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HOLOMORPHIC SPHERES IN LOOP GROUPS AND BOTT 
PERIODICITY* 

RALPH L. COHENt, ERNESTO LUPERCIO*, AND GRAEME B. SEGAL§ 

Abstract. In this paper we study the topology of spaces of holomorphic maps from the Riemann 
sphere P1 to infinite dimensional Grassmanian manifolds and to loop groups. Included in this study 
is a complete identification of the homotopy types of i7o/fc(P1,S?7(n)) and of JJoZfc(P1,fiC/'), where 
the subscript k denotes the degree of the map. These spaces are shown to be homotopy equivalent to 
the kth Mitchell - Segal algebraic filtration of the loop group QU(n) [7], and to BU(k), respectively. 

Introduction. One of the most important theorems in Topology and Geometry 
is the "Bott Periodicity Theorem". In its most basic form it states that there is a 
natural homotopy equivalence, 

(3:ZxBU ^—> QU. 

Here U is the infinite unitary group, U = limnU(n), BU — \minBU{ri) is the limit 
of the classifying spaces, and QU = C00(S1,U) is the space of smooth, basepoint 
preserving loops. Here and throughout the rest of this paper all spaces will assumed 
to be equipped with a basepoint, and all maps and mapping spaces will be basepoint 
preserving. 

If we input the fact that U ~ HBU, Bott periodicitiy states that there is a natural 
homotopy equivalence 

piZxBU —■=-> n2BU = C00{S2,BU). 

In a paper which first pointed to the deep relationship between the index theory of 
Fredholm operators and Algebraic Topology, Atiyah [1], defined a homotopy inverse 
to the Bott map /?, which can be viewed as a map 

d : G00{S2,BU)      -   ) Z x BU. 

This map was defined by studying the index of the family of operators obtained by 
coupling the 8 operator to a smooth map from S2 to a Grassmannian. 

Since the mapping spaces C00(S2,BU) and QU both have path components nat- 
urally identified with the integers, we denote by C00(S2,BU)k the path components 
consisting of degree k - maps. Thus Bott periodicity, together with Atiyah's results 
says that for each integer &, there is a natural homotopy equivalence, 

d:C00(S2,BU)k ^^-> BU- 

The goal of this paper is to prove a holomorphic version of this result. We first 
note however that the homotopy type of BU has many different models, several of 
which carry a holomorphic structure. For the purposes of this paper we think of BU 
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as the colimit of the finite dimensional Grassmannians Grm (Cn) of m - dimensional 
subspaces of Cn. We define Hol^^BU) to be lii^m,niJo/fe(P

1,Grm(Cn)) topolo- 
gized as a subspace of C00(S2,BU) = lir^ m,nCfoo(S'2, Grm(Cn)), where these mapping 
spaces are given the compact open topology. 

The following is the first result of this paper. 

THEOREM 1. For each positive integer k, there is a natural homotopy equiva- 
lence 

Holk(¥\BU) —=-> BU(k). 

REMARK. Observe that this theorem states implies the inclusion of holomorphic 
maps into all smooth maps (of degree k), 

Holk(r\BU) M> C00^2,^/)* 

is homotopy equivalent to the inclusion of classifying spaces, 

BU(k) <-> BU. 

In future work we will study consequences of this theorem to the understanding 
of holomorphic K - theory of a smooth, projective variety. 

Our other main result in this paper has to do with an identification of the topology 
of subspaces iJo/fc(P1,5^7(n)) of iJo/j^P1, £?[/)• By theorem 1, this latter space is 
homotopy equivalent to BU(k), and so the inclusion BU{ri) C BU induces a map 

j : Holk(r\BU(n)) -+ BU(k). 

On the other hand, the inclusion of holomorphic maps into smooth maps, together 
with the identification of ft2BU(n) with ClU(n) induces a map 

i : Holk(T\BU(n)) -+ ilkU(n). 

Furthermore, it is not difficult to see that the maps j and i are compatible when 
composed to BU ~ flU. 

Now S. Mitchell in [7] described an algebraic filtration of the loop group QSU(n) 
by compact, complex subvarieties: 

Fhn C F2,n C • • • C FKn C • • • C i^ ~ nSU(n). 

In this filtration, Fijn = CPn_1 included in ftU(n) via the usual complex J - map. 
Fk,n C nU(ri) is the set of all k - fold products of elements of Fi,n C QU(n). See [11]. 
The subspaces Fk^n have as their homology, precisely the intersection of H*{BU(k)) 
and H*(QSU(n)), viewed as subgroups o£H*(BU) = H^(VtSU). In [8], Richter proved 
that this filtration stably splits, so that the loop group ClSU(n) is stably homotopy 
equivalent to a wedge of the subquotients, Fk+i,n/Fk,n. The following theorem was 
conjectured by Mann and Milgram in [6] after an analysis of the holomorphic mapping 
spaces fl'o/ifc(P

1,Grm(e1)): 

THEOREM 2.    There is a natural homotopy equivalence 

Holk(F\BU(n))~Fk,n. 
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These theorems are proven by using the identification of the loop group £lU(ri) 
with a certain moduli space of holomorphic bundles over P1, together with holomor- 
phic trivializations on a disk. This identification was established in [9]. We then 
identify the homotopy type of JH"oZjfe(P1, J3l7(n)) with a subspace of this moduli space 
consisting of bundles that are "negative" in the sense that they are (holomorphically) 
isomorphic to a direct sum of line bundles, each of which has nonpositive first Chern 
class. The topology of these moduli spaces are then studied in two ways: homologi- 
cally, using calcluations of [6], and Morse theoretically, by analyzing the gradient flow 
of the Dirichlet energy functional on CtU(n). 

