rinj(M) = mfrinj(x) > 0, 

(Bk) 

IV^I <Ci,Q<i<k, 

where rinj(x) denotes the injectivity radius at x and R the curvature. 
LEMMA 2.1. If (Mn,g) satisfies (I) then (Mn,g) is complete. 
See [12] for a proof. □ 
We say (Mn,g) has bounded geometry up to order k if it satisfies (J) and (Bk). 

Given Mn open and 0 < k < oo. Then there always exists g satisfying (/) and (Bk), 
i.e. there is no topological obstruction against metrics of bounded geometry of any 
order. 

Set for given Mn 

M(I) = {#|#   satisfies    (/)}, 

M(Bk) = {g\g   satisfies   (Bk)} 

and 

M(I1Bk)=M(I)nM(Bk). 

Denote as above for a tensor t and a metric g by \t\giX its pointwise and by 

b\t\g := s\ip\t\g,x 
XGM 

its supremum norm with respect to g. 
LEMMA 2.2. g and g' are quasi isometric if and only ifb\g — g'\g < oo and 

b\9-9'\g' <oo- d 
Let 

bU(g) = {g'\b\g-g'\g < oo   and   b\g-g'^ <oo} = 

= quasi isometry class of   g. 

Set for 6> 0,p> l,r e Z+ 

V6 = {(g,g')eM(I,Bk)
n\glebU(g)    and 

r—1 

\g - 9'Ur := ( f(\g - 9%x + E KV')*^" - VffO&JcfookG,))1/* < 5}. 
•^ i=0 
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THEOREM 2.3. Assume r < k, 1 < p < oo. Then £ = {Vs}5>o is a basis for a 
metrizable uniform structure !&p'r(M(I, Bk)) on M(I,Bk). 

See [12] for the nontrivial proof. □ 

Let MP(I,Bk) = M(I,Bk) endowed with the uniform topology, Mv'r = M% the 
completion. If/c>r>- + l then M'p'r still consists of C1-metrics, i.e. does not 
contain semi definite elements. This has been proved by Salomonsen in [26]. We 
extend the definition above of bU(g) to C1 metrics. 

THEOREM 2.4. Letk > r > £ + l,<; <= M(I,Bk), U^r(g) = {g1 G Mp>r(I,Bk)\g' 

Eb U(g) and \g — g'lg^^ < oo] and denote by comp(g) C Mp,r(I,Bk) the component 
of g inMv^(I,Bk). Then 

comp(g) = Up>r(g) (2.1) 

and M.p>r(I,Bk) has a representation as topological sum 

Mp>r(I,Bk) = Y,comp(gj), (2.2) 
jeJ 

J an uncountable set. 
The proof is performed in [12]. □ 
REMARKS. 1. If Mn is compact then the set J consists of one element. 2. If 

g is non-smooth then there are some small problems to define and to understand 
\9 - 9'\9,P,r for r > 2. In this case one defines (V^ := (V90 + (V9 - V9*))1 where 
go G comp(g) is smooth and fixed chosen. It is easy to see that (V50 + (Vp — V90))1 

makes sense since VPo is a smooth differential operator, V9 — VPo is a distributional 
tensor field and (V^0)i((V^ - V9o)j) is well defined. We refer to [20] for details. D 

Let T™ be the bundle of -u-fold covariant and v-fo\d contravariant tensors and 
define 

nr(T:,g) = {teC'x>(T:)\\t\g,PtT:= 

= (fJ2\^9yt\ix
dvoi^9))i/p<^}, 

i=0 

fF'r(7;u, g) = completion of n£(2™ g) with respect to | |^p,r, n^r(T^ g) = comple- 
tion of C^iT^) with respect to | 1^^^ and Vtp'r{T^g) = all distributional tensor 
fields t with |t|y}p)r < oo. Then 

np'r(TZ,g) C Ci*'r(T?,g) C W'iT^g). 

PROPOSITION 2.5. Assume g e X(/,jBfc),r < fe + 2. Then 

hp>r(T^g) = Clp'r(T^g) = tV>>r(TZ,g). (2.3) 

See [13] for a proof. D 
Let 52T* be the bundle of twofold covariant symmetric tensors. np'r(S2T* ,g) is 

defined as above. 
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THEOREM 2.6. Assume k>r>z + l, ge M(I,Bk). Then comp(g) C 
Mp'r{I,Bk) is a Banach manifold and for p = 2 a Hilbert manifold. 

Proof, (p : comp(g) -» Q,p'r(S2T*,g), (j)(g') = g — g', is a homeomorphism onto an 
open subset of np>r(S2T*,g). See [12] for details. □ 

Define 
m 

'••"Itl^EsuplV'tlp,*, 

b
mn(T:,g) := {t € C~(T:)\ b'm\t\g < oo}, 

b'mn(T»,g) = completion of b
mn(T?,g) with respect to 6>m| \g and b'mn(T^,g) = 

completion of C^(T^) with respect to b'm\ \g. Then b'mi}(T^,g) = {t\tCm -tensor 
field and 6'm|i| < oo}. 

THEOREM 2.7. Assume (Mn,g) is open and satisfies (I),(Bo). If r > j + m, 
then there are continuous embeddings 

W>r(T:,g)<->b<mn(T»,g), (2.4) 

n'-'cr^-^ncr"^). (2.5) 

//, additionally, (Mn,g) satisfies (Bk(M)),k >l,k>r,r—j>s — ^,r>s,q>p) 

then 

np>r(TZ) ^ n9's(T„u) (2.6) 

continuously. 
We refer to [13], [15] for the proof. □ 
THEOREM 2.8. Assume {Mn,g) with (I) and (Bk), 0 < r < ri,r2 < k. If r = 0 

assume 
,    n n \ 
 <ri   

n 
— <r2 

pi 
n 

r < ri - 
P Pi 

0 < ri - 
Pi 

< 
— <ri 

n 
 + r2 - 

n ► or < 0<r2 - 
n 

P2 
► or < r < r2 - 

P 

n 

P2 

P Pi P2 

1         P      Pi ^            P        P2 I<1 1 
+ — J 

L    P     Pi P2 > 

>. 

// r > 0 assume - < ~ + — anc? 
^ P   —   Pl P2 

n n 
r < n  

P Pi 
n n 

r < r2  
P P2 
n n n 

r <ri hr2  
P Pi P2 

/ or < 

n n 
r < ri  

P Pi 
n n 

r < r2  
P P2 
n n n 

r <ri hr2  
P Pi P2 

> . 

(2.7) 

(2.8) 

Then the tensor product of tensor fields defines a continuous bilinear map 

ttpi'ri(TZ) x nP2'r2(Tz') -»■ np'r(TZ o r„u,'). (2.9) 
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Idea of proof. We indicate the proof for T^ = M x E. Assume u G ftPl'ri(M), 
v £ f2P2,r2(M). We are done if we can show 

or 

|v>^)U<c-M: 

Iv^v^MU^c-lu Pi >ri 

0 < i < r, 

0<j<i<r. 

(2.8) follows from Holder's inequality if e.g. in the case r>0-<— + — and 

n n 
- < n  
P Pi 
n              n _ < r2  
P P2 
n n n 
- <ri hr2  
P Pi P2 

> or < 

n              n 
r < ri  

P Pi 
n              n 

r < r2  
P P2 
n              n              n 

r <ri hr2  
P Pi P2 

> . 

□ 
Quite analogously to T™ one defines for Riemannian vector bundles (E, h, Vh} ->• 

M Sobolev spaces f^'r(£, V) and 6'mft(£, V). (Bfc(E)) means [(V*)*^! < ^,0 < 
z < fc. Then 2.8 generalizes to 

THEOREM 2.9. Assume {Mn,g) with (I),(Bk), (Ei,hi,Vi) -> M with (Bk),i = 
1,2. Assume 0 <r <ri,r2 <k and p,Pi,P2 as in 2.8. Then there exists a continuous 
embedding npi'ri(Ei, Vi) 0fiP2'r2(E2, V2) ^ fip'r(£i 0^2, Vi 0 V2). T/ie assertion 
generalizes to a finite number of bundles. 

We refer to [15] for the proof. □ 
REMARKS. 

1. A special case for E is T". Here (Bk(M)) automatically implies (Bk{E)). 
2. For pi =p2 = q = 2,r>f,r> f,2.8 implies a bilinear continuous map 

(2.10) • : n2>r(M) x f^r(M) -> nz>r(M) 

In particular fi2'r(M) becomes a ring for r > ~. 
3. (2.4) - (2.6) hold for ^r{E)^m n{E) correspondingly. 
4. M^1"1^, Bk) is still well defined since k > r > * + 1 implies r - 1 > £.     D 
A question, which is in the main section 7 of extraordinary meaning, is the in- 

variance of Sobolev spaces under certain changes of the metric and their definition by 
other differential operators. 

THEOREM 2.10. Assume k > r > £ + 1,00 € M(I,Bk). Then n^r(T^go) is an 

invariant of comp(go) C Mv'r~l(I,Bk), i-e. 

fiP,r(r«;VSOi5o)snP,r(T«)VS)fl) (2.11) 

05 equivalent Banach spaces. 
Proof. We have for the pointwise norm 

and quasi isometric. Writing 
150 \g since go and g are continuous 

V^ = V90 + (V5 - V90) (2.12) 

and assuming the definition above of bU(g) to Cl metrics, we obtain for a tensor field 
r a pointwise estimate 

|(V')V| < P(\V90)jl(V9 -V9o)l\(X79o)jkT\), (2.13) 
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where P is a polynomial in the indicated variables, ji < r — 1, ji + J2 < i, and each 
monomial satisfies the condition of the module structure theorem and has at least one 
\(W9o)jkT\ as factor. Hence we obtain after p-th power and integration 

\r\g,P,r <Ci\T\g0tptr (2.14) 

and, for symmetry reasons 

lrl<?o,P,r < C2\r\g^r, (2.15) 

Ci = Ci(g,go). See [14] for details. D 
We remark that in (2.12) - (2.15) we do not really need g smooth. This follows 

from the remarks after 2.4. In section 7 we consider a slightly more general situation, 
g e comp(go)1 gt = go + t(g - go) — go +th 6 comp(go). Then the constants Ci, C2 
in (2.14), (2.15) will depend on t, d = Ci{go,gt)> We need in section 7 the existence 
of constants Ci independent of t which we will now prove. Now and in the sequel we 
often denote constants in different contexts by the same letter where we are convinced 
that no confusion will arise. 

First, there exist by assumption constants Ci,C2, 0 < Ci < 1 < C2, 

which implies 

and 

Clgo<g<C2go (2.16) 

Cigo < (1 - t)go +tg = gt< C2P0, (2.17) 

C[detgo < detgt < C^detgo (2.18) 

Cteo^gr^CXgo1. (2.19) 

LEMMA 2.11. If (Mn,g) satisfies (I) and (Bk) and it = {(Ua,(f>a)}a is a uni- 
formly locally finite cover by normal charts, then there exist constants Cp^Cp^Ciy, (3, 
7 multiindexes, such that 

l^«l < c0, pVi < c'0, m < k, |zrr£| < c?;, M < * -1, (2.20) 

all constants independent of a. 
See [17] for a proof. □ 
COROLLARY 2.12 Let go e M(I,Bk),g e comp(go) C Mr{I,Bk),k > r > * + 

1,11 = {Ua,(l>a)}a an atlas of normal charts with respect to go as above.   Then, with 
respect to It, 

I^Vl<C,|/?|<l. (2.21) 

Proof. This follows from the definition of gl\ (2.19), (2.20), g G comp(go),gt 

100 #0 + t(g - go) and b^\g - go\g0 < 00. □ 
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PROPOSITION 2.13. Assume go,gik,r as above.   Then there exists a constant 
C = C(go,g) independent of t such that 

\Vgo-Vgt\go,r-l<C. (2.22) 

Proof. Pointwise 

|V*> - V«« I = |r}m(50) - (r}m(ffo) + |s?(&«**» + hen-j + hjm.,e))\, 

where .m = VS^, h = g - go. This and (2.20) for go, (2.21) imply 

|V9° - V9' | < Co ■ t • |V/i| < Co|V/i|. (2.23) 

Write [fc] = (/iej;m + /iero;j + him;e). Then VSo(Vao - V*) = tV9»»f [fe] = i(V9' + 
(Vflo _ V^'Mlh] = t{$!eV*[/i] + (V»« - V**)^8^!}, i.e. 

