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COMPARING VIRTUAL FUNDAMENTAL CLASSES: 
GAUGE THEORETICAL GROMOV-WITTEN INVARIANTS FOR 

TORIC VARIETIES * 

CH. OKONEK*  AND A. TELEMAN* 

0. Introduction. Perhaps one of the most important mathematical results ob- 
tained at the end of the last century is a principle which states that the algebraic 
geometric notion of stability is closely related to the global analytical notion solu- 
tion of a Hermite-Einstein type differential equation. The first form of this principle, 
usually called the Kobayashi-Hitchin correspondence, was proved and applied in a 
spectacular way by S. Donaldson [Dl], [D2], [DK] in the case of vector bundles on 
algebraic surfaces; later it was generalized to a large class of similar situations (see for 
instance [Bra], [Hi], [Mul], [LT], [UY]). In general, a Kobayashi-Hitchin correspon- 
dence establishes an isomorphism between a moduli space of stable algebraic geometric 
objects and a moduli space of solutions of a certain (generalized) Hermite-Einstein 
equation. 

Another fundamental concept introduced at the end of the last century was the 
notion of virtual fundamental class. Roughly speaking, this theory allows to endow 
oversized moduli spaces with a homology class with closed supports (or a class in 
its Chow ring) whose degree equals the expected dimension of the moduli space in a 
canonical way. 

In the algebraic geometric framework this notion was introduced by Behrend- 
Fantechi [BF] generalizing ideas from Fulton [F]. Another version of this concept is 
due toLi-Tian [LiT2]. 

There is also an analogous concept in the differential geometric framework: the 
rigorous formalism developed by Brussee [Br] allows to endow every moduli space 
associated to a gauge theoretical problem of Fredholm type with a canonical Cech 
homology class with closed supports, whose degree equals the expected dimension of 
the moduli space. 

We believe that the following general principle holds: 

Let 

be any Kobayashi-Hitchin correspondence beween a moduli space of irreducible solu- 
tions of a Hermitian-Einstein type equation and the corresponding moduli space of 
stable complex geometric objects. 

Assume that 
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•  The gauge theoretical problem which defines M* is of Fredholm tyye, i.e. this 
moduli space appears as the vanishing locus of a Fredholm section in a Banach 
bundle over a Banach manifold. 

9 All the data involved in the definition of JAst are algebraic. 
Then A4st has a natural perfect obstruction theory in the sense of Behrend- 

Fantechi,   and the Kobayashi-Hitchin correspondence maps the gauge  theoretical 
virtual fundamental class to the Behrend-Fantechi virtual fundamental class asso- 
ciated with this obstruction theory. 

The second condition could probably be removed if one had a purely complex 
geometric version of the Behrend-Fantechi obstruction theory. 

The importance of such a statement is obvious: it gives a universal comparison 
principle not only for moduli spaces, but also for a large class of invariants defined 
within the two categories. 

The concept of "gauge theoretical problem of Fredholm type" is much more gen- 
eral than one would think. For instance, in [OT2] we showed that the vortex problem 
for line bundles on complex surfaces is of Fredholm type, although the elliptic defor- 
mation complex at a solution has a non-trivial degree 3 term. 

Note that a rigorous proof of our conjecture cannot be easy: whereas the definition 
in gauge theory uses Sobolev completions, Fredholm operators and Cech homology 
with closed supports, the definition in the algebraic category uses sheaves in the etale 
topology, derived categories, Deligne-Mumford stacks, cotangent complexes and Chow 
rings! 

The purpose of this paper is neither to give a precise general form of our conjec- 
ture, nor to speculate on a possible proof strategy. We will come back to the general 
case in future works. 

Our purpose here is to illustrate this principle in an interesting concrete situation 
for which we will make a precise statement and give a complete proof. 

Our concrete situation is the moduli problem considered in the definition of the 
twisted gauge theoretical Gromov-Witten invariants associated with the symplectic 
factorization problem used to construct complete toric varieties. 