This paper is organized as follows. In section 1 we review some results from the 
theory of loop groups. The main reference for this material is Pressley and Segal's 
book [9]. This theory will in particular allow us to define the terms and maps in 
the statements of the above theorems more carefully. In section 2 we give a proof of 
theorems 1 and 2, modulo a technical argument establishing that certain maps are 
(quasi) fibr at ions. This argument is carried out in section 3. 

The real Bott periodicity analogues of the above theorems (where the unitary 
groups are replaced by orthogonal and symplectic groups) were established in the 
Stanford University Ph.D thesis of the second author written under the direction of 
the first author. The authors are grateful to Paulo Lima-Filho, Steve Mitchell, Paul 
Norbury, and Giorgio Valli for helpful conversations regarding this work. 

1. Loop Groups. In this section we recall some of the basic constructions from 
the theory of loop groups as developed in [9]. We will use these constructions to define 
the holomorphic structures necessary to define the spaces and maps in the theorems 
described in the introduction. In what follows we will work with the Lie groups f7(n), 
but everything we use has obvious analogues for arbitrary compact semi-simple Lie 
groups. Again, we refer the reader to [9] for details. 

As defined in the introduction, let LG denote the space of smooth maps from the 
circle 51 to a Lie group G. The loop group LGL(n, C) has the following important 
subgroups. 

1. The group L+GL(n, C) of maps 7 : 51 ->■ GL(n,C) that extend to holomor- 
phic maps of the closed disk D2 ->• GL(n,C). 

2. the group Lp0iGL(n, C) of loops whose matrix entries are finite Laurent poly- 
nomials in z. That is, loops 7 of the form 

AT 

7(*)=    Yl   Akzk 

k=-N 

for some TV, where the A^s are n x n matrices. 
3. The based loop group OGL(n,C), and the corresponding subgroup of poly- 

nomial loops, fip0fGL(n,C). 

In the theory of loop groups, there is an underlying Hilbert space Hn defined to 
be the space of square integrable functions from the circle to Cn: 

Hn = L2{S\Cn). 

Notice that this Hilbert space has a natural polarization: 
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where H™ consists of those functions whose negative Fourier coefficients are all zero; 
or equivalently those functions / : 5'1 -» Cn that extend to a holomorphic map of the 
disk. 

Observe that the loop group LGL(n,C) has a natural representation on the 
Hilbert space Hn = L2(51,Cn) given by matrix multiplication. In particular the 
Laurent polynomial ring C^z-1] acts on H™, via the action of the loops 

zk^zk-InxneLGL(n,Q. 

Now recall the "restricted Grassmannian" Gr(Hn) of Hn as defined in [9]. This 
is the space of all closed subspaces W C Hn such that the orthogonal projections 
pr+ : W -> H™ and pr_. : W -)- H™ are Fredholm and Hilbert-Schmidt operators 
respectively. 

Let Gr00(J7n) c Gr(Hn) be the dense submanifold consisting of elements \W] G 
Gr(Hn) such that the images of the projections 'pr+ : W —>• H™ and pr- : W -> H™ 
consist of smooth functions. (See [9] §7.2.) 

For ease of notation we denote Gr00(iirn) by Gr. Consider the following important 
submanifolds of Gr. 

1. Gro = {W £ Gr : 3k > Osuch th8itzkH+ C W C z^H^} 
2. Gr(n) = {W G Gr : zW C W} 

3. Gr{
0
n) =Gr^nGro. 

The action of LGL(n,€) on Hn induces an action on Gr(Hn), and it is proved 
in [9] that the orbit of H™ is precisely Gr^. This is also its orbit under the sub- 
group LU(n). The isotropy group of H™ in LGL(n,C) consists of those loops whose 
Fourier expansions contain only nonnegative powers of z. These loops are exactly the 
boundary values of holomorphic maps of the disk. In the above notation we called 
this subgroup L+GL(n,C). In fact there is a homeomorphism 

LGL(n,C)/L+GL(n,C) ^ Gr^\ 

Furthermore, if one restricts the action to LU(n), one sees that the isotropy subgroup 
of H™ is given by the subgroup LU(n) fl L+GL(n,C). This is the subgroup of loops 
of U(n) that are boundary values of holomorphic maps of the disk to GL(n,C). A 
generalization of the maximum modulus principle, as proved in [9] shows that this 
subgroup consists only of the constant loops, U(n) C LU(n). This, together with the 
analogous argument using GTQ    and polynomial loops proves the following. 

THEOREM 1.1.  There are homeomorphisms 

QU(n) £ LU(n)/U(n) ^ LGL(n,C)/L+GL(n,Q S* Gr™ 

npoiU(n) ¥ LpolU(n)/U(n) ¥ LpolGL{n,Q/L+olGL(n,C) 9* Gr{
0
n) 

given by   7 —> jH™. 