V9o(v9o _ V9.)| < c . |VS'[h]\ + Co-C- \Vh\2. (2.24) 

But 

\V9t{h]\ < \V90[h}\ + |(V9' - V90)[h}\ < C'\V2h\ + Co ■ C" ■ \Vh\2. (2.25) 

We infer from (2.24), (2.25) 

|VS°(VSo - Vs')l < C2(|V/i|2 + |V2/i|) 

An easy induction quite similar to [12], [14] yields 

|(V90)i(V90 _ Vfft| < p.(|VJ1/l|ih)) |2.2S) 

where Pj is a polynomial in the indicated variables and the monomials satisfy the 
conditions of the module structure theorem, in particular ji + J2 < * + 1 < r. (2.26) 
implies after p — th power and integration (2.22). □ 

Rewriting VSt(VS0 - V9') = (Vs' - Vso)(VSo - Vs') + Vso(VSo - V9') and so 
on (cf. [12]) and using (2.22) and its proof, we conclude 

|VS0-Vs'|5t>r-i<C7', (2.27) 

C" independent of t. 
COROLLARY 2.14 Assume go, g,k,r as above. Then 

np'v(T:,go)znp'r(T:,gt), (2.28) 

I      lpo,P,r < Cl ' I      \gt,P,r (2.29) 

I      \gt,P,r <C2'\      \go,p,r (2.30) 

which constants Ci = Ci(gQ,g) independent oft. This follows from (2.13) for the pair 
go,gt and (2.26), (2.21). □ 
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Until now we considered Sobolev spaces based on the covariant derivative VPo, 
np>r(T^go) = np'r(T^V9o,go). For r even there is another definition of £F'r based 
on 1,A,A2,... ,Ar/2, A - Ago = (V^)*V^, 

r/2 

\9o,P,r ~ 

rr/2 

i=0 

THEOREM 2.15. Assume (I),(Bk) for (M,go),k > r,r even. Then 

n2'r(M5 V^0, ^o) - ^2'r(M, A,0, (70) (2.31) 

as equivalent Hilbert spaces. 
We refer to [5] for a proof. The main part is that the local Garding's inequality 

associated with il = {f/a}a has constants independent of a. The proof given in [9], 
[13] contains a mistake. □ 

There are several techniques to define fi2,r(M, Ap0,^o) for odd r too, e.g. inter- 
polation techniques. (2.31) and its proof, (2.26) - (2.30) imply 

THEOREM 2.16. Assume (Mn,#o) with (I) and (Bk), k > r > f + 1, g € 
comp(go) C Mr{I,Bk),r even.  Then 

tf'r(T:,Ago,go) s n2>p(rv», v*\a,) s 
S n2'r(?„", V»«, 50 S fi2,r(r„tt, Afft, ft) (2.32) 

05 equivalent Hilbert spaces with constants independent oft. □ 
Assume #0 € .M(/, -Bjb) ^nd let il = {[/a, 0a)}a be a uniformly locally finite atlas 

of normal charts with respect to go and with radius of Ua = c < rinj(go), {ipa}oc 
an associated partition of unity with |V*^a| < Ci,0 < i < k -f 2. Then, using local 
Euclidean derivatives, we can define for r < k Sobolev spaces fir(T^,U, {ipa}a^go)' 

THEOREM 2.17. 

nr(rw
u,u,{^a}ajfld) = np(r~, v^,^,) (2.33) 

as equivalent Hilbert spaces. 
The proof follows from 2.11. □ 

3. The space of bounded conformal factors. We now define the space 
of bounded conformal factors adapted to a Riemannian metric g. Later we assume 
additionally g € M(I,Bk). Let 

Vm(g) = {ip G C^Af)! inf (p(x).> 0, sup^(x) < oo, |VVLx < Cu0 < i < m} 

and set for r < m, r > - + 1 

Vs = {(ip,ip') e Vm(9)2\ \<p - y'|a>p,r := 

= (/ E K^)'^ " vOl^d^O/))1/" < 6}. 
J    i=0 
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PROPOSITION 3.1. £ = {V^J-JX) is a basis for a metrizable uniform structure. 
We omit the very simple proof. □ 

Let P^^ig) be the completion, 

ClV = {ve Cl{M)\ inf ip{x) > 0, sup tp(x) < oo} 
xeM xeM 

and set 

V^{r is locally contractible, hence locally arcwise connected and hence components 
coincide with arc components. Let 

V*
T
(<P) = W e V^(9)\ \<p - V'|9,p,r < oo} 

and denote by compfa) the component of (/? in V!^r(g). 
THEOREM 3.2. For ip e V^ig), 

comp(ip) = UZir(ip) (3.1) 

andV^ir(g) has a representation as topological sum 

The proof of (3.1), (3.2) is quite similar to that of (2.1) and (2.2) which is per- 
formed in [12]. □ 

The function identically to 1 is an element of all Vm(g), 0 < m < oo. Write corap^r(l, g) 
for the component of 1 in V^ir(g). Assume k > r > ^ -f 1. 

PROPOSITION 3.3. corap^r(l,#) is an invariant of comp(g) C Mp>r(I,Bk), i.e. 

comp^il^g) = compPf (1,0') (3.3) 

for g' 6 comp(g). 
Proof. We assume without loss of generality g and g' smooth. If not, then we 

apply the remark 2 after 2.4 and proceed as usual. The proof of 3.3 is quite analogous 
to that of 2.10. We present it here for completeness. Set V = V5, V = V^' and let 
(p E corap^r(l,#). Then <p G C1 (since k > r > * + 1) and 

b" lUr = {fJ2\Vi^-^xdvolx{9)\1/p < oo. (3.4) 

We have to show 

l^~ Mg'w < oo- (3-5) 

The pointwise norms |V/2((/? — l)|5,x and \Vl((p — l)\g',x are equivalent since g and g' 
are quasi isometric and we simply write |    \x — \    |. Then 

|V'(V - 1)1 < |V' - V| \V - 1| + IVfa - 1)1, (3.6) 
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|V'2(V -1)1 < |(v' - v)(v' - VM + |(v' - v)v<p\+ 
+ |v(v' - v)<p\ + |vVl < 
< c(|v' - V|

2
M + |v' - viivd + |v(v' - V)|M +1 WD- 

(3.7) 

A more general formula for |V'l(<p — 1)| estimating this by products of the kind 

|V"i (V' - V)|... |Vn'-l(V' - V)||Vn' (ip - 1)| (3.8) 

has been established in [12]. Using (2.1) and the module structure theorem for Sobolev 
spaces, we obtain 

( /"(V"1 (V - V)|... IV"-1 (V - V)||Vn' (v? - l)\)pdvol)^P < oo (3.9) 

and (3.9) can be estimated by the Sobolev norms of V7 — V and ip — 1. Hence 
ip E comP;r(l,^/),comp^r(l,^) C comp^r(l,^). In the same manner we establish 
the other inclusion. □ 

REMARKS. Proposition 3.3 does not hold for an arbitrary component comp^i^^ g), 
ip € Vm(g), since ip G Vm(g) does for j > 2,j < r < m not imply ip e Vmig')- The 
latter follows from the fact that we have 

/> 
IV^V -V)\pdvol<oo 

but not necessarily 

SUP^MIV^V
7
 -VJU <OO. 

D 
In the sequel we restrict ourselves to the case p = 2 and write Q2>r = fT, 

M2'r{hBk) = Mr{I,Bk), VZir(g) = V^{g), \    \g,2,r = |    l^r-   Next we indicate 
the structure of V^g). 

THEOREM 3.4.   Under multiplication V^g) is a Hilbert-Lie group. 
Sketch of proof. It follows immediately from the definition, the product and quo- 

tient rule and the module structure theorem that V^g) is a group. £= {Us} 5 > 0, 

Us = We Vr
m(g)\ \<p - l\g,r < 6}, 

is a filter basis centred at 1 € V^g) that satisfies all axioms for the neighbourhood 
fiber of 1 of a topological group. Hence V^g) is a topological group (cf. [3]). Finally, 
Us is homeomorphic to an open ball in fi2'r(M) for 5 > 0 sufficiently small and has 
the structure of a local real Lie group. Hence V^g) is a Hilbert-Lie group. □ 

Assume as always k > r > ^-hl,*? 6 M(I,Bk) and consider compr
k+2(l) C 

Vl+2{g),comp{g) C Mr(I,Bk). 
PROPOSITION 3.5.  a. There is a well defined action 

compr
k+2(l) x comp(g) -> comp(g) 
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b.  The action is smooth, free and proper. 
Proof. Let ip' E compr

k+2(l) C Vl^O)^' ^ comp(g). We have to show (p* • 
g' e comp(g).  There exist sequences ip^   —>   p'^gv   —>   g', <Pv € compr

k+2(l) C 
I        \g,-r I        |g,r 

Vk+2{g),gv G comp(g) fl M{I,Bk). Then, according to [8], p. 47, Theorem 4.7 and 
the fact, that (^ satisfies (/) and ^ G Vk+2(g), we conclude ^ • ^ satisfies (/). 
From [23], p. 90 follows that R9u — i?^'^ = sum of terms each of them has bounded 
derivatives up to order k. Using V5l/ — V^" '9u — sum of terms each of them has 
bounded derivatives up to order k + 1, we see finally that yv • g^ satisfies {Bk), i-e. 
gv G M(I,Bk),(pu e comp(l) C Vk+2(g) imply </>„ • ^ G M(I,Bk). Moreover, 

(fu-gu-g = vAgv -g) + {vv -l)ff,   ^ = ^ - 1 +1 

immediately implies |^^ — p|^,r < OQ,(pv - gv € comp(g). We conclude from 

¥v - gv - v' - g' = (<Pv - <p')gv + ^'(^ - #')> 

Pi/ = (^ - tf7) + (^ -g) + g, 

<p'(9v - </) - (^ - l)(9v - 9') + (^ - ^) 

and the module structure theorem 

W91 - 9\g,r < 00, tp1 • g' G comp(g). 

b. The smoothness of the action follows from the fact that locally comp(l) and comp(g) 
can be treated as linear spaces, ip' • g' = g' implies y?' = 1. If ■ 

Vu-g'-^h (3.10) 

in comp(g), i.e. with respect to | |P)r, then we have also C1-convergence according 
to the Sobolev embedding theorem, explicitly 

pointwise. It is now very easy to infer from (3.10), (3.11) that </?„ -> (p w.r.t. |    |^ir. 
'n 

COROLLARY 3.6. a. The orbits compr
k_^2(l) - g' C comp(g) are smooth submani- 

folds ofcomp(g). 
b. The quotient space comp(g)/compk_^2(l) is a smooth manifold. 
c. The projection TT : comp(g) —> comp(g)/compk+2(l) is a smooth submersion 

and has the structure of a principal fibre bundle. □ 
comp(g) has as tangent space at g' G comp(g) Tg>comp(g) = VLr(S2T*,g') = 

fir(S2T*,<7), where 52r* are the symmetric 2-fold covariant tensors. There is an 
L2-orthogonal splitting 

Tglcomp(g) = ^c{S2T\g') 0 nr'T(52T*,^), (3.12) 

where 

^{S2T\g') = {/i 6 n^rvpcr) =P(s) VOIO.P e nr(M,P')l 



368 JURGEN EICHHORN 

and 

fr'T(s2r*, </) = {he nr(s2T*,g,)\trg,h = o}. 

The decomposition (3.12) is given by 

h = -{trglh) -g' + ih- -{trglh)g'). 

See [29] p. 19 for further details. 
COROLLARY 3.7. For [g1] = corap£+2(l) • g' 

Tg„(compl+2(l) • g') = W>c(S2T\g") (3.13) 

and 

T[gf]comp(g)/compr
k+2(l) = W>T{S2T\g'). (3.14) 

□ 
4. The space of almost complex structures. Consider M2m open, oriented, 

with some fixed Riemannian metric g. Denote by Sl(AutTM) = C00{AutTM) C 
^(r^M)) = C00^1) the set of all smooth automorphisms of TM covering idM- 

A = {J G Vt{AutTM)\ J2 — —idrMi J   compatible with the fixed orientation} 

is the subset of almost complex structures. Here J is compatible with the fixed orienta- 
tion if each basis of the kind Xi,... , Xm, JXi,... , JXm gives the fixed orientation, g 
induces a metric connection V^ on T-j1. Assume g with (I) and (£&), k >r > ^ + 1,6 > 
0 and set 

Vs = {(J1J
f)eA2\\J-J,\g,r<5}. 

LEMMA 4.1. £ = {Vs}s>o is a basis for a metrizable uniform structure. O 
Denote by Ar = Ar(g) the completion. 
PROPOSITION 4.2. Ar(g) has a representation as a topological sum 

Ar = ^comp{Ji) (4.1) 

where the component comp(J) is given by 

comp(J) = {J' e Ar\ \J - J'\gtr < oo}. (4.2) 

D 
PROPOSITION 4.3. Each component has the structure of a Hilbert manifold of 

class k — r. 
Proof Ar can be considered as the space of sections of a bundle B -» M with fibre 

GI/+(2m, R)IGL(m, C), where B can be endowed with a metric of bounded geometry 
of order k — 1 associated to the Sasaki metric on TM. Then the result follows from 
[14]. □ 

REMARKS. For dimM = 2, we give below another equivalent description.        □ 
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PROPOSITION 4.4. Ar(g) is an invariant of comp(g) C Mr(I,Bk), i-e. for g' G 
comp(g), 

Ar(g) = Ar(gl). (4.3) 

□ 
5. Diffeomorphism groups on open manifolds. Let (Mn,g),(Nn ,h) be 

open, satisfying (/) and (Bk) and let / € C00(M,N). Then the differential df = 
/* = Tf is a section of T*M (g) f*TN. f*TN is endowed with the induced connection 
/*V/l. The connections V9 and /*V/l induce connections V in all tensor bundles 
T«(M) (g) f*TZ(N). Therefore, Wmdf is well defined. Assume m < k. We denote by 
Coo,m(Mj ^j the set of all j e c™(M, N) satisfying 

m—1 

^|d/|= Y, sup|Vid/U<oo. 
i=o ^M 

Let Y e n(f*TN) = C00(/*TA^). Then Yx can be written as (Yf{x),x) and we define 
a map py : M —> N by 

py(x) := (expY)(x) := expyx := earp/^j!/^). 

Then the map py defines an element of C0O(M,iV). More generally we have: 
PROPOSITION 5.1. Assume m < k and 6>m|y| = £™0 s^pIV^^  < 6N < 

xeM 
TinjiN), f G ^^^(M,^).  T/ien 

^y = ea:py GC,00'm(M,iV). 

We refer to [14] for a proof. The main point is, that one shows 

\W^dexpY\ < PM(|W/|, |Vjy|), i < fij < /i + 1, (5.1) 

where the P^ are certain universal polynomials in the indicated variables without 
constant term and each term has at least one | V-7 Y|, 0 < i <// + !, as a factor.       □ 

Now consider manifolds of maps in the Lp-category. According to the Sobolev em- 
bedding theorem, for r > - + s, Y G fip'r(/*TiV) arbitrary, there exists a constant D 
such that 

b''\Y\<D-\Y\p,r, (5.2) 

where |Y|p,r = (JELo W'Ypdvol)1/*. Set for 6 > 0, S ■ D < 5N < rinj(N)/2, 
l<p<oo,k>m>r>i~ + i 

Vs = {(/,g) € C^iM,N)2\   there exists a   Y e np
r(f*TN)   such that 

^ = ^y=ea;py    and    |F|p]r < J}. 
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THEOREM 5.2. £ = {Vs}o<5<rinj{N)/2D is a basis for a metrizable uniform s£nzc- 
^reilp'r(C00'm(M,A^)). 

The proof essentially uses several iterated estimates of type (5.1) and others, 
where the arising polynomials P/x,Qn are p-integrable. It is rather complicated, occu- 
pies 40 pages and is performed in [14]. □ 

Let mfip'r(M,iV) be the completion of C00'm(M,A^) with respect to this uniform 
structure. From now on we assume r = m and denote VLp'r(M,N) =r fip'r(M, iV). 