In our previous paper [OT2] we introduced a new type of gauge theoretical 
Gromov-Witten invariants which generalize the so called "Hamiltonian Gromov- 
Witten invariants" introduced independently in [Mu] and [CGS] (see also [CGMS]). 

Our invariants are associated with triples (F,a,K), where (F,LJ,J) is an almost 
Kahler manifold, a is a J-holomorphic action of a compact Lie group K on i7", and 
K is a closed normal subgroup of K which leaves the symplectic form u invariant. 

In the quoted article we called such triples symplectic factorization problems with 
additional symmetry, because we only consider symplectic quotients with respect to 
the normal subgroup K, whereas the manifold F was endowed with the action of a 
larger Lie group K, which will act (in general) non-trivially on the symplectic K- 
quotients of F. 

The quotient group KQ := K/K (called the parameter symmetry group or the 
twisting group) plays an important role in our approach [OT2]. The formalism devel- 
oped in [CGS], [CGMS] corresponds to the case when KQ is trivial. 

Let us denote by TT : K —> KQ the canonical projection. Our invariants are 
obtained by evaluating canonical cohomology classes on the virtual fundamental 
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class of the moduli space of solutions of a certain generalized vortex equation, which 
depends on the choice of: 

1. a system of (discrete) topological parameters, namely a triple (Y, PG,C) consisting 
of a closed oriented real surface Y, a i^o-bundle P0 on Y, an equivalence class c 
of pairs (P A Po,h) formed by a morphism of type TT, and a homotopy class h of 
sections in the associated bundle E := P Xg F. 

2. a system of continuous parameters, namely a triple (n,g,A0) consisting of a 
Riemannian metric g on Y, a connection ^4° in PQ, and a i?-equivariant moment 
map fj, for the if-action of F. 

The first purpose of this paper is to apply this general set up in order to introduce 
the resulting invariants rigorously in the following important special case: F = Cr, a is 
the natural action acan oi K = [S1]r on F, and K is the kernel Kw of an epimorphism 
w : [S1]7* —> Ko = [S1]™, hence a compact (but possibly non-connected) abelian 
group of dimension r — m. Therefore, the invariants we introduce and study should 
be called Kw-equivariant, [S1]171-twisted gauge theoretical Gromov-Witten invariants 
of the affine space Cr. 

If the adiabatic limit conjecture is true (see [G], [CGS], [GS]), these invariants 
should be related to the twisted Gromov-Witten invariants of toric varieties. These 
twisted Gromov-Witten invariants, which were introduced in [OT2], are natural- 
generalizations of the Gromov-Witten invariants in the sense of Ruan [R]. They 
are obtained by replacing the moduli spaces of (pseudo)holomorphic morphisms 
Y —> F in Ruan's definition of Gromov-Witten invariants by moduli spaces of 
(pseudo)holomorphic sections in F-bundles over Y with a fixed structure group KQ. 

In other words, we replace the gauged linear sigma models introduced by Witten 
[W3], and further investigated by Morrison und Plesser [MP], by K^-twisted gauged 
linear sigma models [OT2]. 

Our first result is a Kobayashi-Hitchin correspondence which also gives an ex- 
plicit complex geometric interpretation for the virtual fundamental class of the moduli 
space. More precisely: 

Let V £ Mm?r(Z) be an integer matrix of rank m, let w : [S1]7" —> [S1]™ be the 
corresponding epimorphism, and put Kw := ker(tt;). Suppose that the columns of V 
are primitive and that 

<v(Mm) n {fa,...,tr) e Rr\ ti>0} = {0} .1 

Let -it e i^ = icoker^V 0 id^) be a regular value of the standard moment map 
fiw of the jFQy-action on Cr. Under these assumptions, the Kahler quotients 

C 
*t -     //[^^Kv 

is a compact toric variety with a natural orbifold structure. 
Let Y be a closed oriented surface. We fix a [51]r-bundle P, a [51]m-bundle PQ 

and a w-morphism P -^ PQ over Y. Let g be a Riemannian metric on Y, and let A0 

be a connection on PQ. Then 

1This condition assures that the symplectic quotients of Cr by Kw are compact. 
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THEOREM 0.1. 
1. (complex geometric interpretation) The moduli space M of solutions of the 

vortex equation associated with the data (A, (/i^ + z't, g, A0)) is a toric fibration 
over an abelian variety P of dimension g(y)(r — m). 