These homeomorphisms determine the complex structure on the infinite dimen- 
sional manifolds QU(n) and £lpoiU(n) that are used in the statement of theorem 1 in 
the introduction. 
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Given an element W G Grn define the virtual dimension of W, vd(W), to be 
the Fredholm index of the projection of the projection map 

pr+ : W -> H^. 

So in particular we have 

vd(W) = dim (W H H?) - dim (W1- n H^) . 

As we will see below, much of the analysis necessary to prove theorem 1 comes 
from studying the situation when the projection operator pr+ : W -¥ H™ has trivial 
kernel, and hence vd(W) = —dim(coker(pr+)). 

Now notice that since every element W £ GTQ has the property that zkH™ C W C 
z-kjjn £or some fc^ an(j hence by considering the projection W C z~kH^:/zkH^:1 one 
has that GVQ is the union of finite dimensional Grassmannians, 

Gro = \jGr(z-pH!*/zpH!D. 
p 

and is therefore topologically equivalent to Z x BU. The integer denotes the virtual 
dimension of W. 

Via the identification of Gr^n>) with the loop group, the virtual dimension deter- 
mines the path component of the loop. In pariticular if wdg^y) denotes the winding 
number of the determinant of a loop in U(ri), then a straightforward exercise proves 
the following. 

PROPOSITION 1.1. Let 7 e QU(n) correspond to W e Gr^n\ That is, W = 7jff+. 
Then the virtual dimension ofW and the winding number of 7 are related by 

v.d(W) = —wdg{^). 

Notice furthermore that if 7 G VtpoiU{n) is a polynomial loop, then this composite 
det o 7 is also a polynomial loop in 51 G C. The only such polynomial maps (i.e 
polynomials in one variable of constant unit length) are z —>■ zk for some k G Z. 
Therefore we may conclude that the polynomial loop group of SU(n) consists precisely 
of those polynomial loops in fi<poiU(n) with winding number zero. We again refer the 
reader to [9] for details. 

Recall that there was another description of the loop group VtU(n) in [9]that 
is given in terms of holomorphic bundles over the Riemann sphere P1 = C U 00 = 
DQ U DOQ, where DQ = {z : \z\ < 1} and .Doo = {z : \z\ > 1}. 

PROPOSITION 1.2. Let Ck,n denote the space Ck,n = {isomorphism classes of 
pairs (E, (/)),. where E —>• F1 is an n - dimensional bundle of Ghern class ci(E) = —k, 
and (j) is a holomorphic framing of E\Doo}.  Then there is a natural homeomorphism 

Ck,n >  tokU(n). 

The homeomorphism in this proposition can be described as follows. Let (E, fi) G 
Cfc?n.   So (j) : EID^  ->■ Cn is a fixed trivialization.   Let a : E\D0  -» Cn be any 
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holomorphic trivialization of the restriction of E to the other disk, DQ. On the 
intersection 51 = DOCIDOQ, the trivializations 0 and a differ by a loop 7 £ LGL(n, C). 
Of course the loop 7 depends on the choice of trivialization a, but if a different 
trivialization, say a were used to construct a different loop, say 7, then 7 • (7)~1 

would be a loop that extends to a holomorphic map a • (cr)_1 : A) -> GL(n, C). Thus 
7 • (7)~1 € L+GL(n, C). This procedure therefore gives a well defined map 

C/fe,„ -► LGL{n,C)IL+GL{n,C) = nU(n). 

We refer the reader to [9] for details of the argument proving that this map is a 
homeomorphism. 

We note that with respect to the diffeomorphisms 

Ck,n*<nkU(n)S*(GrW)k 

the Chern class of the bundle in Ck,n corresponds to the virtual dimension of the 
subspace W G Gr^, which, as observed above, corresponds to the opposite of the 
winding number of the loop in i}U(n). 

These models of the loop groups will prove very important in our study of holo- 
morphic mapping spaces. One aspect of these models that is quite useful is that they 
come equipped with filtrations by algebraic subvarieties. That is, there is a sequence 
of compact, complex subvarieties: 

Fitn ^ • • • Fkin M- Fk+hn ^ • • • Foo.n = 0^5C/(n) ~ nSU(n). 

The filtration F^n can be defined as follows. As in [11], define the sub - semigroup 
fln of the space of polynomial loops £lp0iU(ri) to consist of loops that only involve 
non-negative powers of z in their Fourier expansions. Furthermore, we write 

^n =   j  I  *'k,n 
k>0 

where fift>n consists of loops of winding number k. 
The space F^n 1S homeomorphic to n^5n, but in order to see how these spaces 

give a filtration of ftSU(;n)^ we consider the loop 

A : S1 -+ U(n) 

0 
0      1 

z^      0      0 

/z-1 o\ 

\ 1/ 

Clearly A is a polynomial loop of winding number — 1. Therefore if we define 

Fkjn 
= A   Ilk,71 

then F^n consists of polynomial loops of winding number zero.   That is, Fkin C 
SlpoiSU{n). Moreover Fk^n C Fk+i,n and 

npolSU(n) = |J Fkin. 
k>l 



HOLOMORPHIC SPHERES IN LOOP GROUPS AND BOTT PERIODICITY 807 

(See [7], [11].) 