THEOREM 5.3. Let (Mn,#), (Nn\h) be open, satisfying (I) and (Bk), r < k, 
1 < p < oo, r > - + 1. Then each component of fip'r(M, N) is a Ck+1~r -Banach 
manifold, and for p — 2 it is a Hilbert manifold. 

We refer to [14] for the proof. □ 

Let (Mn,g) be open, satisfying (/) and (Bk),k,p,r as above. Set 

Vp>r(g) = {/ € np'r(M, M)\f   is injective, surjective, 

preserves orientation and    |A|mjn(d/) > 0}. 

Here |A|min(d/) is defined as follows. Fix at any point x e M the class of orthonormal 
bases. Let ei,..., en E TXM and /i,..., fn E Tf^M be such bases. df\x now can 
be described as a nonsingular matrix. Xi(df) are defined as the diagonal elements of 
the Jordan normal forn. \\\min(df)x is the smallest absolute value of the A^'s. It is 
invariant defined, i.e. it does not depend on the choice of the orthonormal bases since 
the Jordan normal form of a matrix is a similarity invariant. 

THEOREM 5.4. Pp'r is open in flp,r(M,M); in particular, each component is a 
Qk+i-r .fianaQh manifold, and for p = 2 it is a Hilbert manifold. □ 

THEOREM 5.5.  Assume (Mn,g),k,p,r as above. 
a. Assume f^g E ^>p'r,^ E comp(idM) C Vp,r. Then go f E VPir and go f E comp(f). 
b. Assume f E comp(idM) C Vp,r.  Then f~1 E comp{idM) C Vp'r. 
c. comp{idM) is a metrizable topological group. 

We refer to [14] for the proof. □ 

Denote V^r = comp(idM)' 
THEOREM 5.6. (a -lemma). Assume r < k,r > £ + 1,/ E Dp>r. Then the right 

multiplication a/ : VQ^ -> Vp'r, af(g) = g o f, is of class Ck+1~r. 
THEOREM 5.7. (u-lemma). Let k + 1 - (r + 5) > sj E Pj'r+S,r > ^ + 1. Then 

the left multiplication uj : Vp'r —> Vp,r,uJp(g) = / o g, is of class Cs. 
The proofs are performed in [19]. □ 

We defined for C00'771 a uniform structure ilp'r. Consider now 

C00'00^, N) = nTnC
00'm(M,iV). 

Then we have an inclusion 

and 

i x i : C00'00^, TV)2 -> C^^iM.N)2, 
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hence a well defined uniform structureil00'^ = (ixi)-1^r (cf. [28], p. 108-109). Af- 
ter completion we obtain once again the manifolds of mappings ^^^^(M, AT), where 
/ G fi00'?'7' (M, N) if and only if for every e > 0 there exists an / <E C,00'00(Af, N) and a 
Y G ftp'r(f*TN) such that / = expY and \Y\p,r < e. Moreover, each connected com- 
ponent of ftoO'^M,N) is a Banach manifold and Tfnoo^r{M,N) = n^r(f*TN). 
In the notation above noo,p'r = ^nP'7". As above we set 

D«w(M,^) = {/ G fi^'^M, M)|/   is injective, surjective, 

preserves orientation and    |A|min(d/) > 0}. 

We assume p = 2 and write 

fi^M, AT) = fi^'P'^M,^) 

and 

The only difference between our former construction and the new one is the fact that 
the spaces Q,00*7, are based on maps which are bounded up to arbitrary high order. 
For compact manifolds we have 

C^iM.N) = C^Af, JV) = C^^iM.^.n^^M.N) = nr(M,N) 

and Vco'T{M,g) = Vr(M,g) for all r. For open manifolds we have strong inclusions 
£00,00 c ^oo.r and poo,r c pr   jt js very easy to construct a diffeomorphism / G 

C00,1 (E, E) such that / £ C00'2 (E, E). This supports the conjecture that the inclusion 
Dr+S «-» I>r, s > 1, is not dense. We settle this question in a forthcoming paper. The 
space p00'r+s is densely and continuously embedded into P00'7*. This follows easily 
from the corresponding properties for Sobolev spaces. The components of the identity 
have special nice properties: 

PROPOSITION 5.8. Assume the conditions for defining Vr. Then 

V™>r = PS. (5.3) 

Proof. Let / G VQ. Given any 5 < rinj/D, there exist vector fields Xi,... ,Xm G 
nr(TM),|XM|r < &,n = 1,... ,m, / = expXmO ... o expX^1 \X\ < D\X\r. We 
are done if we can show that for X G nr(TM),|X|r < 8 and given e > 0 there 
exists a diffeomorphism fx € C00'00 and F G VLr(f*xTM) = Slr(TM) with |y|r < e 
such that expX = expF = ea;p/xy o /^. But this is very easy. For Si arbitrary 
small, there exists a smooth vector field Yi G CQ^TM) with compact support such 
that \X — Yi\r < €i. Choosing ei sufficiently small, there exists a unique vector 
field Y G fi,r((expYi)*TM) such that expY = expexpYxY o expYx = expX and 
\Y\r < Qr{£i), where Qr is a polynomial without constant term. This follows from the 
geodesic triangle argument of [14]. Hence, for ex sufficiently small we have \Y\V < e. 
We set fx = exp Yi. For / = exp Xm o ... o exp Xi we apply the techniques of the 
proof for VQ being a group of [14] and obtain for any given small e > 0 a representation 
/ = expjY o f with / G C00'00, Y G nr(/*TM), |y|r < e and / is built up from the 

REMARKS. 1. A detailed proof of proposition 5.8 would occupy dozens of pages 
but the arguments needed are all contained in [14].  2.  The essential reason for the 
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special good property of VQ is that id € C00'00(M,M). For diffeomorphisms in other 
components of V7, this is in general wrong. 

PROPOSITION 5.9. Forg e M^.Bkj^V^M.g) is an invariant ofcomp(g), i.e. 
tf 9* € comp(g) then 

Vr
0(M,g)=Vr

0(M,g,). (5.4) 

Proof. We restrict to the case g' 6 comp(g) nM(I,Bk). The more general case 
induces rather delicate approximation procedures but is also true. Already the defi- 
nitions are much more involved. The assertion follows immediately from 

^IdidMlg-^ldidulg,, (5.5) 

nr(T*M,g)~nr(T*M,g'), (5.6) 

W(T*M,g) ~ nr((expXyM,(expXyg). (5.7) 

(5.5) holds since g and g' are quasi isometric. (5.6) is theorem 2.10 and (5.7) is the 
last equation on p. 292 of [14]. □ 

Assume now k>r,r> ^ + 1,<7 e M(IiBk+{). 
PROPOSITION 5.10. PJ"1"1^) acts on comp(g) C Mr(I,Bk). 
Proof. We have to show g' G comp(g), f G VQ+1(g) imply f*gf G comp(g). There 

exists a sequence (gv)v,gv € comp(g) D M(I, Bk),gv   —>   g'-   We start with / = 
I      \g,r 

expX,X eVtr{TM).X can be approximated by {X^)^,X^ G Q^TM),^   —>  X. 
I 15,r 

Set /^ = expX^. Consider the diagonal sequence (f^gu)u- Then f*gu G comp(g) fl 
M(I,Bk) which follows from ^ G comp(g) n M(I,Bk) and ^ G C^(TM). We are 
done if we can show 

tf^ , -*   Z^' (5-8) 

and 

Write 

|/y-0V<oo. (5.9) 

f:9v-r9' = u:-n9v + r{9v-9% (5.10) 

gv = {9v-g)+g, (5.11) 

f* = (f*-id*)+id*. (5.12) 

Inserting (5.11), (5.12) into (5.10), using the (rather delicate) proof of theorem 3.1 
of [21], the r-boundedness of g and id* and the module structure theorem, we obtain 
l/^-ZVLr —► 0,i.e. (5.8). Write 

v—>-oo 

/y - </ = (/* - /.v + /;(</ - 5.) + (/; -1)^ + (^ - g'),       (5.13) 
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</ = (9'"9)+9, (5.14) 

tt^Ut-m + iV, (5.15) 

^ = (^-^) + ^ (5.16) 

Inserting (5.14) - (5.16) into (5.13), we obtain by the same arguments 

l/y-£V< co- 
Assume now / = expX2 o expXi* Replacing g' of the first case by (expA^)**?' 

and applying the same procedure, we obtain again /*§* € cmnp(g). For / = expXn o 
... o exp Xi we perform induction. □ 

6. The ILH-version of the considered spaces. For metrics g satisfying the 
conditions (/) and 

(Boo) |V\R|<Ci,i = 0,l,n,... 

we have additional structures. Then V^g) = /D(^>'r{g) is defined for all r > J +1. 
As we shall see now, we can form V<^{g) = ^mD^g) which is an ILH-group.   To 

r 
make this clear, we recall some definitions which are a little bit different from them 
originally given a long time ago by Omori. We adapt to [27]. 

A collection of groups {G00,Gr\r > ro} is called an ILH-Lie group if it satisfies 
the following connections. 
1. Each Gr is a Hilbert manifold of class Ck^ modelled by a Hilbert space Er and 
k(r) —> 00 as r —> 00. 
2. For each r > ro there are linear continuous, dense inclusions Er+1 «-» Er and dense 
inclusions of class Ck^ Gr+1 -> Gr. 
3. Each Gr is a topological group and G00 = ^mGr is a topological group with the 

r 
inverse limit topology. 
4. If (Ur,(pr

JE
r) is a chart of Gr, then (Ur fl G',^r|^nGt,E*) is a chart for G£, for 

all t > r. 
5. The multiplication //: G00 x G00 ^ G00 extends to a Cs -map fi: Gr+S xGr -+Gr 

for all r with s < k(r). 
6. Inversion is : G00 -> G00 extends to a Cs -map ^ : Gr+S -> Gr for all r with 
5 < fc(r). 

7. Right multiplication Rg by g e Gr extends to a C*(r) -map Rg : Gr -+ Gr. 
THEOREM 6.1. Assume (Mn,g) oriented, open with (I) and (Boo). SetV(^(g) := 

^mPpfa) K;zi/i ^/ie inverse limit topology. Then {VQ)(g),VQ(g)\r > f +1} is an ILH- 
r 

Lie group. 
Proof. In this case fc(r) = A; — r +1 = 00 — r -f 1 = 00. 1. VQ is & Hilbert manifold 

of class G00 modelled on Er = ftr(TM,g) = TeVl, r > f + 1. 2. The inclusions 
nr+1(TM) c-^ nr(TM) are dense and continuous. Using charts, 
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r+l 

Bs(0) C TfV
r

0
+1 eX%   C/J+1 c Vr

0
+1 -U Ur -* 

^"^(OcT/PS (6.1) 

and k = oo, we obtain that i is dense and C00 since (expp-1 o i o ea;py+1 is of class 
C00. 3. Each X>o '1S a topological group and Pg0 = ^mPS ^y definition. 4. follows 
from (6.1) replacing r + 1 by t. 5. follows from 5.6 using k = oo. 6. can be proved 
quite similar (cf. [14], (6.8) - (6.11) and the proof of 6.5). 7. follows from 5.6. □ 

PROPOSITION 6.2. / E ^^{g) if and only if f is a C00 -diffeomorphism satisfying 
b'm\df\ < oo for all ra, |A|min(d/) > 0 and which is homotopic in this set (with respect 
to the inverse limit topology) to the identity. □ 

Omitting all group properties in the above definition, we obtain an ILH-manifold. 
Similarly one defines ILB-Lie groups (cf.[27]). Set P^'00 = jimX>Q,r. 

THEOREM 6.3. {Dg'00,Dg'r(r > f + 1} is an ILB-Lie group. □ 
Furthermore, quite natural one defines C^-ILH maps between ILH-manifolds 

and ILH-principal fibre bundles P -^> P/G of class Ck. Consider g E .M(/,I?oo), 
compr(g) C Ar(I,Boo), comp00^) := ^mcom^(p), ^(p), V£(g) = ^mV^g), 

comp%(l)cP£(g). 
THEOREM 6.4. {comp00(g),compr(g)\r > | + n}, {comp~(l),compel)|r > 

^ + 1} are ILH-manifolds and compco(g) —> comp00 (g)/compel) zs an ILH-bundle. 
a 

7. The space of hyperbolic metrics for n = 2. We will show that for certain 
classes of open surfaces, a suitable metric go and the space comp(go)-i C comp(go) of 
constant scalar curvature — 1 holds 

comp(go)-i = comp(go)/comp(l) (7.1) 

where these spaces are manifolds and ^(^o) -equivariant diffeomorphic to a certain 
component in the space of almost complex structures, comp-i(go)/PgO/o) will be one 
of our models for the Teichmiiller space. 

We consider open surfaces M2. Each such surface has ends. We admit punctures 
as ends.  If each end is isolated then M2 has a finite number of ends, each of them 

oo 
is given by an infinite half ladder =    fl T2, where T2 is the 2-Torus or it is given 

n=l 
by a puncture. If M2 has an infinite number of ends then there exists at least one 
non-isolated end, i.e. an end that has no neighbourhood which is not a neighbourhood 
of another end. This occurs e.g. if we have repeated branchings of half ladders. In 
any case, such a surface can be built up by F-pieces or so called trumpets which we 
explain now. We follow the representation given in [6]. 

LEMMA 7.1. Let a, 6, c be arbitrary positive real numbers. There exists a right 
angled geodesic hexagon in the hyperbolic plane with pairwise non-adjacent sides of 
length a, 6, c. □ 

Next we paste two copies of such a hexagon together along the remaining three 
sides to obtain a hyperbolic surface Y with three closed boundary geodesies of length 
2a, 26, 2c. They determine Y up to isometry (Theorem 3.17 of [6]). 