2. (embedding theorem) The moduli space M. can be identified with the vanishing 
locus of a section a in an explicit holomorphic bundle S over the total space 
of a locally trivial holomorphic toric fibre bundle T over P. 

The standard fibre $ of the toric fibre bundle T is a toric orbifold which can be 
obtained as a Kahler quotient of a suitable complex vector space by the same group 
Kw used to construct the toric variety X. In the case g(Y) = 0 this has already been 
observed in [MP]. This fibre $ is a smooth manifold if the Kahler quotient X was 
smooth. In this case one gets an identification L : M —> Z(a) between M and the 
subspace cut out by a holomorphic section a in a holomorphic vector bundle £ over 
a smooth complex manifold T. 

This allows us to endow M with a distinguished homology class of degree 
dim(T) — rk(£), namely the algebraic geometric virtual fundamental class of the 
triple (T,£,a) in the sense of Fulton [Fu]. In the general case, T can be regarded 
as a Deligne-Mumford stack, so one can still endow M. with a rational virtual 
fundamental class in the sense of Behrend-Fantechi [BF]. 

Unfortunately, the construction of T, £, a and of the embedding M. <—> T is 
not canonical: it depends on the choice of a system of sufficiently ample divisors 
(Dj)i<j<r on Y, and it is not clear whether the virtual fundamental class obtained 
in this way is independent of this choice. 

In order to prove this, one should check that different choices of systems of ample 
divisors lead to the same perfect obstruction theory in the sense of Behrend-Fantechi. 

Our next result states: 

THEOREM 0.2. (comparison theorem) The algebraic geometric virtual fundamen- 
tal class of M. induced by the identification t coincides with its gauge theoretical virtual 
fundamental class. 

Recall that the gauge theoretical virtual fundamental class is obtained by regard- 
ing M as the vanishing locus of a Fredholm section in a Banach bundle over a Banach 
manifold. The precise formalism was developed in [Br] (see also [OT2]). The obtained 
virtual class is canonical i.e. it does not depend on any additional choices besides 
the parameters involved in the construction of the moduli space. 

The above theorem is very important, because it allows the computation of the 
gauge theoretical (Hamiltonian) Gromov-Witten invariants of toric manifolds with 
purely algebraic geometric methods. Since the pair (T, £) comes with a natural 
[C*]m-action, and the section a is equivariant, one can apply the localization the- 
orem of Graber-Pandharipande [GP] for the Behrend-Fantechi virtual fundamental 
class. Explicit computations can be found in [Hal], [Ha2]. 

In this way, one can compare - in the case of toric manifolds - the gauge theoretical 
(Hamiltonian) Gromov-Witten invariants with the standard (Kontsevich) Gromov- 
Witten invariants and check the adiabatic limit conjecture for this class of manifolds. 
Explicit computations of standard Gromov-Witten invariants for toric varieties can 
be found in [Sp]. 
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And now a word about the proof of the comparison theorem, Theorem 0.2 (see 
section 5): 

The configuration space of our gauge theoretical problem is the product of two 
factors: a space of connections (or semiconnections) and a space of sections. Our 
method is based on the following new idea: we complete the space of sections in the 
configuration space with respect to a very weak Sobolev norm, such that meromor- 
phic sections with first order poles in finitely many simple points become elements in 
our Sobolev completion. The spaces of (semi) connections and the gauge group are 
completed as usual with respect to I/| Sobolev norms. This asymmetric Sobolev com- 
pletion of the configuration space allows us to pass from the gauge theoretical to the 
algebraic geometric framework. Of course, one has to check that the new completed 
configuration space leads to the same gauge theoretical virtual fundamental class as 
the standard completion. The comparison Theorem 0.2 will follow from Brussee's as- 
sociativity principle for virtual fundamental classes associated with Fredholm sections 
[OT2]. 