The homotopy theory of these filtrations has been studied in great detail by 
Mitchell [7], and by Richter in [8]. In particular one has the following properties (see 

[7]) 

PROPOSITION 1.3. // one takes the limit over the rank n, then there is a natural 
homotopy equivalence 

lim FKri ~ BU{k). 
n->-oo 

Moreover the following diagram homotopy commutes: 

Fk,n    ^^     BU(k) 

n 

nU(n)  ► QU ~ BU. 

Furthermore the homology of this filtration is given by 

H*(Fktn) 9* H*(nU(n)) H H*(BU{k)) C H+{BU). 

In [8] Richter also showed that this filtration stably splits. That is, there is a 
stable homotopy equivalence 

k 

Now the spaces of loops ilk.n can also be interpreted in the above Grassmannian 
models in the following way. Since 7 E £lk,n has only positive terms in its Fourier 
expansion, the space W = 7^+ is a subspace of H™. Moreover since 7 has winding 
number fc, the subspace W has virtual dimension —fe, (proposition 1.2). This means 
that the dimension of H™/W is equal to k. Thus we have the following. 

PROPOSITION 1.4. Under the diffeomorphism described in theorem 1.1, we have 
that 

nfc>n - {W e Gr^n) iWcH^ anddimH^/W = k} 

= {W e Gr£n) : vd(W) = -jb, and ker(pr+ :W->H!{.) = 0}. 

It will be helpful to have a description of n^?n (or equivalently F^n) in terms 
of holomorphic bundles as well. To do this we need to introduce the notion of a 
negative holomorphic bundle. 

By a well known theorem of Grothendieck [4], every holomorphic bundle over P1 

is isomorphic to a direct sum of holomorphic line bundles of the form O^'), where 
ci(0(j)) = j G Z. Furthermore this direct sum decomposition is unique (up to order). 
A holomorphic bundle E 7-* P1 is negative if 

E <* otii) e • • ■ © 0(jm) 
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with each ji < 0. Notice that the dimension of E is m, and the first Chern class is 
given by 

771 

ci(£) = l>. 
i=l 

It is a standard exercise that a holomorphic bundle E over F1 is negative if and only if 
it can be holomorphically embedded into a trivial bundle. Such bundles are obtained 
by pulling back the universal bundle over a Grassmannian via a holomorphic map. A 
positive holomorphic bundle over P1 has the analogous definition, and this property 
corresponds to a bundle being generated by its holomorphic sections. 

Define the sub - moduli space 

to consist of those (E, 0) G Cjfe?n such that E is negative. 
Now an easy exercise verifies that with respect to the homeomorphism Ck,n — 

Qr(n) described above, a holomorphic bundle E being negative corresponds to the pro- 
jection operator pr+ : W —> H™ having zero kernel, and so vd(W) = —dimcoker{prjr). 
By proposition 1.3 we therefore have the following. 

PROPOSITION 1.5. With respect to the diffeomorphisms Ck,n-ttkU(n) = (Gr(n>))k, 
we have that 

tok,n*Ck9nnnpolU(n) 

'C^nGr^. 

2. Proofs of Theorems 1 and 2. In this section we give proofs of theorems 
1 and 2, modulo a technical lemma whose proof we delay until the next section. We 
begin with theorem 2, which asserts that Fk,n is homotopy equivalent to the space 
Holk(r\BU(n)). 

In view of proposition 1.5, it is sufficient to prove the following two theorems: 

THEOREM 2.1.  There is a natural homotopy equivalence 

Holk(F\BU(n))~C^n. 

THEOREM 2.2.  The inclusion given by proposition 1.5 

^k,n C Ckn 

is a homotopy equivalence. 

We begin with a proof of theorem 2.1. 

Proof. We start by describing a model (up to homeomorphism) of Holki^1 ^BU(n)). 
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Let V be an infinite dimensional complex vector space topologized as the union of 
its finite dimensional subspace. We take as our model for BU(n) the Grassmannian 
Grn(y) of n - dimensional subspaces of V. Grn(V) is topologized as the limit 

Grn(V)=ljnjFGrn(F) 

where the limit is taken over finite dimensional subspaces FofV. 

PROPOSITION 2.1. LetVoo CV be a fixed n - dimensional subspace. Define Mk,n 
to be the following moduli space: 

Aik.n ^{isomorphism classes of pairs (E.j). where E —¥ P1 is a negative n - 
dimensional holomorphic bundle of Chern class ci(E) = — fc, and j : E M- F1 x V is 
a holomorphic embedding of vector bundles taking the fiber at   oo; .Eoo to Voo} 

Then there is a natural set bisection 

h:Holk(r\Grn(V)) ^-^ M k,n' 

Proof Let / <E Hol^1 ,Grn{V)). The universal bundle C -> Grn(V) is a holo- 
morphic bundle embedded (holomorphically) in the trivial bundle e : ( M- Grn(y) x V. 
We define 

M/) = (/*«),3*(e))e>U,n- 

The fact that h is a bijection follows from the fact that a holomorphic bundle over P1 

is (holomorphically) embeddable in a trivial bundle if and only if it is negative. D 

We give the set Mk,n the topology induced from HolkiJ?1, Grn{y)) via the bijec- 
tion h. Theorem 2.1 will then be a consequence of the following. 