Two different F-pieces can be glued along their boundary geodesies if they have 
the same length. The same holds for two "legs" of same boundary length of one Y- 
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piece. It is a deep result of hyperbolic geometry that one obtains as a result smooth 
hyperbolic surfaces. Moreover, we can perform gluing with an additional twisting (cf. 
[6]). But here we consider gluings without twisting, at least for our starting metric go- 
As a well known matter of fact, any topologically given open surface of the above kind 
can be built up by F-pieces and trumpets and we obtain in this way a hyperbolically 
metrized surface (M2, go)- The lengths of all closed boundary geodesies can be chosen 
in such a manner (and > a > 0) that rinj(M2,go) > 0, (cf. [6]) i.e. go G .M(I,-Boo)- 

Given an open surface M2 of the above type, i.e. M2 is the connected sum of 
a closed surface with an infinite number of half ladders with possibly infinitely many 
punctures, fix in this case a hyperbolic metric go G M(I, Boo)- Later we must impose 
that this lengths must grow suitably.  Consider Voo(go) = nP^go), '^(po) defined 

771 

by the induced uniform structure. It is a very simple fact that compel,go) C Vl{go) 
and compel,go) C V^igo) coincide, k > 1. We fix r > 3 and write compel) = 
compr(l,go). Consider comp(go) C Mr(I, -Boo)- As we already know, comp(l) acts 
on comp(go) and comp(go)/comp(l) is a Hilbert manifold. Let comp(go)-i C comp(go) 
be the subspace of all metrics g G comp(go) such that the scalar curvature K(g) equals 
— 1. Since we assume r > 3 = | + 2, g is at least of class C2 and K(g) is well defined. 
Usually K(g) denotes the sectional curvature but we use it for scalar curvature which 
is twice the sectional curvature. We could also work with sectional curvature but then 
in the differential equation below appears a factor 2 which we should take into account 
in all calculations. Only for this reason we decided to work with scalar curvature. Both 
approaches are trivially equivalent. 

We wish to show that comp(go)-i C comp(go) C Mr(I,B00) is a smooth sub- 
manifold of comp(go) which is diffeomorphic to comp(go)/comp(l). This is a rather 
deep fact which requires a series of preliminaries and is valid only under an addi- 
tional spectral assumption. Let g G comp(go). Then, according to (2.32), A^ maps 
nr = fr(M, V'o,0o) into Clr-2 C L2(M,go). 

LEMMA 7.2. A5 + 1 is surjective. 
Proof. Consider A^ +1 with domain fir C fir~2. Then the closure of (fir, | |r_2) 

with respect to | • |r_2 4- |(A^ + 1) • |r_2 is just fir, i.e. Ap + 1 is a closed operator 
in the Hilbert space fi,r~2. Moreover, \(Ag + l)y?|r_2 > c • |<p|r_2,c = l,<p E Or. 
Hence (Ag + l)ipi ->> I/J gives ipi Cauchy and w -> ip in fT-2. A^ + 1 is closed, hence 
(Ag 4- l)(p = I/J, im(Ag + 1) closed. Finally, the orthogonal complement of im(Ag 4-1) 
in tir~2 is {0} since the adjoint (in fir-2) operator to A^ + 1 has no kernel. □ 

Let h € Tgcomp(go) = ^(S^T*,#). For h the divergence 6gh is defined by 
(Sgh)j = Vkhjk = glkVihjk' For u = ujidx1 a 1-form and X^ = UJ

1
-^ the corre- 

sponding vector field the divergence 8W is defined by 8gU := SgX^ = -y= -^ (LJ
1y/g). 

Hence for h E fT(S2T*, g) the expression SgSgh is well defined. As we already men- 
tioned, for r > 3 = | + 2, g E comp(go) is at least of class C2 and the scalar curvature 
K(g) is well defined. 

LEMMA 7.3. K(g) - (-1) = K(g) - K(go) E nr-2. 
This follows immediately from the topology in comp(go) and the definition of 

K(g). □ 

Consider the C00 -map 
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^ : comp(go) -> W 2(M,go) 

g^K(g)-(-l). 

Then comp(go)-i = ip~1(0). 
THEOREM 7.4. comp(go)-i C comp(go) is a smooth submanifold. 
Proof. It suffices to show, 0 is a regular value for I/J, i.e. if K(g) = — 1 for some 

g then Dxp\g : Tgcomp(go) -> nr~2(M,^o) is surjective. Hence we have to calculate 
Dip\g(h),he Tgcomplgo) = nr(S2T*,g). This has been done in [29], 

Dil>\g(h) = Ag(trgh) 4- SgSgh 4- -trgh. (7.2) 

Dilj\g is already surjective if the restriction to h of the kind h = A • #, A E nr(M), is 
surjective. Then (7.2) becomes 

I^|s(A-<7) = AsA + A = (As + l)A, 

but Ap + 1 is surjective according to 7.2. □ 
Next we prepare Poincare's theorem which roughly spoken asserts comp(go)-i = 

comp(go)/comp(l). Denote by ae(A) the essential spectrum of A. Here we omit the 
bar in the unique self adjoint extension A which equals to the closure. 

PROPOSITION 7.5. cre(A^0) is an invariant ofcomp(go), i.e. for g G comp(go), 

ae(Ag)=ae(Ago). 

Proof. Let A G ae(Ago) and (</?„),/ be a Weyl sequence for A, i.e. ipj, G D^ , 
bounded, not precompact and   lim (Ap0 — A)^ = O.   Then, according to (2.32), 

v—too 

(iPv)v C D^ is bounded and not precompact with respect to L2{M,g). Writing 
Ag - A = A^ - A + Ag — Ag0, it is possible to show  lim (A^ - A^0)^ = 0, i.e. 

v—>oo 
(7e(Ap0) C ae{Ag). By symmetry we conclude ae{AgQ) = ae{Ag). We refer to [7], [18] 
for details. □ 

LEMMA 7.6. Assume inf ae(Ag0 > 0. Then inf cr(Ag) > 0 for all g G comp(go), 
where a denotes the spectrum. 

Proof. According to 7.5 inf ^(A^) = infae(Ag). From g G .M(/,i?oo),# G 
comp(go) C Mr(I,B00),r > 3 follows that g satisfies (I) and (BQ) which implies 
vol(M2,g) — oo. Hence A = 0 cannot be an eigenvalue. All other spectral values 
between 0 and infae(Ag) belong to the purely discrete point spectrum crpd(Ag), i.e. 
infa(Ag) > 0. □ 

Now we state the first main theorem of this section. 
THEOREM 7.7. Assume (M2,#o) with go smooth, K(go) = -1, nnj(M2,^o) > 0, 

infae(Ago) > 0. Let g G comp(go) C A4r(I,B^^r > 3. Then there exists a unique 
p G comp(l) C V^igo) such that K(p • g) = — 1. 

Proof. Let p = eu. For the existence we have to solve the PDE 

Agu + K{g) 4- eu = 0. (7.3) 

We seek for a solution u G fr(M,po)- u 6 nr(M,po),^ > 3 imply eu - 1 G fir 

as we will see below. (7.3) has a solution according to the general uniformization 
theorem. But this theorem does not provide u G fT. Therefore we have to sharpen 
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our considerations. The existence will be established by the implicit function theorem 
and a version of the continuity method. Consider gt = (I — t)go + tg = go + t(g — go) = 
go H- th E comp(go) and the map 

F : [o, i] x nr -> nr-2 

(t,u) -> F(t,tx) = Agtu + K(gt) + eu = 

= Agtu + (K(gt)-(-l)) + eu-l. (7.4) 

We want to show that there exists a unique ui G fr(M,go) such that F(l,izi) = 0. 
For this we consider the set 

S = {t e [0,1]|    There exists    ut e W    such that    F{t, m) = 0} 

and we want to show S = [0,1]. We start with S ^ 0. For t = 0,gt = go, K(go) = — 1 
and ito = 0 satisfies (7.3). Moreover, 

Fu(0,0) = D2F|(o,o) = A9o + l (7.5) 

is bijective between fir and fT-2, as we have already seen. Hence there exist 5 > 
0,6 > 0 such that for t e]0,S[ there exists a unique ut G C/e(0) C fir with 

F(^^) = 0. (7.6) 

By the same consideration we can show that S is open in [0,1]. To show S = [0,1] we 
should show S is closed. This would be done if we could prove the following. Assume 
h < t2 < ... ,£„ G S,tv -* to, then JQ G S. The canonical procedure to prove this 
would be to prove 

(uty)u    is a Cauchy sequence in    nr,ii^ ->• ut0, (7.7) 

Agtouto+K(gto)ee»<o=o. (7.8) 

We prefer a slightly other version of this establishing the following 
PROPOSITION 7.8.   There exists a 5 > 0,6 independent of to, such that to G S 

implies ]t — So,to 4- <5[n[0,1] C S. 
We will see later that the proof of 7.8 is equivalent to that of (7.7) and (7.8). The 

proof of 7.8 is based on careful estimates in the implicit function theorem to which we 
turn now our attention. Roughly speaking, the proof goes as follows. 

Let to G S,ut0 G flr, 

F(to,uto) = Agtouto+K(gto)+eu*o = 0. 

Set g{t,u) :— Fu(to,utQ)u — F(t,u). Then F(t,u) = 0 is equivalent to 

u = Fu(to,uto)-
1g(t,u). (7.9) 

If we define Ttu := Fu{to, ^o)~15,(^ u)i t*1611 we are &one ^ we can ^^ ^ov any ^o G S 
a complete metric subspace M^^ C nr(M,^o) such that 

Tt:MtoM ->MtQ,5l (7.10) 
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and 

Tt    is contracting (7.11) 

for all t E]£o — 5, to + £[n[0,1], S independent of to. Indeed, in this case Tt would have 
a unique fixed point Ut solving (7.6). 

We now prepare the construction of Mt0^1 and the proof of (7.10), (7.11) by 
a series of estimates. First we apply the mean value theorem. From guit^v) = 
Fu (to, ut0) - Fu (t, v) follows 

and 

\g(t9u) -g(t,v)\r-2 <   sup \gu(t,v + i?(w - v))\r-2 • \u - v\r, . 
0<i9<l 

\Ttu-Ttv\r < \(Agto +e^o)-i|r_2)r. 

• sup \(A9to-A9t) + ((eu*o-ev+nu-v)y)lrir_2.lu_v^ {7A2) 

0<^<l 

where |    \ij denotes the operator norm ni(M,go) —> W(M,go). We estimate 

\(A9to + (e^o.))-i|r_2)r . |A     - A,t|r,r_2 (7.13) 

|(A,to+(e^o.))-i(e^o.)|r_2)r. 

.|(1 _ ev-uto+0(u-utQ-(v-uto))) . \r^_2 (7.14) 

and start with (7.13). In the sequel, the same letters for constants in different inequal- 
ities can denote different constants. The key role in all following considerations plays 
the Lipschitz continuity of |Apt|ij. 

LEMMA 7.9. Assume go,g^t,to,r as above.   Then there exists a constant C = 
C(<?05^ \g — go\go,r) > 0 such that 

A9to-Agt\r,r-2<C-\to-t\. (7.15) 

Proof. Set A(r). := AgT  = A5o+T(fl_5o) = A5o+r.ft.   Then |APto - A^ < 
\A'(t + t?(to - t))\itj ■ \(to - t)\. We calculate and estimate A'(T). Locally, 
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\?*^d>+w A'(r) = -[{-ZF)'diyfc9ydj + —di(y/£)'9? 63 + 

+ -^diyfcigVydj], 

(—Y = -7;—trgTh Ly = _IJ_ 

A
!
(T)W = (-±trgTh ■ A(T) - l-LdiJg;trgrhgiJdj+ 

= -\<y8Ttr8Th, V'*w)gr + (-^di^h^d^w. (7.16) 

We estimate the first term on the right hand side of (7.16), using 

VgktrgTh = Vf gVhij = g? Vf fty = <#%*, 

or more general, 

V9T*rflTft = tr9T(V*T/i), 

{^)itraTh = trgr(^)i, 

where here trgr refers to the trace with respect to the first two indices. Moreover 

and, according to 2.14, 

(/ K^yhUjvolM)1/2 < C2,i\h\go,r,i < r, 

{jKV^ytr^hlljvolM)1/2 < Ce^h^i < r. (7.17) 

We infer from (7.17), 2.9, 2.14 
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-(V^/i, V^«;)|fl0,P_2 < C1|(V»'trPr/l,V^«;)|PT,r_2 = 

= Ci(/^|(V^)i(V^^T/1)V^U;)ST|^)xd^x(5r))i/2 = 

^(/E  E  l(^(V9T)J+1^(V^)fc+1H,JL,x^x(3,))1/2< 

< Cal^l^.r-i • kl^T>r-i < C±(gQ,h,r) • |iy|^0ir_i. (7.18) 

Hence there remains to estimate 

|-^=0iV5;/iy(r)0;H«o,r-2. (7-19) 

= -^(di^)hi^djw+ (7.20) 

+^^'(^5^+ (7.21) 

+hij^didjw. (7.22) 

One way to estimate (7.20) - (7.22) in the | |3o,r-2 -norm is to introduce a cover 
it = {(Ua,<j>a)}a, {ipa}a and to apply (2.33). We present a more covariant procedure 
of estimation. For abbreviation, V = V(r) = W3\hij = hij^ = g^g'Jhki, hki = 
(g-gohtS^T^r). 

9T 

= r!kh\(Vw)1, (7.23) 

(dih^djw = diihjg^djw = (dihi)(Vw)l + 

+hi(di<tf)djw = VihHvw)1 - (r\.hi - ^^i)(V1l;),- 

-(hjrl
isg*j+hirigls)djw = 

= (6gTh,Vw)gT - {TlM - T'uftiiVvj)'- 

-(hjrKvwy + h^ididjw - ViVjw)), (7.24) 
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where we used for the components of a covariant derivative 

Vidsw = didsw - T^djiv, 

TJ
isdjW = didsw - ViVsw. 