We believe that this method (weakening the Sobolev norm on the spaces of sec- 
tions) can be adapted to a very large class of similar problems. It can be used to 
show that many Kobayashi-Hitchin correspondences (which relate gauge theoretical 
to algebraic geometric moduli spaces) map the gauge theoretical virtual fundamental 
class onto the algebraic geometric one. 

Another interesting application of this technique will be considered in [DOT]. 

We mention that a similar comparison problem also occurs in connection with 
the classical Gromov-Witten invariants, which have been introduced in both the sym- 
plectic (see [FO], [LiTl] [Rl], [R2], [Sil]) and the algebraic ( see [BF], [KM], [LiT2]) 
framework. In this situation the comparison problem has already been considered by 
several authors [Si2], [LiTl], [LiT2]. 

1. Toric varieties as symplectic quotients. Any epimorphism w : [S1]7* —► 
[S1]171 is determined by the associated Lie algebra morphism, hence by a linear map 
v : W ~> Rm given by an integer matrix V = (vj) 1<i<Tn £ Mm,r(Z) of rank m; one 

has 

u;(cftl
J..Mcftr) = (e^1*i,...,ctoimti). 

We are not interested in all epimorphisms [S1]7* —> [51]771 as above, but only in 
those epimorphisms w with the property that the symplectic quotients of the form 
CrInKw are compact, because in this case, the corresponding invariants should be 
related to the twisted Gromov-Witten invariants of toric varieties   [OT2]. 

Therefore we shall assume that w verifies the following properties: 

Pi:      For every j G  {1, ...,r},  the column Vj  G Zm is primitive,  i.    e.   it is a 
generator of the semigroup Zm fl R^o^j • 

P2:   Rp0 fl im(v*) = {0} in the dual space Rr ofW. 

Here we used the notation R^0 := {fa,... ,£r) G Rr| U > 0}. 
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Note that the second property is equivalent to 

r 

j=i 

Applying the functor Hom( • , 51) to the exact sequence 

0 —> Kw —> [S1]7* —* [S1]™ —* 0 

we get the exact sequence 

0—>Zm-^   Zr—>Hom(^,51)—^0. 

This shows that one has natural identifications 

Kw = Hom(coker(y*),Srl) , ^ = ikei(v) , t^ = 2coker(v*) 

The standard moment map p,: Cr —> iRr = iv of the canonical action of [S1]7* on 
Cr is given, with respect to the standard dual basis, by 

£(z\...,;0 = -i(|*1|2,.--,W2)- 

The standard moment map fiw : Cr —■> 6^ = zcoker(i;*) of the JST^-action on Cr is 
defined by 

^(Z
1
)...,z'-) = -^(|z1|2,..-,kr|2)! 

where pv is the canonical projection Rr —> coker(t>*). The image of /i^ is the convex 
set 

A+ = -ipw(R^0) C zcoker(i;*) . 

An immediate consequence of the assumption P2 is 

LEMMA 1.1. 

i) There is a constant c > 0 such that 

II ftv.iz) ||2> C || Z ||4    . 

ii) All symplectic quotients 

are compact 

The symplectic quotients which correspond to regular values of the moment map 
fiw are projective toric varieties with (at most) orbifold singularities. 

Conversely, let J C {1,..., r}, and let E be a complete, simplicial fan of strictly 
convex rational polyhedral cones in Rm whose 1-skeleton E(l) is 

E(l) = {R>o^b'G J} . 



COMPARING VIRTUAL FUNDAMENTAL CLASSES 173 

Let a = (ai,..., ar) G Rr. For every a G S we define the functional /£ G (cr)v 

by requiring 

(faiVj) = —cij  if R>oVj is a face of <7 . 

The system (/")a€S depends only on {aj)jej and it defines a continuous piecewise 
linear function fa on the support |E| = Mm of E. We put: 

K(2) := K(a)   | a, > 0,   (/^^) > -a,- Va G E , Vj G {1,... ,r}} 

^o(E) := {pv(a) G tf(E)   | (/^^) > -a,- V^r G E , \/j G {1,... ,r} 

for which M>o^j is not a face of cr} 

The conditions in the two definitions depend only on the class [a] modulo im(?;*), 
because changing a by an element of the form v*(f), f G Mm modifies all maps /£ 
by the same linear functional /. 