PROPOSITION 2.2.  The moduli spaces C^n and M.k,n are homotopy equivalent. 

Proof. We actually prove that the moduli spaces Mk,n and C^n are both homo- 
topy equivalent to an intermediate space A^^ defined by 

Xk,n = {isomorphism classes of pairs (E,j,0), where (E,j) G Mk,m and 9 : 
E\Doo -» .Doo x Voo is a holomorphic trivialization}. 

Forgetting the trivialization 6 defines a map 

Similarly the projection map (E,j,9) —>(E,0) defines a map 

Pk,n '• Xk,n -> C^n. 

The following is rather technical, and so its proof will be delayed until the next 
section. 

LEMMA 2.3. a.  The map TT^^ : Afc,n —>• Mk,n is a locally trivial fibration. 
b.  The map pk,n '• ^,n —> C^n is a quasifibration. 

Assuming the validity of this lemma for now, we can easily complete the proof 
of proposition 2.2. Notice that the fiber of the map TT/^ is the space of (holomor- 
phic) trivializations of E\D   , which is homeomorphic to iJo/(D00,GI/(n,C)), which 
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is contractible. Similarly the fiber of the map p&?n is the space of holomorphic bundle 
embeddings E c-> P1 x V. Since every such embedding has image in a finite dimen- 
sional trivial subbundle, this space is given by the limit of the spaces of holomorphic 
embeddings of E into finite dimensional trivial subbundles of F1 x V. Since V is 
infinite dimensional this limiting space is contractible. Since nk,n and pk,n both have 
contractible fibers, then by the lemma they are homotopy equivalences. This implies 
C^n and M.k,n are homotopy equivalent to each other. 

This proves the proposition, and therefore completes the proof of theorem 2.1, 
modulo lemma 2.3. D 

We now proceed to prove theorem 2.2. We will give two proofs of this theorem. 
The first is homological in nature and will rely on the calculations of the homology 
of the spaces F^n- by Mitchell [7] and of spaces of holomorphic maps from P1 to 
Grassmannians by Mann and Milgram [6]. The second proof will be Morse theoretic 
in nature, and will rely on the dynamics of a flow of a natural (7*- action on loop groups 
studied in [9]. This proof is more geometric in nature, and has the feature that it will 
give an alternative proof of Mann and Milgram's calculation of il* (iIoZ& (P1, Grn(V))). 

Proof. (Homological Proof) Let /? : F^n -> Holk^1 ,Grn(V)) be the composition 

0 : Fk,n *L nk,n C C^n ~ HolkiF^GrniV)). 

Of course it suffices to prove that f3 induces an isomorphism in homology. 
Notice from the construction of the map (3 that if one composes with the inclusion 

of holomorphic maps into smooth maps, 

Fk,n —^ Holk(F\BU(n)) -> QlBU(n) ~ nkU(n) ~ nSU(n) 

then this map is homotopic to the inclusion of the Mitchell filtration Fk,n C QSU(n). 
Also, consider the composition of /? with the map ifo/^(P1,Grn(F)) —> BU(k) 

given by 

5 : Holk(F\Grn(V)) ~ C^n -+ Grk(H^) 

where the last map assigns to a loop 7 £ ftU(n)k whose associated holomorphic bundle 
E7 is negative (and therefore lies in C^~n) the cokernel of the projection operator pr7 

viewed as a subspace coker(pr1) C iJ+. The composition 

Fk,n ^-^ Holk(F\Grn(V)) —^ Grk(H^) ~ BU(k) 

is homotopic to the map described in proposition 1.4. We therefore have the following 
homotopy commutative diagram: 

Fk,n -
1-* Holk(F\Grn{V)) ^—>     BU(k) 

nkU(n)  y nu ~ BU 

where the outer maps Soft : F^n -> BU(k) and Fk:n -> ttkU(n) are the maps described 
in proposition 1.3. Now by this proposition, the composite map Fkyn ->- BU maps in- 
jectively in homology, with image equal to the intersection H^(QlU(n))nH^(BU(k)) C 
H*(BU). Thus by the commutativity of this diagram, the homomorphism 

& : Ht(Fk,n) -»■ H^HohiP^GrniV))) 
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is injective. To prove surjectivity, we use a result of Mann and Milgram [7] that says 
the inclusion of the holomorphic maps into all smooth maps 

tfo/fc(P\Grn(Cm)) -> ^Grn(Cm) 

induces an injection in homology for every Grassmannian Grn(Cm). This implies that 
the map 

H*(Holk(F\Grn(V))) = H^HohiW1 ,BU(n))) -+ H*(Sl2BU(n)) = H*(nU(n)) 

is injective. But since the inclusion H*(QU(ri)) —> H^^U) = H*(BU) is injective, 
that means that the composition 

H*(Holk(F\Grn{V))) ^ H,(QU(n)) -+ H*(BU) 

is injective. Also, by the commutativity of the diagram, we know that the image lies 
in the intersection H*(W(n)) fl H*(BU(k)) C H*(BU). But as remarked above this 
intersection is the image of (and isomorphic to) H*(Fk^n). Hence both maps 

H*(Holk(F\Grn(V))) -> H*(nU(n)) n H*(BU(k)) 

and 

H*(Fktn) -> H+(nU(n)) H H*(BU(k)) 

are isomorphsms. Thus by the commutativity of the above diagram 

/?* : H*(Fkin) -+ H*(Holk(r\Grn(V))) 

is an isomorphism. Now since both these spaces are known to be simply connected 
([7], [6]), this implies f3 is a homotopy equivalence. D 

Proof. (Morse theoretic proof) The second proof that the inclusion f2&,n M- C^n 

is a homotopy equivalence is by studying the dynamics of a C* - action on rtU(n) 
described in [9]. 