Adding (7.23), (7.24), (7.22), yields 

y/9r 

= r?fc/»j(vu,)' + (sgTh,vw)gT -r
i

l$h](vwy+ 

+T!lhi(Vw)1 - f4Tl
is(Vwy - hiididjw+ 

+hijVi ■ VJW + V'didjW = 

= {5gTh, Vw)gr + h^ViVjw. (7.25) 

We write 

Using 

we can rewrite (7.26) as 

h^ViVjW = (hij^iVjw)^ (7.26) 

Viw = VrVw-Vvv,w (7.27) 

h^ViVjW = (h,V2w)9T + (hij,Vviaiw)gr. (7.28) 

(7.27) and hence (7.28) has a generalization to higher covariant derivatives (cf. [14]). 
From this, gT 6 comp{go), pointwise estimates for Vvi^ and other mixed derivatives 
with respect to go, corresponding Sobolev estimates with respect to gT (V

9T
 = V50 + 

V9x — V90 etc.), the module structure theorem and 2.16, 2.17 we obtain finally 

\^=di-y/g;hi^djW\90,r-2< 
\9T 

<c1\-^=di^9;hij^djw\gT,r-2 = 

r — 2 

= Ci( /2l(Vr((^Tft,Vti;)PT +(/»ii,ViViti;)^)|2dt;o/(flr))
1/2 < 

J      5 = 0 

<   C2\h\gTir-l    '   \w\grir    < 

<C73|/lUr-l-Hpo,r (7.29) 

Here we again used \(V)sSgrh\ < C • |Vs+1/i|. (7.18) and (7.29) imply 

\(A9to  - A9t)W\r-2 < 1*0 -*| 'C(go,h,r) -l^lpo.r, 

i.e. |A^ - Agt \r,r-2 < C - \to - t\, where C depends on go, h, r but is independent of 
t. This finishes the proof of 7.9. □ 

Now we continue to estimate (7.13) and have to estimate 
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|(A,to+(6^o.))-1|r_2,r 

First we recall that Agt is self adjoint on Ct2(M, Agt, gt) = n2(M, Ag0, go) C Z^CW) = 
n0(M). For u G nr,r > 3, the operator v —> eu • v is symmetric and bounded on L2. 
Hence A^ + eu is self adjoint. 

LEMMA 7.10.   There exists a constant c > 0 such that inf a(Agt) > c, 0 < t < 1. 
Proo/. Assume the converse. Then there exists a convergent sequence ti -» ^* 

in [0,1] such that Amin(A^.) -* 0. Here Am2n(A^.) is the minimal spectral value 
of Agt.. It is > 0 and either equal to inf ae (Agt) or an isolated eigenvalue of finite 
multiplicity. According to 7.9, Agt. -t Agt+ in the generalized sense of [24], IV, § 2.6. 
Then, according to [24], V, § 4, remark 4.9, Xmin(Ag ) -> Amin(A5f+), i.e. necessary 
Amin(A^t.) = 0, a contradiction. □ 

COROLLARY 7.11.  For arbitrary t e [0, l],u G fT 

infa(Agt + eu) > c, 
rOO 

A9.+e"= /    MEx(t,u), 
JC 

X-vdEx(t,u), 

(Agt + eu)~l is a bounded operator on L2 and, according to [24], p.357, (5.17), the 
operator norm of {Agt + eu)~l is < -. D 

We want to prove more and to estimate 

((Ap.+eTVv. (7.30) 

First we have to assure that (7.30) makes sense. 
LEMMA 7.12. For u € fir,r > 3, the map v -± eu • v is a bounded map ft1 -> 

n2,i < r, with 

\eu\i,i < C(u,i) < C{i) - supeu ■ \u\r. (7.31) 

Proof This follows immediately from 2.7, 2.8. □ 
COROLLARY 7.13.   The Sobolev spaces based on the operators Agt and Agt + eu 

are equivalent for i < r, 

ni(M2),Ags,gs)~ni(M2,Agjt+eu)J<r. (7.32) 

D 
REMARKS.   The heart of the estimate for (7.30) consists in proving that the 

constants arising in (7.31), (7.32) can be chosen independently of t and u if u solves 

F(t,u) = Agtu + K(gt)+eu = 0. 

D 
Consider Qr C ft2 C H0 = X2,nr-2 C L2 and assume r even. 
LEMMA 7.14.  A^ + eu : ft2 —t ft0 = L2 induces a bijective morphism between 

nr cn2 andnr-2 en0. 



POINCARE'S THEOREM AND TEICHMULLER THEORY FOR OPEN SURFACES   383 

Proof. Surely, A^ +eu maps ftr C ft2 into O7*-2 C fi0 = 1/2- This map is injective 
according to 7.10. It is surjective: Let v € ftr~2 C ft0. Then (A^ 4- e^^v G fi2, 
(A^ + eu)i{{Agt + en)-1i;) = (A + e")*"1*; is square integrable i < §. The assertion 
now follows from 7.13. □ 

Now we state our main 
PROPOSITION 7.15. Assume r > 3 even. Then there exists a constant C = 

C(go,g) > 0, independent oft, such that 

|(A,f+e,")~1|r-2lr<C (7.33) 

for any solution ut G fir = Qr{M,go) of Agtut 4- K(gt) 4- eUt = 0. 
Proof We would be done if we could show 

|(APt+eM*)"Mo<CoHo (7.34) 

|A*t(A,t +e^)~1^|o < C^|2i_2 < CiMr-2,1 < i< \, (7.35) 

Ci = Ci(go,g), |    |j = |    |90)j.   We perform induction.   (7.34) follows from (7.11). 
Consider i = 1 in (7.35) and denote A5t + eu* = A + eu. Then 

A(A + e^v = v - (eu) o (A + e^)"1^. (7.36) 

LEMMA 7.16.   There exists a constant D > 0 independent oft such that 

supeUt<D (7.37) 

/or any solution of AgtUt 4- K(gt) + ew' = 0. 
Proof. Let (M2,p) be a Riemannian 2-manifold, oriented. Then ^ defines an 

integrable almost complex structure Jg such that (M2, <?, Jg) is Kahlerian. Moreover, 
J^ = Jeu • ^. Consider now our case id : (M,gt,Jgt) -» (M,eUt • gt,Jgt). id is a 
nonconstant holomorphic map. We repeat Yau's 

GENERAL SCHWARZ LEMMA. Let (M,g) and (N,h) complete Riemannian sur- 
faces with sectional curvatures KM and KN and f : M —)■ N a nonconstant holomor- 
phic map. Assume KM > -Ki and K^ < K2 < 0.  Then Ki < 0 and 

rh<^-g (7.38) 
K2 

See [32] for a proof. D 

(7.38) implies in our case with id : (Af,^) -> (M,eUt • p^) 

eu<-infK(gt)(x)/2, (7.39) 

where in (7.39) K denotes the scalar curvature =  2- sectional curvature,    gt   £ 
comp(go), K(go) = —1 and r > 3 imply inf K(gt)(x) < —1 but we must prove that 

x€M 
inf K(gt)(x) really exists. This is the content of 
xeM 

LEMMA 7.17.   There exists a constant Di > 0 independent oft such that 

\K(gt){x)\ < D1    for all   t G [0, l],x 6 M. (7.40) 
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Proof. (7.40) would follow if we could prove 

6| - 1 - K{gt)\ =b'0 | - 1 - K(gt)\ < D2. (7.41) 

but this follows immediately from the facts g,gt = ^o + t{9 ~ 9o) ^ comp(g) C 
Mr(I, Boo), r > 3 = | + 2, *'% - 0o|*> = * •6'2 b " ^o| < D3 -t • \g - go\9o,r, (2.34) 
and scalar curvature has an expression by derivatives of order < 2 of the metric. This 
proves (7.40) and hence (7.37). □ 

Now, according to (7.36), 2.14, 

|A(A + e^-^lo < Mo 4- D\(A + e")-1^ < 

< \v\o + D - Co\v\o = C,iHo 

which finishes the proof of (7.35) for i = 1. Assume now 

|A^(A + e^-^lo < Cj • \v\j-2j < » - 1, t < ^ (7.42) 

Then 

A^A + e^v = Ai-1(A(A + e")"1?;) = 

= A^1^ - Ai-1((ew.)(A + e^v). (7.43) 

Clearly, 

lA'-^lo < \v\gt,2i-2 < C • |v|50f2i-2, (7.44) 

hence we have to estimate 

Ai-1((eu)(A + en)-1i;). (7.45) 

As follows from 

A(v • w) = v - Aw 4- wAv - 2(Vu,Vw), (7.46) 

Aeu = eu(Au-\Vu\2) (7.47) 

and the induction assumption applied to A-7 (A + e^)-1-*;, we have a desired estimate 
for (7.45) if we have an estimate for |u|o, | Au|o, • • • , | A2-1^^, independent of t, u = wt 

solution of Agtut + i^(^) + ^Ut — 0. The proof of 7.15 would be finished if we could 
prove 

PROPOSITION 7.18. Assume r > 3 even.    Then there exist constants Di = 
Di(g,go) independent oft, such that 

|A*04,<A,*<£, (7.48) 

for u — uta solution of Agtut + K(gt) + eUt = 0. 
Proof. According to 2.16, we are done if we could show |A2

tii|o < Di and write 
in the sequel simply u = ut, A = A^t, K = K(gt). Then 

Aix + ^-feu = 0 
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is equivalent to 

(A+ ^i)ti = -(# + !), 
U 

i.e. 

u = (A + ^—lyH-iK + 1)). (7.49) 

Here §-^ is well defined, > 0 and (A + ^-^)~1 is a well defined bounded operator 
according to 7.11.  We would be done for i — 0 in (7.48) if we could show \K(gt) — 
{—l)|o <C = C(g,go) independent oft. We prove more general 

LEMMA 7.19. Lett,to € {0,1}. Then 

\K(gt0) - K{gt)\r-2 < \to - t\ • C, (7.50) 

C = C(go,g) independent oft. 
Proof. According to the mean value theorem for maps into affine Banach spaces, 

\K(gt0) - K(gt)\r-2 < \to - t\ •   sup ^(^Jlr-a. (7.51) 
to<T<t 

K\gr) = ^:^(^o + rh + aftJI^o = 

= i~(AgTtrgrh 4- J^ VA - -K(gT)trgrh), 

hence 

l^'(5r)|i < r • (C'M+z + ^(^^/.li). (7.52) 

We have to estimate \K(gr)trgTh\i. For 2 = 0, i.e. | |o, there does not arise any 
problem since \K(gT) < CQ, CQ independent of r and \trgTh\o < CQ'-NO- We continue 
with i = 2 to indicate the general rule. 

K{gT) = 2R1212(gT){det{gT), 

±AK{gr) = \A(K(gr) + 1) = ±*{K(gr) - K(go)) = 

= g A[-Ri2i2(Pr)(det(po) - det(gT))+ 

HRunigr) - Ri2i2(go))det(go))/det(go) • det(^T)], (7.53) 

where A = Ap0.  Choose an atlas il = {(t^cn </><*)}<* as in section 2.  Then go,iji gl3, 
detgo and all of its derivatives are bounded, 

det(go) > c> 0. (7.54) 

r > 3 and gr = #0 + TA5 Mr < 00 imply 

9r,ij,gr\det(gT)    bounded,    det(gr) > d > 0 (7.55) 

There holds 
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and 

T)k(gT) = r)k(go + Th)=r)k{go)+ 

+ -g™ (rhej;k + rhek-j + Thjk.e) (7.56) 

K*frM = (37 Y%S - ds rfa + r-7 r^ - r^ r^)(^), (7.57) 

where ;j denotes V^0.    Finally we conclude from (7.53)-(7.57), |ft|r  < oo,V50  = 
V

9T
 + V90 - V^, the module structure theorem, 2.16 and 2.17 that 

\AK(gr)\o<D2(\hU) (7.58) 

D2 a polynomial in \h\r. Similar for higher derivatives, 

|A^(ffT)|o < D2jQh\2j+2) (7.59) 

We omit the very long but rather simple details. This finishes the proof of 7.19.     □ 
Hence 

Ho = |(A + ^l)-i(-(K + l))|o < - = A,. (7.60) 
u c 

Next we study Au to indicate the general rule. 

Au = A((A + ^—V1 - (K + 1)) = 
u 

pu — 1 pu — 1 pu — 1 pu — 1 
= (A + ^-i)(A + i-^)-1(-(^ + l)-(i-—i)(A + l—^)-i(-(^ + l)) 

u u u u 

= -(K + 1) + (^:^)(A + ^I))-i(-(ir + 1)) (7.61) 

^^ can even pointwise be estimated by a constant independent of t: Let \u(x)\ > 1. 
Then, according to (7.37), 

eu(x) _1 

-| <\euix)-l\<D + l = C,. 
u{x) 

If |u(x)| < 1, then l6"^1! < YZLi if < e = C''- Hence lA^lo < ^2- Assume now 

|A^|o ^Dj,] <i-l,i< -, 

and consider Alu. According to (7.61), 

A'u = -A^"1^ + 1) - A^1 o (^_L)((A + -—V1^ + 1)) (7.62) 
u u 

for i > 2. 7.19 yields [A*-1^ + l)|o < D'- If we write A'u to determine a Sobolev 
norm, this means A^u since our general reference Sobolev norm is | \g0lj,j < r. But 
for the calculations in the sequel we have often to work with A* t since then formulas 
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become easier. But this does not touch the proof of our desired a priori Sobolev 
estimates according to 2.16. 

We have to find an a priori estimate 

|Ai-1(£—^ • ((A + ^±rHK + l)))|o < D", (7.63) u u 

D" = JD"(<7,<7O) independent of t. Consider /\l~l{v • w). In our case v — §-^L, 
w = (A + ^)-l(K + 1). We obtain from 

A(v • w) = uAw + wAv - 2(Vv, Viu) (7.64) 

that A*-1^ • w) has a representation 

A'-1 (v • w) =     ^^    ^v ' ^kw +    sum Qf mixe(i terms. (7.65) 

It follows from (2.32), (I), (J^oo) for #0 and the module structure theorem that a priori 
estimates for all 

\Ajv • Akw\Q 

imply such estimates for all mixed terms too. 
REMARKS. We could also work exclusively with covariant derivatives. But then 

all of our expressions grow rapidly. Therefore we decided to work only with every 
second derivative, i.e. to work with the A's. □ 

Consider now all products 

A'"(——) • Ak{A + e^l)-\K + 1), j + k = i - 1. 
u u 

^IT = 1 + % + ^ + --- andfr + ^ + ... converges in fir since all u* G ^M^lr < C*"1. 