When pv(a) G if (E) (^(E)) the piecewise linear map fa is convex (strictly con- 
vex) on |E| (see [Co]). We denote by fc(E) (respectively A:o(E)) the cone of (strictly) 
convex E-linear maps on |E|. One has obvious surjective maps if(E) —> fc(E), 
KQ^) —> A:o(E). Note that the cones fc(E), A:o(E) depend only on the simplicial 
fan E, whereas K(E), KQ(E) also depend on the rays M^o^j which are not faces of E. 

Recall that every complete simplicial fan E in Rm with 

E(l)c{R>oUi,...,M>oM 

defines an associated compact toric variety X^ as follows: Set 

[/(E) = {z G Cr| 3a G E such that zj ^ 0 Wj G {1,..., r} for which 

R^o'Uj is not a face of cr} . 

Then there is a geometric quotient 

and this quotient is a compact algebraic (not necessarily projective) variety with a 
natural orbifold structure. The variety X^ is projective if and only if fco(E) (or 
equivalently KQ^)) is non-empty. In this case one has a canonical epimorphism 
coker(i;*) —> H2(Xx,R) and, under this epimorphism, ^(E) is mapped onto the 
Kahler cone of the orbifold Xg, which can be identified with A:o(E). We refer to [Co], 
[Gi2] for more details and the following theorem 

THEOREM 1.2. Let E be a complete simplicial fan E in Rm with 

E(l)c{R>o^1,...,R>o^} • 

i) For every t G ^(E), the set of semistable points with respect to the moment map 
liw+it coincides with the correponding set of stable points, and the symplectic quotient 

Vw ^     '/j£    can be identified as a complex orbifold with the projective toric variety 
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ii) (The GKZ decomposition) The cone pv(Rp0) can be decomposed as a union of 
subcones whose interiors are pairwise disjoint: 

S complete simplicial fan in Rm 

Z;(l)C{R>oVi,...,R>oVr} 

Hi) The nonempty open subcones —IKQ^) are the connected components of the com- 
plement of the critical locus Cnt(/jLw) of nw in im(iiw) = — ipv(R^0). Moreover, one 
has 

Crit(nw) =      |J      HwiZj) , 
JC{l,...,r} 
|J|=m+l 

where Zj C Cr is the subspace defined by the equations z^ = 0, j G J. 

2.  Moduli spaces of toric vortices and the associated invariants. 

2.1. Moduli spaces of toric vortices. Let Y be a closed connected oriented 
real surface. The data of a [51]m-bundle PQ on Y is equivalent to the data of a system 
(L?)^ of m Hermitian line bundles L® on Y. 

Fix a rank m integer matrix V € Mm>r(Z) with primitive columns and let w : 
[S1]7* —>■. [S'1]m be the associated epimorphism. The data of a w-morphism A : P —» PQ 

of principal bundles is equivalent to the data of a system (Lj)j of r Hermitian line 
bundles and a system of m unitary isomorphisms 

A, : ^[Lfn-, L? . 
Following the general strategy explained in [0T2], we consider the following 

moduli problem: 

Fix a Riemannian metric g on Y, a system of Hermitian connections 
A0 = (^i)i<i<m on (^i)i<i<m> &nd an element t E coker(?;*). Classify all 
systems (Aj,<pj)i<j<r, consisting of 

i) a connection Aj on Lj for every j, 1 < j < r such that 

M^W^fi) = ^ , V i € {1,... .m}, (1) 

ii) an Aj-holomorphic section tpj in Lj for every j G {1,..., r} , 

such that (Aj,tpj)i<j<r solves the vortex-type equation 

1 
Pv (iAgFAj-2wdeg(Lj) + -\ipj\

2)j * • (K?) 

Two such systems are considered equivalent if they are in the same orbit with 
respect to the natural action of the gauge group G •= C00(y, Kw), i. e. 

a = {(/1,.../r)eC~(y)5
1)p| n/;J = lVie{l,...)m}}. 