To be more specific, consider the natural circle action on Hn — L2(51,Cn). This 
action preserves the polarization and therefore induces an action on the Grassmannian 
Gr(Hn). It was shown in [9] that this action extends to a smooth action of the units 
in C lying in the unit disk 

Qi x Gr^ -» Gr(n) 

and to all of C* on the polynomial Grassmannian, 

The induced flow given by the action of the reals was shown to be the gradient flow 
of the energy function on ftU(n): 

E : nU(n) -> 

7 
i    r27r 

The critical points of this action are homomorphisms A : 51 -+ C/(n), and hence 
the critical levels are indexed by the conjugacy class of the homomorphism; namely a 
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partition a = (ai, • • • , an). We write Aa to denote the critical level given by conjugates 
of the homomorphism 

z->(zair- ,zan) eU{X) X"'XU{1) cU(n). 

The resulting Morse decomposition of CtU(n) = LGL(n,C)/L+ was studied in 
great detail in [9]. In particular it was shown that the stable and unstable manifolds 
of the critical levels A^ are given by the orbits under the (left) action of L~ and L+ 

respectively. (Here, as above, L+ denotes those loops that are boundary values of 
holomorphic maps of the disk JDQ, and L~ denotes those loops that are boundary 
values of holomorphic maps of the disk around infinity, Doo-) 

Recall that with respect to a generic metric, the unstable and stable manifolds 
of a Morse function intersect each other transversally. In this case the critical points 
have a partial ordering, where one says that a > b if there is a flow line emanating 
from a and converging to b. The resulting ordering of critical points of this flow on 
QU(n) was described in [9] in the following way. 

Let S C Z be a set of integers whose symmetric difference with the nonnegative 
integers, Z+ is finite. That is, 

5AZ+ = {S- Z+} U {Z+ - 5} 

is a finite set. The virtual cardinal of such a set 5, v.c(S) is defined to be 

V.c(5) = #{5-Z+}-#{Z+-5}. 

A set 5 with virtual cardinal v.c(S) — k will be of type n, if for every s E 5, 

s + n C 5. 

It was shown in [9] that the critical manifolds of the above flow when restricted 
to the component fi&Z7(n), are indexed by sets S of type n having virtual cardinal 
= —k. The relationship with the above indexing of critical points via conjugacy 
classes of homomorphisms A : S1 —> U(n), of winding number fc, and thus partitions 
a = (ai, • • • , an), with XlILi a* = ^> ^s &yeii as follows. 

Given such a partition a = (oi, • • • , an), then let bi = nai + z, and let Sa be the 
type n set genererated by {&i, • • • , &n}- That is, 

S*> =   U {bl + qn' b2 + qn,'" , K + qn}. 
qez+ 

One reason that this indexing of the critical levels is useful, is that, as was observed 
in [9], every set S with virtual cardinal v.c(S) = m, can be written as an ordered 
sequence 

^   ==   lS — 7725 s — ra+1) 5 sqi ' '     J 

with s-m < s_m+i < • • • , sq, • • •, and sm — m for all m sufficiently large. When 
written this way, the sets of virtual cardinal k have a natural partial ordering given 
by 

S > S'    if    SJ < s'j    for all j. 

The following was proved in [9]. 
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LEMMA 2.4. The above partial ordering on the type n sets S of virtual cardinal 
—k corresponds to the Morse - Smale partial ordering of the critical levels of the energy 
functional resticted to the component VLkU(n). 

As we did with holomorphic bundles, we refer to a type n set S of virtual cardinal 
—k as negative, if S C Z+. This terminology might be somewhat confusing , but we 
use it because in the definition v.c(S) = #{5 — Z+} — #{Z+ — 5}, a negative set S 
is one for which #{5 - Z+} = 0 and hence v.c(S) = -#{Z+ - 5}. 

For a given k and n, define the type n set of virtual cardinal —fc, Sk, to be 

Sfc = {fc,fc + l,fc + 2,-..}. 

Write the integer k in the form k — mn+i, where 0 < i < n—1. Then it is seen from the 
definition that the partition that Sk corresponds to is (m, m, • • • , ra, ra+1, • • • , m+1), 
where there are n — i copies of m and i copies of m + 1 in this partition of k. 

Sk therefore corresponds to the homomorphism 

Xk : S1 -> U(l) x • • • x U(l) C U(n) 

z^(zm
r- ,Zm,Zm+1,'~ ,zm+1) 

or, equivalently to the holomorphic bundle given by the direct sum 

\i = Qn-iO(-m)     0     ©iO(-(m + l)). 

The following is an exercise with the above definitions. 

LEMMA 2.5. The sets Sk are minimal in the sense that if S is a type n set of 
virtual cardinal —k with 

Sk > S, 

then S = Sk- Furthermore, a type n set S of virtual cardinal —k satisfies 

S>Sk 

if and only if S is negative. 