\u\lr and ^f- + ^r11 +    4!     + • • • converges. We have already seen 

eu - 1 

Using Auk = -V^VjU* = -k(k - l)^*-2^^!2 + kuk~1Au, we see that at least 
formally 

A.e"-1.       .   ,1      2u     Bu2 

.„  .,.2      2-3-u     3-4-w2 , .„„„. 
- \Vu\\^ + -ii- + -^i— + ...)• (7-63) 

But the same argument as above and the module structure theorem yields A(§-^) 
and its series (7.63) is a well defined element of fir~2. We want to establish an a priori 
estimate for \A(

§
-^)\Q. We already proved 

|Aix|o < D2 (7.64) 

which implies 
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|A«.i|o<i?2/2. (7.65) 

We continue to establish an a priori estimate for 

IA   ,1      2u     Six2 ,, _^x 
|Aw(2! + 3r + ^r + '--)l0 (7-66) 

The a priori estimate for \u\o and \Au\o yield such an estimate for \u\2. 

\u\2 < D'2. (7.67) 

According to remark 2 after 2.8, Q2 is an algebra and we have an estimate 

\^\2<C2\u\l\uk\2<Ct1Hl 

together with (7.67), 

\U   \2 2i ^2      ^2 ' 

Hence ^ + ^j- 4-... is a well defined element of O2 (even of Vtr as we have seen) and 
there exists an estimate 

,,214     3u2 Xl   ^2D'2     3C2^
2 _„ fr7CQ. 

i(^ + ir + ---)l2^"3f + -ir- + --- = D2- (7.68) 

Now we apply once again the module structure theorem 2.8.   In our case n = 2, 
f2u 

t c a&    — JU2, /i — w ^ ±, ( 

r2 = 2, r = 0, then, according to 2.8, 
Pi = P2 = P = 2, £ = £ = a = 1, Aw € fi0 = L2> n = 0 < 1, (f +3n24!+...) e fi2, 

,2u     3u2 ,,       ^   ..   ,     .,20     3w2 

\Au-(-^ + -4r + ---)\o<c-\Au\0-\(- + — + ...)\2< 

<C-D2- D'i, 

together with (7.65), 

|Au • (1 + — + — + ... )|o < IV2 + C ■ D2 ■ D'i = D'i'. (7.69) 
2u     3w2 

3r + ^! 
Quite similar we manage the second term in (7.63) using that Vw € fi1, |Vw|2 € 

L2, ||Vu|2|o < Ci|Vu|f < CMl and again (^ + ^ + ...)€ fi2. We obtain 

i.e. 

|A(^^)|o < ^5). (7.71) 

Now it is every easy to recognize the general rule. One forms A-7 (£-^), obtains a finite 
sum of factors x series, the factors are in L2 = Ho and have an a priori L2-estimate 
coming from lA^lo < Dk, k < j — 1. The series are in fi2 and have an a priori | I2 
-estimate which yields together 
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|A^—)|o<£;,j<i-l, (7.72) 

Dj = D^g^go) independent of t. Finally we want to establish a priori estimates for 

Afc((A + ^—V1^ + 1)), k < i - 1. (7.73) 
u 

But if we replace in (7.42)-(7.47) eu by —f^, then we see that we get a priori estimates 
if we have such estimates for 

\&l{——)\o,l<k,k<i-l. 
u 

But these we have just established, i.e. we obtain 

|A*((A + e^±)-1{K + l))|o <Ek,k<%-\. 
u 

K + \Z Qr-\ (A + ^i)-1(^ + 1) € nr, Afc((A + ^i)-1(^ + 1)) € ft2 since 
k <i - 1 < § — 1, A^X^^-) G n0 = L2. Applying once again 2.8, we obtain 

l^i^Lzl). A*((A + ^Vor + i))|o < Ji,*, 
-u u 

Fjjk = Fj^{g,go) independent of t. Quite similar we conclude 

I mixed terms |o < F. 

Hence 

|Ai-1(^^-((A+^^)-1(ir + l))|o<F+    ^    F^, 

together with (7.50), 

|A^|o < Di (7.74) 

.D^ = Di(g,go) independent of t, i < |. This proves 7.18, hence (7.35) and our main 
proposition 7.15. D 

COROLLARY 7.20 There exists a constant C — C(g,go) such that 

\(A9to + (e^o.))-i|r.2|r . |A,to - A,t|r,r_2 < C • I* - to|. (7.75) 

□ 
The estimate of the first factor of (7.14) is already done, 

KA^+^'oorV0-)!^,^ 
< |(ASto + (e"<oO)-V2,r • |(eU'<>-)|r-2,r-2. 

According to (7.33), 

KA^+^'oOJ-V^d, (7.76) 
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and, according to (7.31), (7.37) and \Aju\o < Dj,Q < j < §, 

|(e^o.)|r_2jr_2<C2, (7.77) 

i.e. 

|(Aaio + (e"'o.))-\eu'o.)\r_2, < C3, (7.78) 

C3 — C3(g,go) independent of t. The final estimate concerns 

|(1 _ ev-««o+tf(u-«'o-0'-u«o))) . |rjr_2j (7.79) 

where as usual the point indicates that the corresponding expression acts by multipli- 
cation. We write 

I _ ev-ut0+#(u-ut0-(v-ut0)) _ 

oo 

= ~ Yl^v ~ ^o + tifa - uto -{v- v>tQ)]%li\ 
2=1 

As above, this series converges in VLr and for \v — ut0-\-$(u — ut0 — (v — ut0))\r sufficiently 
small | X^Sib "" uto + ^(u ~ uto — (v — ^o))]2/2-'^ becomes arbitrary small. 

For any / G fir, the operator norm of (/•) : Qr —► nr~2, (f')w = f • w, can be 
estimated by C(r) • |/|r. This yields 

LEMMA 7.21.  For any si > 0 there exists Si > 0 such that 

|(1 - ev-v>to+0(u-uto-(v-uto))} . |^_2 < £i 

for all u,v with \u — Ut0\r, \v — Ut0\r < ^i- 
Proof. Given ei > 0, there exists JJ such that for \v—ut0-\-'d{u—ut0 — (v—Ut0))\r < 

oo 

C(r) • | Y^[v - uto + ^(w - ^o - (v - ^o))]Vi!lr < ex. 
i=l 

Set Sx =5i/4. Then 

|V -^0 +I?(u-Ut0 - (V -Ut0))\r < \V -Ut0\r + |w-^tolr + \v - uto\r = 

= \u - ut0\r -f 2|t; - ut0\r < 2(\u - uto\r + |v - ^0|r) < 4(Ji = JJ. 

D 
COROLLARY 7.22 There exists Si > 0 5wc/i £/ia£ |tz - i^0|r < 5i, |t; — ut0|r < 5i 

|(A + (eu«o.))-1(e- 1CP
U

'O . r—2,r' 

• |(1 - gV-^o+^-^o-C"-^)) . |rir_2 < I. (7.80) 

Proof. Set in (7.21) ei = \ ■ ^, C3 from (7.78). D 
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COROLLARY 7.23 There exists Si > 0 such that for \u — ut0\r < Si, \v — ut0\r < <5i 

\Ttu - Ttv\r <{C-\t- to| + l)\u - v\r, (7.81) 

where C comes from 7.9. 
Proof This follows immediately from (7.12), (7.13), (7.14), (7.15) and (7.80). □ 
If we would choose \to —1\ sufficiently small, then the map Tt would be contractive. 

But this does not make sense since until now we did not define a complete metric space 
on which Tt acts. This will be the next and last step in our approach. But we will 
use the inequality (7.81) in this step. 

PROPOSITION 7.24. Suppose ut0 e nr,r > 3, A^u^ +K(gt0) + eUto = 0. There 
exist S, Si > 0 independent of to such that Tt maps Mt0,di = {u € ^r| 1^ — ^tolr ^ ^i} 
into itself for \t — to\ < S. Moreover Tt is contracting. 

Proof. We start estimating Ttu — ut0: 

\TtU - Ut0\r = \TtU - TtoUt0\r < 

< \Ttu - Ttut0\r + \TtUto - Tt0uto\r. (7.82) 

For \u - ut0\r < Si,Si from 7.23, 

ITtli - TtUt0\r < {C • \t - to\ Hh -)\U - Ut0\r- 

Hence for \t — to\ < S', \u — ut0\r < Si 

(C.\t-to\ + \)<l 

and 

|rtu-rttit0|r < ^\u-ut0\r < ±6i. (7.83) 

It remains to estimate \TtUt0 — Tiout0|r. But by an easy calculation 

Ttut0 - Ttouto = -(Agto + (e"'o.))-1((Afll - Agt0)uto + 

+K(gt)-K(gt0)). 

We are done if for \t — to\ < S" 

|(A,t0 + (e^o^-^A^ - A^KIr < *i/4. (7.84) 

l(A,t0 + (e^o -J)-1^te0) - K(gt))\r < *i/4. (7.85) 

The existence of such a S" follows immediately from 7.9, 7.15, (7.74) for (7.84) and 
from 7.15, 7.19 for (7.85). Let now S = mm{8',6"}. Then we infer from (7.82)-(7.85) 

\TtU-Ut0\r < Si, 

i.e. Tt : Mt0^l -> M^^. Tt is contractive according to (7.81) since for \t - to\ < S 
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(C.\t-t0\ + \)<±. 

This finishes the existence proof of theorem 7.7 and yields uniqueness in a moving ball 
Mtji, 0 < t < 1. We prove now the uniqueness in all of fT. 

Fix XQ £ M2 and denote by d(x) = (i(a:,a;o) the Riemannian distance. Let 
u,v £ fir,r > 3, be solutions of 

Agu + K{g) + eu = 0. 

We obtain u,v,u - v bounded, C2 and 

Ag(u-v) = -(e»-ev). 

There are two cases. 
1. u — v achieves its supremum in Ui(xo) = {x\d(x) < 1}. e.g. in xi. Then A(u — 
v){x1) >0,-(eu(Xiy>-ev{<Xiy)) >0, e^1) < ev<<Xl\ (u-v)(xi) < 0 of the supreme point 
Xi, hence (u — v)(x) < 0 everywhere, u(x) <v(x). 
2. Or we apply Yau's generalized maximum principle: / G C2, 

r          /(*)-/(*<)) ^ 
hm sup —  < 0 
d(x)->oo d(x) 

and 

iim   ^)(/(;)-/M)=0, 
d(x)-*oo d(x) 

f(x)>f(xo) 

Then there are points (xk)k C M such that lim /(x^) = sup/, lim V f(xk) = 0 and 
A;—>-oo /:—>-oo 

lim sup Af(xk) > 0. See [31] for the proof. 

In our case / = w — v. Then we have (#&)*; such that lim (u — v)(xk) = sup(u—v), 
k—HX> 

lim V(w - v)(xfc) = 0, lim sup A(w — v)(xk) > 0, hence limsup(eu — eu)(xk) > 0, 

limsup(f — Tx)(a:A;) > 0, limsup(u — v)(xk) < 0, sup(tz — v) < Q,u < v everywhere. 
Quite similar v < u, i.e. u = v. This finishes uniqueness and the proof of theorem 

7.7. □ 
REMARKS. 1. We had several versions of the proof. But the particular useful 

proposal to work with the equation u = (A + §-^^)~1(—(K + 1)) has been made by 
Gorm Salomonsen. 
2. A seemingly more direct approach proving S = [0,1] would amount to prove the 
following assertion. Assume ti < £2 < • • • < £0,^ -^ ^o, Agt utv + eUt^ = 0. Then 

a. {ut^j, is a Cauchy sequence with respect to |    |r. 
b. utu -> ut0 

c. Agtouto+K(gto)+eu<o=0. 

But writing down a straightforward approach proving a., c. leads immediately to the 
key estimates performed by us. 
3. We assumed inf ^(A^) > 0. This implied inf cr(A^) >c>0,0<£<1, which was 
of essential meaning for all of our t independent a priori estimates. The assumption 
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inf cre(A^0) > 0 would be redundant if we would know that ut(x) > a for all t and 
x e M. We even proved this fact but in the proof we essentially used inf ae(Ag0) > 0. 
From ut G fir,r > 3, follows Ut(x) > mint for all x G M but it could be that infi^ 
with growing t becomes smaller and smaller. Then, if inf ae(Ag0) = 0, the norm of 
(Agt -f (e

Ut •))_1 grows and grows. This would destroy the existence proof for the 5 in 
(7.10), (7.11). If inf (Te(Ag0) = 0 then inf cre(A^ +eUt) = 1 but this insight would not 
help immediately. We could conclude that below 1 there are only isolated eigenvalues 
of finite multiplicity. They are > 0 for all t. But we are not able - at least until now - 
to prove the existence of a c > 0 such that Amin(Apt + eUt) > c, 0 < t < 1. The proof 
of 7.10 does not work since there we used the convergence A5t ->• A5t+ for t -> t*. If 
we replace A by A + eu then we must prove Ut —»• ut* for t -> t* in a certain sense. But 
this is more or less equivalent to theorem 7.7 and the natural proof of ut —)• ut* would 
just use inf cre(A5o) > 0. Nevertheless it could be possible to drop this assumption. 
But then we would have to study very carefully the intimate relation between inf utQ 

and 

\(Agt +eUt)-1\r-2,r,te}to-e,to + e[n[0,l}. 

4. Now there arises the natural question, do there exist metrics #0 with if (#0) = 
—l,rinj(<7o) > 0 and inf ae(Ag0) > 0 ? The answer is yes. Consider y-pieces 1* where 
the lengths of the boundary geodesies grow exponentially with A:, roughly spoken, and 
build an infinite ladder out of them. More precisely we take for k = 1,3,5... Y& to 
be the Y-piece with boundary geodesies of length 3kL (L > 0 is a fixed constant) and 
Yk+i the y-piece with boundary geodesies of lengths 3fcL, 3kL, 3A:+1L. The two are 
pasted together. Built up all ladder ends by each metrically dilated F-pieces. Then, 
using Cheegers constant, one can show that in this case inf ae(Ag0) > 0 in addition 
to K = -1 and rinj(go) > 0. We shortly explain this. If K is any smooth, compact 
submanifold of M2, dimK — 2, we set 

hk(e) = inf 
vol(N) ' 

where iV C M \ K is a neighbourhood of the isolated end of e, dN dividing e into a 
compact and noncompact part (which is an element of e). Denote hess(e) = suphK. 