3=1 
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LEMMA 2.1. 
i) If the equation (Vg) has a solution (Aj,(pj)j, then 

tS U ff(s). 
S complete simplicial fan in R" 

E(l)C{R>ow1,...,R>ovr} 
fco(S)^0 

ii) IftG KQ(E) and (Aj,(pj)j is a solution of (Vg), then 

(II Vi IU0i<i<r 6 J7(E) . 

Proo/. Indeed, integrating (V^) over y, we get 

tVo\g(Y)=pv (211 vi HiOi epv( D>0 
), 

which proves the first statement. For the second, the same argument gives 

-fp»((ll MiOj) =-ttVoi9(y), 

which implies that the system (|| tpj  ||L2)i<j<r is semistable with respect to the 
moment map jiy, 4- it. The result follows now from Theorem 1.2 D 

The configuration space for our moduli problem is the product 

1 (A,*) 

A:-- 
3=1 

x0Ao(^), 
A0 3 = 1 

where the first factor denotes the affine subspace of 115=1 ^(A?) consisting of all 

systems of Hermitian connections A = (Aj)j satisfying the relation (1). Let A^HiV^ 
be the subspace of A cut out by the integrabilty condition 

dAtfj =0 , 3 = l,...,r 

and the vortex equation (K1). Our moduli space is the quotient 

m 

and will be called the moduli space of toric vortices associated to the data (t, g, A0, A). 

PROPOSITION 2.2. The moduli spaces M^g^A0)^) are compact. 

Proof The proof uses the same argument as the demonstration of the compactness 
Theorem 2.12 in [OT2]. The crucial point is the properness of the moment map which, 
in the present case, is stated in Lemma 1.1, i). U 

Let A* C A (A** C A) be the space of points with finite (trivial) stabilizers in 
the configuration space, and put 

B**:=A**/g , S* :=A*/g 
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After suitable Sobolev completions B** (S*) becomes a Banach manifold (Banach 
orbifold). In both cases, the local models are obtained in the usual way, by 
constructing local slices for the ^-action in the configuration space (see for instance 
[OT1]). 

The maps mtiA-* A0(Y)®m, h:A-> QjA01^) given by 

mt(A,(p) =pv (iAgFAj-27rdeg{Lj) + ±\cpj\
2)j -t, h(A,(p) = (dAjVj), 

are Q - equivariant, hence they descend to real analytic sections mt, \) in Banach 
bundles (respectively Banach orbifold bundles) over #** (respectively #*). Moreover, 
the section (mt, I)) in the product bundle is Fredholm. 

PROPOSITION 2.3. If Kw acts freely on [7(E) then the toric variety X^ is smooth, 
and the moduli space A/f(t^jA

0)(^) ^ a rea^ analytic subspace of the Banach manifold 
B** for every t G ^(E). It can be identified with the vanishing locus of the Fredholm 
section (mt,f)). 

In the general case, the Kw-action on /7(E) has finite stabilizers and the moduli 
space M.(i,g,A0){X) is a real analytic suborbifold of the infinite dimensional orbifold B*. 
It can be identified with the real analytic suborbifold cut out by the section (mt, f)). 

Proof. The point is that, if t G ifo(E), the stabilizer of a solution (Aj,(pj)j of 
(Vg) with respect to the action of the gauge group G coincides with the stabilizer of 
the point (|| tpj ||L2)i<j<r G i7(E) with respect to the Lie group Kw (see Lemma 2.1). 

Indeed, if a gauge transformation / leaves the connection system (Aj)j invariant, 
it must be a constant gauge transformation, i. e. an element of Kw. On the other 
hand, a constant gauge transformation leaves the section system ((pj)j invariant if 
and only if it leaves the vector (|| cpj ||L2)i<j<r £ U(T,) invariant. 

This shows that the gauge group acts freely (with finite stabilizers) on the space 
of solutions of (Vg) if Kw acts freely (with finite stabilizers) on ?7(E). Therefore 
•M(t,3,,40)(^) C #** in the first case and M^g^W C B* in the second. 