This leads quite quickly to the following result. 

PROPOSITION 2.6. The moduli space C^n, when viewed as a subspace ofQ,U(n)k, 
is equal to the union of the stable manifolds of the critical levels indexed by type n 
sets S of virtual cardinal —k, satisfying S > Sk- That is, C^"n is the closure of the 
stable manifold of the critical level consisting of homomorphisms conjugate to Xk, as 
defined above. 

Proof As described above, the stable manifold of the critical level of the space 
of homomorphisms conjugate to A^ is given by the orbit under the left action of 
L~(GL(n,C)). Now the Bruhat factorization (see [9]) of a loop says that every loop 
7 G I/GL(n,C) has a decomposition as 

7 = 7_.A-7+ 

where 7_ G L~ and 7+ G I/+, and A : 51 -» U(n) is a homomorphism. This decom- 
position is unique up to the conjugacy class of A.   The corresponding holomorphic 
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bundle E7 is isomorphic to Ex which is a direct sum of line bundles, and hence gives 
the Grothendieck decomposition. This then says that under the left action of L_, the 
Grothendieck type of the corresponding holomorphic bundle is preserved. Thus the 
stable manifold of a critical set A^ is exactly the space of loops 7 whose corresponding 
holomorphic bundles E7 are isomorphic to the direct sum of line bundles given by the 
partition a. The proposition then follows from lemma 2.4. HI 

The action of L+GL(n,C) on the polynomial loop group SlVoiU(n)k was studied 
in detail in [9] as well. As mentioned above, the orbits of this action give the unstable 
manifolds of the flow of energy functional, when restricted to the polynomial loop 
group. The following result can be viewed as the dual of proposition 2.6. 

PROPOSITION 2.7. The space n^?n; when viewed as a subspace of £lp0iU(n)k, is 
equal to the union of the unstable manifolds of the critical levels indexed by type n 
sets S of virtual cardinal —k, satisfying S > Sk- 

Theorem 2.2 now follows from propositions 2.5 and 2.6 and standard Morse theory 
arguments, using the fact that the energy functional on VtU(n) satisfies the Palais - 
Smale condition. D 

Now that we have theorem 2, we have identified the homotopy type of the holo- 
morphic mapping space, iJo/j^P1, BU{n)) in terms of the Mitchell filtration, i7^. 
By taking the limit over the rank n and using proposition 1.4, we get a homotopy 
equivalence 

fo :Holk(F\BU) ^^ BU(k). 

This is the assertion of theorem 1. D 

3. Proof of Lemma 2.3. In the last section we completed the proofs of theorems 
1 and 2 modulo a technical result (lemma 2.3) establishing that certain maps are 
(quasi)fibrations. We will prove this lemma in this section. 

Proof ( lemma 2.3 part (a)). 

Recall that the space Xkin is defined by A^?n = {isomorphism classes of triples 
(E,j,9), where (E,j) G M,k,n, and 9 : E\Doo —> DOQ X V^ is a holomorphic trivializa- 
tion}, 
where V is an infinite dimensional complex vector space (topologized as the limit of 
its finite dimensional subspaces), and Voo C V is a fixed n - dimensional subspace. 
Also recall that Mk,n is naturally homeomorphic to the holomorphic mapping space 
Holki^1 ,Grn(V)) (propositon 2.1). It is therefore clear that we can identify the 
elements of JY^n as a set with the family of commutative diagrams, 

Xk.n — < 

'00 

n 

-> Frn(V) 

: 0, / are holomorphic 

11  —f-^ Grn(V) 

where Frn(V) is the usual GL(n,C) principal frame bundle over the Grassmannian 
Grn(V).   This in turn establishes the topology on A^, where the above family of 
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commutative diagrams is topologized as a subspace of the obvious product of mapping 
spaces (given the compact open topology). 

Observe that Mk,n is the limit of the connected complex manifolds 

MT,n = Holk(CF1,Grn(Cn+m)). 

We now define X™n in the same way as A/^n, except the vector space V is replaced 
by Cn+m. Namely, 

^mn = < 

-+ Frn(Cn+m) 

: 9, f are holomorphic 

, P1   —^—► Grn(Cn+m) 

> . 

We now prove that 

nm : *£„ -»■ M k.n 

is a locally trivial fibration.   This is enough to conclude that TT is a locally trivial 
fibration. 

To do this, let / : F1 -> Grn(Cn+m) lie in M^n, and let U be an open neigh- 
borhood of /. Recall that M™n is a complex manifold of dimension k(n + m), so we 
can take U to be a holomorphic disk of that dimension. Consider the adjoint of the 
inclusion map 

i-.UxF1 -+Grn(Cn+m). 

This is a holomorphic map. When restricted to the holomorphic disk U x DQO, ^(En) 
is holomorphically trivial. Here En -¥ Grn(Cn+m) is the universal bundle. Let 

* : U x A^ x Cn 
">   ^(^n),,. 

be such a trivialization. For each (x,y) E U x DQO, 

is a linear embedding. This gives a lift 

C/xD0 

C/XJD0 

->  Frn(Cn+m) 

->» Gr^CC^"1). 