K 
Then 

(ft"')2<mf<7e(A90(e)). 

See [4] for details. If we construct #0 as above then hess > 0. We refer to [7]. □. 
We have shown in theorem 7.4 and corollary 3.6 that 

comp(go)-i    and    comp(go) / comp(l) 

have the structure of Hilbert manifolds. Now we are able to state 
THEOREM 7.25. Assume go G A1(/, Boo) with K(go) = -1, inf (Te(Ag0) > 0,r > 

3.   Then comp(go)-i C Mr{I,B00) and comp(go)/'comp(l), comp(l) C V^go), are 
diffeomorphic manifolds. 

Proof. Consider TT : comp(go) -» comp(go)/comp(l) and 7r_i = 7r|comp(^o)-i- ^e 

latter map is bijective according to theorem 7.7. We are done if we can show that the 
differential dir-i is well defined and an isomorphism at any point. Now 
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T[g]comp(go)/comp(l) = Tg comp(go)/Tg(comp(l) • g) = 

= {[h]\h G nr(s2T\g)}, [h] = {h + x9\x e nr(M)}. 

Then, by an easy consideration, dir-ilg is given by h -> [h].d7r-i is surjective at g if 
for any [h] we find a representative h + \g € Tg comp(go)-i = kerd(K + 1) = kerdK, 
i.e. d(K.(g) + l)(h + \g) = 0. By suitable choice of A, we can assume w.l.o.g. trgh = 0. 
Then we have to solve 

2Ag\ +  5g5gh-Ag\  +  \   =   0 

AgX   +   A   =    —Sg6gh, 

but A^ + 1 is bijective, as we already know. □ 
If we assume for a moment that Pj+1(^o) acts on comp(go), then we can sharpen 

7.25 as follows. 
LEMMA 7.26. The diffeomorphism n-i : comp(go)-i -> comp(go)/comp(l) is 

PQ
+1
 equivariant. 
Proof. If T>Q

+1
 acts on comp(go) then on comp(go)_i too: K(f*) = f*K(g) = 

AT^) o /, i.e. A'(p) = -1 implies K(/*<?) = -1. Furthermore 7r_i(/*p) = [/*p] = 
/*7r-i(^). D 

This allows to establish at least formally an isomorphism between 

comp(go)-i/VQ+1     and     (comp(go)/comp(l))/V^1. 

We discuss this in sections 9 and 10. 

8. The spaces of almost complex and complex structures for n = 2. In 
this section we develop the approach, sketched in section 4 for arbitrary n = 2m, for 
n = 2. First we start with arbitrary n = 2m, Mn oriented. Fix any metric g and 
r > 1. Then 

is well defined. Here 

Ar = Ar(g) = ^comp(Ji) 

comp(J) = {J1 e Ar\ \J - J'\gir < oo} (8.1) 

is a Hilbert manifold. The Hilbert manifold structure can be seen as follows. There 
is a real representation GL(m,C) —> GL+(2m,E) given by 

(A + iB^(-AB   A 

which gives the coset space GL+(2m,M)/GL(m,C).   GL(m,C) is just the isotropy 

group of the canonical almost complex structure [     T        ™ ) on lR2m. Let L be the 
X-Im       0, 

GI/+(2m, E) principal bundle of frames lying in the fixed orientation. Then the space 
A of all almost complex structures is given by 

A = C^iL xGL+(2m,R) GL+(2m,M)/GL(m,G)) C ^(^(M)). 



POINCARE'S THEOREM AND TEICHMULLER THEORY FOR OPEN SURFACES     395 

On open manifolds with infinite volume it does not make sense to speak of square 
integrable (together with derivatives) sections in A, since such sections do not exist 
because det J = 1. C00(T1

1(M)) is endowed with a canonical uniform structure IT 
generated by the basis £ = {Vs}s>o^ 

V6 = {(M') € C^T^M))! \t - iV < 6} 

which induces the uniform structure of lemma 4.1 on A thus giving Ar = Ar(g). 
For later applications we do not consider A C C00(T1

1(M)) but restrict ourselves to 
lA(g) = {J G -41107*)% < C,-for all t}. ThenlMg) C l^T^g) = nb

mn(T},9). 
m 

The elements of ^Aig) are the almost complex structures of "bounded geometry". 
Now we restrict for our purposes to n = 2, m — 1. Then J2 = -1 if and 

only if tr J = 0 and det J = 1. Denote by £oft(T1
1
J0)r the completion of ^^(r!1,^) 

with respect to ilr. Let £ G ^0(7^,#) and comp(t) C ^fi^1,^) its component in 
^^(T^g) . Then comp(t) = 14- ^(Tj1,#) is an affine space with ftr(Tl,g) as vector 
space, litrt $: fr(M, ^) then corap(A) does not contain a tensor field s with tr s = 0. 
Such a component does not contain any almost complex structure. If trt E fir(M, #) 
then £r(£ + t1) = 0 if and only if trt' = -trt and for tr : comp(t) -> nr(M^), 
tr-1^) = -tr(t)g) + ^(Tx^fl) H {tr = 0}) = W{Tl,g) fl {tr = 0} which is a closed 
linear subspace N of nr(T1

1,5) with tangent space VLr(Tl,g) Pi {tr = 0}. Similarly, 
if 1 ^ det(comp(t)) then comp(t) does not contain any almost complex structure. 
In the other case M = det"^!) is a submanifold of comp(t) with TjM = {H € 
nr(T^g)\tr(JH) = 0}. Hence if trt G ^r(M,g) and 1 G det(comp(t)), then comp(t) 
contains a component comp(J) = ATnAI C comp(t), AT and .M intersect transversally. 
Moreover, tr H = -0 and tr J# = 0 if and only if JH + #J = 0. The topology of 
comp(J) is that induced from comp(t), i.e. we have (8.1). 

Since we consider in the sequel only ^Aig) we denote this for the sake of brevity 
once again with Ar(g) but always keeping in mind that we completed a space of 
bounded almost complex structures. Then 

*4r(#) = YlcornP(Ji>)' 
iei 

Forming nAr (#), we obtain back all oo -bounded smooth almost complex structures. It 
r 

is an absolutely standard fact that a smooth almost complex structure J is integrable, 
i.e. induced from a complex structure c = {(Ui,<pi)}i if and only if the Nijenhius 
tensor N( J) equals to zero, iV( J) =0, 

N(J){X,Y) = 2{[JX, JY] - [X,y] - J[X,JY] - J[JX,Y}}. 

Denote for general n = 2m by Cr all elements J G Ar such that iV( J) = 0. As well 
known, for n = 2m = 2, iV( J) = 0 for all J. 

9. The action of X>S+1. We consider (Mn,go),g0 G A4(J,Bfc),fc > r+1 > f-h2, 

comp(^o) C A1r(/,^). Then I^teo) = ©J0^1^) = V^1 (comp(go)) is well 
defined. We want to show that Vl+1 acts on comp(go), i.e. if g G comp(go),f G £>S+1, 
then /*<? G comp(go). If / G ^S"1"1, then there exist vector fields Xi,... ,Xn,Xi G 
nr+1(rM,po) such that 

/ = exp Xu o ... o exp Xi. 
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More carefully, X2 6 nr+1((expXi)*TM, (expX^V90) and so on, but if /1 - /2, 
then WtfiTJfV) = WU^Tyf^) as equivalent Hilbert spaces, which will be dis- 
cussed below.   We start with a simple special case, / = expX,X G W+l(TM,gQ). 
According to (2.3), there exists a sequence X^ 6 CQ^TM), Xy   —)■   X. This implies 

I     lso>r 

expX,, -> expX = / in our topology of PJ"1"1.  Moreover expX^ G C,00'00(M,M) n 
DJ+1. Hence (expX^)*^' satisfies (I) and {Bk) for any g' G comp(go) D M(I, Bk). 

We want to estimate (expX^)**?' — gl which needs some explanations. 
If E ->- M is a vector bundle, / = (Z^, /M) a bundle map, c : M -> E a, section, 

then it is for JM ^ id impossible to compare c and f*c since they live in different 
bundles, c is a section of E -> M1f*c a section of /*£? -> M. If we must or want 
to compare them we must use a canonical equivalence between E and f*E - if such 
an equivalence exists. Consider g' as a section of S2T*,f*g' as a section of f*S2T*. 
If / = expX, X G fJr+i(TM,£o) ^b,k ft>{TM,go), then we have a canonical bundle 
equivalence, the parallel displacement of the fibre over expX along expsX to expO. 
If #0 has bounded geometry up to order k then this equivalence is also bounded up 
to order k. Having this construction in mind, it makes sense to consider for a section 
c : M -> TZ 

f*c-c=(f*-id)c 

or the pointwise operator norm 

\rc-c\x. 

Our considerations generalize to the case where we replace id by some / and exp X is 
now defined for X G nr(f*TM). We proved in [14], p. 284, (4.95) and p. 292, (5.16) 
the following key 

PROPOSITION 9.1. Assume {Mn,g),{Nn\h) with (I) and (Bk),k > r + 1 > 
f + 2,/ G n2'r+1(M,iV)7 /' = expy,r G nr+1(f*TN). Then there exist polynomials 
RvdY], |VY|,... , |Vn+1Y|) such that 

IVCf-nU^iW^. (9.1) 

Moreover, the R^ are square integrable, f IR^I2 < i?^(|F|yo?r+i); where R'^ is a poly- 
nomial without constant term. In particular 

and\f*-f'*\go,r->0 if 

\r-n9o,r<™ (9.2) 

m0,r+l "> 0. (9.3) 

D 
COROLLARY 9.2 Under the assumptions of 9.1, 

nr+1(f*TN)9iSlr+1(ft*TN)' (9.4) 

as equivalent Hilbert spaces. O 
After this preparations we are ready to state 



POINCARE'S THEOREM AND TEICHMULLER THEORY FOR OPEN SURFACES   397 

THEOREM 9.3. Assume go e M(I,Bk),k >r + l>f + 2. Then V^igo) acts 
on comp(go) C Mr(/, Bk). 

Proof. We have to show, g G comp(go),f G T>1+1 imply f*g G comp(go). The 
other properties of an action are trivially satisfied. We start with the simplest case 
/ = expX, X G nr+1(TM, ^o). We know from g G comp(go) that there exists a 
sequence {gv)v,gv £ M{I,Bk) ncomp(go), g^    —>   g- In particular 

I ISO'7, 

\9u - 9o\go,r < [QV - g\go,r + \9 " ^o|^o,r < C (9.5) 

for all i/. Moreover, according to (2.3), there exists a sequence (X^)^, X^ G C^{TM), 
X^      —v      X.   If we define /^ := expX^, then /^ -> / in V1^1.   Consider the 

diagonal sequence Z*^. Clearly, Z*^ G M{I,Bk). f*gv € comp(go) since 

1/^ - ^l^cr = |(/^ - id)Pi/|flo,r < K/jJ - id){90 +gv- go)\go,r < 
<\(fv-id)go\g0,r + \{f*-id){gJ/-go)\9o,r<oo. 

The latter follows from 

\f;-id\9o,r<R'r(\xl/\r+1), 

(2.20) for |a| = 0 and V9ogo = 0, (9.5) and the module structure theorem. We would 
be done if we could show (expX^)*^ -» (expX)*g, i.e. \f*gu - f*g\go r —> 0. But 

tflg* - fgUr < l(/; - D^l^o.r +1/*(g* - g)\go,r < 

< \{f: - Dg^r + |(/; - /*)(^ - Pd)|po,r + 
H-|(/* - id){gv - p)|50>r + \gv - g\g^v. (9.6) 

All terms on the right hand side of (9.6) converge to zero for v -> oo. Now we consider 
the general case / G ^S+1, / = exp Xu o ... o exp Xi and write 

/* — id = (exp Xu o ... o exp Xi)* - (exp Xu-i o ... o exp Xi)*-f 

+(exp Xn_i o ... o exp Xi)* - (exp Xu-2 0 • • • 0 exp Xi)* + ... 

+ (expX2expX1)* - (expXi)* + (expXi)* -id. (9.7) 

We approximate as above XiU    —>   Xu,Xiu G CQ?(TM). Then fu = expXWI, o ... o 
I      lgo.r 

expXi^ -> expXu o ... o expXi = /. Applying the triangle inequality to (9.7) and 
the general version (9.1) and its integration we conclude quite similar as in the case 
/ = expX. □ 

As we have already seen, the action of X)
Q
+1

(^O) on comp(go) induces an action 
of VQ^

1
 on comp(go)-i. Now we state a very nice property of this action. 

THEOREM 9.4.   The action ofV^1 on comp(go)-i is free. 
Proof. Assume / G 'DrQJrl,f*g = g for some g G comp(^o)-i- We must show 

/ = idw*' f G VQ*
1
 implies the existence of a homotopy ht, 0 < t < 1, hi = /, ho = 

id,ht G £>S+1. Let TT : (M2
7g) -» {M2,g) be the universal metric covering. Then 

there are liftings ho = id, ht of ht and hi = f covers /. / commutes with the deck- 
transformations and hence dist(x,f(x)) depends only on x = 7r(x). 
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LEMMA 9.5. Assume (Mn,g) with nonpositive sectional curvature and with neg- 
ative definite Ricci tensor, f as above. If dist(x, f(x)) obtains an absolute maximum 
at XQ £ M then f(xo) = XQ, i.e. f = id, f — id. 

See [25], p. 57-59. for a proof. □ 
But in our case / = exp Xu o ... o exp Xi, ht — exp tXu o ... exp tXi, Xi G 

nr+1(M,po)J I^L.a; < finj{M2,g),r 4-1 > 4, for every e > 0 there exist a compact 
set K such that 6,2|Xj| < s outside of K. Hence dist(x,f(x)) attains a maximum at 
some XQ € M. If dist(xo, f{xo)) = 0, we are done. In the other case we conclude once 
again from 9.5 f(xo) = XQ, i.e. in any case / = id,f = id. In our case g must not 
be smooth, but it is C3 and into all calculations and considerations of [25], p. 57-59, 
enter only second derivatives of g. D 

COROLLARY 9.6 V^1 acts freely on comp(go)/comp(l). 
This follows immediately from 7.25 and 9.4. □ 

10. The connection between hyperbolic metrics and almost complex 
structures. Start with a metric #o £ .M(/, ,'.Boo),.K'(<7o) = ~~1) as in the sections 
above. Define an almost complex structure Jo = J(<7o) as follows. Write the volume 
form of go in local coordinates as 

K9o)kjdxk Adxj. 

Then 

Joj = JidoVj := -9ok^9o)kj, 

or in a more invariant form, 

-i. 
Jo = J(go) = -9o  f*(9o) 

or 

9o(X,J(go)Y) = -fi(go)(X,Y). 

An easy calculation shows 

Joi JQIC 
= ~~°i'    i*6,    ^o — ""^"5 

(V^yJigo) =0   for all    z >0 

and sup|J(^o)|po,x < C, i.e. J(yo) G £o*4(#o)- Consider now comp(Jo) C .4r(#o) and 
a: 

define for g £ comp(go) 

(t>(9) '= J(9)'=9~1fJ'(9), 

i.e. 

PROPOSITION 10.1. cj) has the following properties. 
1. (j> maps comp(go) C Mr(I,B00) into comp(Jo) C >lr(po)- 
J2. ^ is Hermitian with respect to J(g), i.e. g(J{g)X,J{g)Y) = g(X,Y). 
3. 4>(e" ■ g) = <j>{9) 
4- <i>{9\) = <t>(92) implies gi = eu ■ g2,eu € comp(l). 
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5. 0 maps comp(go) onto comp(Jo). 
6. (j) : comp(go) -» comp(Jo) is a submersion with kevDcj) = nr'c(52T*,y) = {h G 
W(S2T*,g)\h(x)=p(x)-g(x),penr}. 

Proof. 1.   There exists a sequence (g^) in comp(go) n ^(7, JBQO), g^    —►    g. 
I ISO'7, 

This implies J(gu) = g~V(^)    —►    Q"1^) = Jr(^)5 i-6-   if ^ ^ comp(go) then 
I      lso>r 

J(p) € comp(J(go)). 
2. This has been proved in [29]. 

3. 0(6^ • g) = (e^)"V(eu ■ g) - e^g-1^)2'2^) = g"Vfa) - 0(^) 
4. Assume (^(gx) = 0(p2), ^ V(Pi) = 92 VUte). Moreover /x^) = en • /i(gi). Hence 
eu • p^1 = Pi"1' 92 = eu - gi. By assumption |#2 - ^il^.r < oo, i.e. |eugi - gi\gur = 
|(ew - Ijgilp^r < oo which is equivalent to \eu — l|5l,r < co? |eu - l|po,r < 00' The 
other condition for eu € comp(l) can be similarly easy proven. 
5. Let J G comp(Jo). We have to show that there exists g € comp(go) such that 
0(g) = J. There exists a sequence Ju 6 comp(Jo), Jv € ^o^4(go)) Jv   —>•   J- Define 

9u by 

gv{X,Y) := i(5o(X,y) + 5o(J,X, J.F)). (10.1) 

Then g^ and go are quasi isometric. gv € .M(/, JBoo) follows from J^ € ^^(go). 
Moreover, 

9v-go = ^{goiJv, Jv) - PoO, •)) = 

= o (^OUI/'J ^i/-) - #o(Jo-5 «/o-)) - 

= 5(Po((J»/-Jro)-,(^-JPo)-)+ 

+2go(Jo-,(J,-Jo)-))- (10.2) 

Now (V^go = 0, \JU - Jo|po,r < oo imply \gu - go|5o,r < oo, i.e. gv G comp(go). We 
additionally infer from (10.2) that (gu)u is a Cauchy sequence, g^ -> g G comp(go). 
Forming the limit 1/ -> oo in (10.1), we conclude 

g(X,Y) = i(go(X,r) +go(J,X, J,y)). (10.3) 

The fact that (10.3) implies 0(g) = J has been proven in [29]. 
6. Let h G Tg comp(go) with local components hij. It has been shown in [29], p. 23, 
that 

(Ity(fl)(h))5 = -[(H - i(tr if)/) J]}, H = (ft}). (10.4) 

We conclude from the invertibility of J and (10.4) 

kevD<j>(g) = nr'c(S2T*,g) 

which is a closed subspace. 
For J G comp(Jo) 
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HJ = —JH   if and only if   tr H = 0    and   H   is ^-symmetric. 

Hence {H - \{tr H) ■ I)J runs through all of Tj comp(Jo) = {K\KJ +JK = 0}ifH 
runs through all of {H\tr H = 0}, i.e. Dcj) is surjective, (/> an submersion. □ 

According to 10.1, 3. and 4., 0 induces a map (j) : comp(go)/comp(l), and we just 
proved 

THEOREM 10.2.   TTie induced map 

0 : comp(go)/comp(l) ->> comp(Jo), 

[g] -> -9~lv<{9), 

is an isomorphism of Hilbert manifolds. □ 
THEOREM 10.3. £>S+1 acfe on comp(Jo) from the right as follows: 

Proo/. It is absolutely trivial that (J • /)2 = -id, J • (A • .fe) = (J • A) • A- The 
nontrivial fact we must show is that /* J G comp(Jo). We indicate how to do this but 
omit the details. There exists a sequence Jj, G comp(Jo),J„    —>    J,JU G ^^(^o)- 

I      Iso-7" 

First we consider the simpler case for /, / = expX, X G nr+1(rM,^o)- Then X = 
limX^Xv G C^iTM). Set /„ = expX,,. /;^ G ^(tfo) and /;j^ G comp{Jo) 
since j/^Jj/ - «/i/|yo,r < oo. It remains to show 

f:jv —»• rj = j-f. 
I l90>r 

But 

= /^(^ - •/)/- + f^J(U* - /*) + (/.r.1 - /r1)^/. (io.5) 

We get from [14] estimates that IV'/^U,^ I^V^tlso.x, |Vl/*|po>a! are bounded by 
integrable polynomials, and \id\ for i < r (/* = /» — id + id).   Thereafter we use 
(v*>)*y = (V^y(j - j0), I j, - j|so,r -». o, 

IA. - /-Ur "»• 0, l/"1 - f-1^ -> 0 (10.6) 

and the module structure theorem thus obtaining \f*Jv — f*J\g0,r —> 0. If / = 
expXu o ... o expXi then we apply the decomposition (9.7) and proceed in the same 
manner. (10.6) is a highly nontrivial result in [14] related to the topology = uniform 
structure of VQ*

1
. □ 

LEMMA 10.4.   The diffeomorphism 

(f): comp(go)/comp(l) —>■ comp(Jo) 

is VQ*
1
 -equivariant. 

Proof 
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= Cfsr^/Xs)) = rig"1 Kg)) = /*«• 
D 

This yields 
THEOREM 10.5. Suppose go € M{I,B00),K{go) = -1, infae{Ago) > 0,r > 3. 

Then for comp(go) C Mr(I,B00), comp(l) C V^go) and comp(Jo) C J4r(^o) 

comp(^o)-i/^S+1
5 (comp(^o)/comp(l))/X>S+1, comp(Jo)/V^1 

are isomorphic topological spaces. □ 
This justifies the following preliminary 
Definition. Each of the spaces 

comp(go)-l/VQ+1,(comp(go)/comp{l))/VQ+l,coTnp{Jo)/V^1 

is called the Teichmuller space 

Tr(comp(go)) 

ofcomp(go). 
The main task of Teichmuller theory consists of describing the topology and 

geometry of the Teichmuller space. 
REMARKS. 1. If M2 is closed then Mr(I,B00), T

r,Ar consist of one component 
and 

rr(M2) = MLJV^1 s* {Mr/Vr)/Vr
0
+1 = Ar/Vr

Q+l. 

In the open case Mr(I1B00) consists of uncountably many components. To each 
component comp(go) we can attach comp(l) C 'P£0(#o) and comp(J(go)) C Ar(go). 
Each component has its own Teichmuller space and theory. 

Tr(comp(go)) = (comp(go)/comp(l))/Vr^1 - comp(Jo)/Vr
0
+1 

is defined for any component. But in the compact case a nice manifold structure and 
explicit charts can be established easily and transparently by means of M-I/VQ

+1
. 

Having this in mind, we considered comp(^o)-i- But only such components with 
comp(go)-i y£ (j) are interesting. Therefore we started with a metric go with K(go) = 
— 1.   Then comp(go)-i  C coTnp(go) is a Hilbert submanifold as expressed by 7.4. 

The isomorphism of corap^o)-!/^4^ to comP(^o)/^)o+15 ^e- to a moduli space 
of complex structures could be established only under the additional assumption 
infae(Ag0) > 0. This is in a certain sense natural, at least not strange. 

(comp(go)/comp(l))/VQ^
1
 is defined without any hint to partial differential equa- 

tions.  comp(go)-.i/VQ+1 = (comp(go)/comp(l))/VQ+1 refers to the moduli space of 
a family of partial differential equations, AgU + K(g) + eu = Q,g G coTnp(go).  This 
family must be "good", which means in our case inf ae(Ag0) > 0. 
2.    It is very easy to give examples of components comp(g)  C Mr(I,B00) such 

+oo 
that comp{g)-i  —  (j).    Consider the infinite ladder L2  =    tf T2,T2 the 2-torus, 
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straightly embedded into M3 with periodic curvature K(g). If there would be a met- 
ric g' € comp(g) with K^') = —1 then / li^^) — K(g'\2 = oo in contradiction to 
J\K(g) - K(g,)\2 < oo for g^g' in the same component. Nevertheless (L2,g) has a 
canonical conformal = complex structure and is, according to the general uniformiza- 
tion theorem, pointwise conformally equivalent to a metric go with K(go) = 1. But 
#0 £ comp(g), i.e. the conformal factor is not contained in comp(l). This supports 
our procedure: not counting g's G Mr(I,B00) and associated conformal structures 
but counting the components comp(go) with comp(go)-i ^ 0 and counting the me- 
trics with K = -1 inside such components. Moreover, in this way we get manifold 
structures for comp(go)-i,comp(go)/comp(l), comp(Jo), and, if things are going well, 
even for the Teichmiiller spaces. □ 

11. Topology and geometry of the Teichmiiller space. An outlook. The 
further procedure concerning topology and geometry of Teichmiiller spaces is indicated 
by the compact case and the usual approach to moduli spaces in geometry and global 
analysis. The steps are as follows. 
1. To show that the orbits under the action of PJ+1 are submanifolds. 
2. To prove the existence of a slice. 
3. The slice produces charts and a manifold structure. 
4. The dimension of this manifold coincides with the dimension of the tangent space 
to the slice and is given in the compact case by the index theorem. In the open case 
it will be infinite. 
5. The geometry of Teichmiiller spaces with respect to the Weil-Petersson metric can 
be similarly calculated as in the compact case. In the compact case, the solution of 
steps 1-3 is more or less standard, it uses well known theorems of Ebin, Palais and 
others and has been successfully been performed by Tromba in [29]. In the open case, 
1-3 are totally unclear since the applied theorems of Ebin, Palais are not available. 
Hence we have to reestablish some versions of them for our noncompact case. 
1. has been already solved by us, the solution is highly nontrivial. 
2. The existence of a slice has not yet been completely established. The standard 
proofs use the properness of the action of Vr+1 on Mr in the compact case. This is 
definitely wrong for open manifolds. But our situation in Teichmiiller theory is much 
better. We have to consider only the action of PJ+1 on corap(<7o)-i- The nonexistence 
of a slice would imply the following. 
1. The existence of gu —> g, g,gu G comp(go)-i 
2. The existence of fu £ UE(id) C X>S+1, /„ G PJ*1, such that f*gu -> g. 

We would be done if we could derive from 1. and 2. a contradiction. Helpful for 
such a contradiction would be the following 

THEOREM 11.1. Assume g G comp(go)-i. Then VQ
+1
 does not contain any 

isometry of g different from id. D 
1. and 2. would imply (by a small effort) that f*g — g becomes arbitrarily 

small, then, according to 11.1, we do not have any isometry ^ id in VQ
+1

, on the 
other hand we would have outside of U£(id) in £>5+1 arbitrary good almost isometrics, 
\fu9 * 9\r -> 0 for is -> oo. If we could sharpen this "almost" contradiction to a 
contradiction, we would be done. This problem is under investigation. The assumption 
inf ae (AgQ) > 0 will play once again an essential role. 

Theorem 11.1 is already completely proved. 
In classical Teichmiiller theory only smooth metrics and smooth diffeomorphisms 

have been considered and 
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T{M2):=M-i/Vo   or   {M/V)/Vo   or   A/V0. 

But in the strong language of global analysis one needs good topologies in M,T,Vo, 
A^M-x, good properties of the actions and the implicit function theorem. Atr,Tr, 
VQ

+1
 , Ar, Mr_i have this properties but they contain many nonsmooth elements. For 

this reason one would like to apply ILH-theory. This assumes smooth Hilbert mani- 
folds, i.e. (-Boo). But we started with go € M(I,Boo) hence 6.1 - 6.4 are applicable 
and we set as in section 6 

compco(go) = }$mcompr(go),compr(go) = comp(go) C Mr(IJB00), 
r 

V™ = ]^nVr
0
+1, comp00^) = ^mc(mpr(Jo), 

r 

compoc(go)-i =^mcompr(go)-.i. 
r 

Then the isomorphisms 

compr(go)-i/Vr
Q
+1 A (compr(go)/compr(l))/Vr

0+
1 A 

A compr{J0)lV
r+1 

pass into isomorphisms for r = oo 

comp00^)-! W A (comp00(go)/comp00(l))/Pg0 A 

Acomp00(Jo)/PS0. 

These are spaces of smooth elements with an ILH-topology.  One now would like to 
define 

T{comp{g0)) := T00{comp(go)) := comp^^-i/V? 

S (comp00(go)/comp00(l))/V^ 9* comp00{Jo)/V™. 

Hence knowledge of all Tr(comp(go)) would imply knowledge of T00(comp(go)). We 
study the topology and geometry of Tr(comp(go)) in the second part of this paper. 
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