By definition, this defines a section ^ : U —> X™^ To get an induced trivialization, 
let 7 : .Doo ->• GL(n, C) be any holomorphic map, and define 

*7:l7xJD00^Frn(Cri+m) 

by 

%(x,y) = V(x,y)o<y(y) : Cn liv) y(x,y) 
> ^(a;,2/) cCn+m. 
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This then defines 

$ : U x Doo x HoliD^GL^C)) -* ^(C^™) 

or, equivalently, 

$ : U x HoliD^GLin.C)) -> ^(^ 

given by ^(x^) = 

£00   '3>(3:'  '7))  Frn(C"+ro) 

(,(«,-) 

I 
>   Grn(Cn+m). 

This gives our local trivialization of 7rm and therefore completes the proof of part 
(a) of lemma 2.3. □ 

Proof, (lemma 2.3 part (b)). The first step in proving that pk,n (which we 
abbreviate simply as p) is a quasifibration is to prove that it is continuous. To do this 
we keep the notation as above. 

Recall that the moduli space C^n is a subspace of 

ni7(n) £ LGL(n,C)/L+GL(n,C). 

Now given a point (/, 0) E Xk,n then there exists a neighborhood U around it in Xk,n 
so that p\fi can be factored as 

U —^ LGL(n,C) ->LGL(n,C)/L+GL(n,C) 

and hence we only need to prove that the map 0 is continuous. 
We choose U = 7r_1(W) as above, then with respect to the above local trivializa- 

tion, 0 has the formula 

0 : U x ilo/ODoo, GL(n,C)) -► LGL(n,C) 

e(f(z),T(z))=T{z)-P(z). 

This is just the attaching map induced by the canonical trivialization given by the 
local section ip. Clearly 0 is continuous. 

Finally, we need to show that p is a quasifibration. To prove this we will use the 
following proposition about quasifibrations taken directly from [12], which in turn is 
a consequence of theorem 2.15 in the classical paper by A. Dold and R. Thorn [13]. 

PROPOSITION 3.1. . Let B be a space filtered by subspaces 

Bi M» #2 ^ • • • ^ Bn <-> '- <-> B 

with B = (J   Bn having the topology of the union. Suppose 

p-.E —> B 
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is a surjective map, and that there are trivializations on the strata, En+i - En = 
(Sn+i — Bn) x F, where En = E\Bn. Suppose also that every Bn is a strong defor- 
mation retract of a neighborhood Vn C jBn+i, with retraction rn : Vn —> Bn. Suppose 
furthermore that the retractions are covered by maps fn, 

p-{Vn) ^^ En 

Vn         >   Bn 

that induce homotopy equivalences on the fibers. Then p is a quasifibration. 
Now in order to apply this proposition in our situation we consider the BirkhofF 

and Bruhat factorization theorems proved in chapter 8 of [9]. 
For a given 7 G C^n C fi?7(n), write 7 = (E^ff) as above. Then the proofs of 

these theorems give a canonical isomorphism with its Grothendieck decomposition, 

E£0(fci)e-.-0 0(fcn). 

Moreover this isomorphism clearly extends over the neighborhood C/7 of 7 in C^n 

in which the Grothendieck type of the holomorphic bundle is constant. Hence when 
restricted to this neighborhood, the fiber of p^ : A/^ —>► U^ is canonically identi- 

fied with the space of linear holomorphic embeddings of 0(k\) 0 • • • © 0{kn) into the 
infinite dimensional trivial bundle F1 x V, Emb{0(ki) 0 • • • 0 0{kn),f>1 x V). 

Now in section 8.4 of [9] a "Bruhat" stratification of OC/(n) is studied, which as 
observed earlier coincides with the Morse stratification of the energy functional 

E : nU(n) -+ R 

described in section 2 above. As seen there (proposition 2.8), this stratification 
restricts to a Morse stratification of C/~n, where the strata consist of those loops 
7 = (E,9), where E has fixed Grothendieck type. Thus 

P ' Xk,n  > Ckn 

is surjective, and has canonical local trivializations on the strata. Again, the fiber of 
p on the stratum corresponding to loops 7 = (E,0) with E = 0(ki) 0 • • • 0 0(kn) 
is given by the space of linear embeddings Emb{0(ki) © • • • 0 0(kn), F1 x V). This 
space is nonempty because the Grothendieck type is negative, and it is contractible 
because V is infinite dimensional. 

As studied in section 2 above, these strata are partially ordered in a way cor- 
responding to the Morse - Smale partial ordering of the critical levels of the energy 
functional restricted to Ckn (lemma 2.6). This then defines a partially ordered filtra- 

tion of C^n, indexed by the Grothendieck types, where p restricted to the strata has 
canonical trivialization. Moreover standard Morse theory tells us that the inclusion of 
one filtration another has a neighborhood deformation retract, where the retractions 
are given by following flow lines of the energy functional. These retractions are then 
clearly covered by maps of the restrictions of Xk,n to these spaces. These are again 
defined by following flow lines. The fact that these maps induce homotopy equiv- 
alences on fibers follows from the fact that all the fibers (i.e the embedding spaces 
described above) are contractible. Hence by proposition 3.1 the map p : A^ —>• C^~n 

is a quasifibration, as claimed. This completes the proof of lemma 2.3. D 
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