In the second case, M^g^W has a natural orbifold structure whose local 
models are finite dimensional real analytic spaces endowed with analytic actions of 
finite groups. □ 

This proposition allows us - at least in the case when the if^-action on 17(E) 
is free - to endow the moduli space M(t,g,A0)W with a virtual fundamental class in 
Brussee's sense ([Br], [OT2]): 

[X(t,^o)(A)]vir G H2e(MlitgtAo)(X),Z) , 

where e = V • x{Lj) ~ (r — m)x(£V) is the expected complex dimension of the moduli 
space. The obtained virtual fundamental class does not depend on the chosen Sobolev 
completions (see the proof of Proposition 5.4 and Remark 5.5). This is a rather non- 
trivial fact which holds for a large class of similar gauge theoretical moduli spaces. 

The definition of virtual fundamental classes can be extended to the orbifold 
case and then yields a class in the rational homology of the moduli space. This 
generalization will be treated in a future work. 

2.2. Canonical cohomology classes on the moduli spaces of toric vor- 
tices. As always in gauge theory, one defines invariants by evaluating canonical co- 
homology classes on the (virtual) fundamental class of the moduli space. This general 
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principle was applied in [OT2] in the case of gauge theoretical Gromov-Witten invari- 
ants. In the general case, the canonical cohomology classes on the moduli space M 
associated with a triple {F,a,K) and a system of parameters ((Y,Po> c), (££,#, A0)) 
are products of classes 57(/i) of the form 

where $ is the universal section in the universal F-bundle over the product M x Y, 
7 G Hg(F,Z) and h G H*(Y,Z). The definition makes sense when the gauge group 
acts freely on the space of solutions. In the quoted article we showed that, in general, 
these classes satisfy a set of tautological identities, so that the relevant invariant can 
be regarded as a map on a quotient algebra A of the graded algebra generated by the 

symbols (l). The aLgebra A depends only on the homotopy type of the topoiogical 

parameters (Y, PQ, C). 

In this section we describe these canonical cohomology classes and the corre- 
sponding tautological relations explicitly in the special case we are studying, namely 
in the case of the triple {Cr,acan,Kw). Note first that the equivariant cohomology 
ring H^(Fi Z) can be identified with the polynomial ring Z[ci,..., cr] in r variables 
of degree 2. 

Consider an element t G coker(i;*), and suppose that there exists a complete 
simplicial fan E in Mm with 2(1) C {R>ov\ . • • ,M>o^r} such that t G #0(2). 

Case 1. The action of Kw on £/(£) is free. 

In this case the toric variety Xs is a smooth. We denote by V the universal 
[SY-bundle 

V:=A**xgP 

over S** x Y, and by $ : V —> Cr the universal section in the associated bundle 
V x^ijr Cr. For every 7 G Z[ci,..., cr) and h G if*(Y), we put as above 

F(h) = $*('y)/h. 

The image of H*(BKo,Z) via the natural morphism 

H*(BKo,Z) -> H*(BK,Z) -> H*k{F,Z) 

is the symmetric algebra 5*(V*(Zm)). Using Proposition 1.1 in [OT2], we see that 
that 57(/i) = 0 if deg(h) < deg(7) and 7 G S*(Vr*(Zm)). Therefore the assignment 
(7, h) —> 57(/i) descends to a morphism 

6 : S*(H) 0 A*(iJ (8) iIi(Y, Z)) -> iJ*(S**, Z) 

of graded algebras, where if :=      /v*(Z   V 
Our invariant is the map 

GGW(Cr,acari,^) : [£*(#) ® A*(if 0 #i(Y,Z))]2e -. Z , 
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where e := 52jX(Lj) — (r - m)x(Oy) is the expected complex dimension of the 
moduli space, and [-M^g^A0)^)]™ ls the virtual fundamental class of the zero locus 
of the Predholm section (mt, f)). 

Case 2. The action of Kw on U(T,) is not free. 

In this case let Go C Q be the reduced gauge group in a fixed point yo £ 5^ 
i. e. the kernel of the evaluation map evy0 : Q —> Kw, and let BQ := A/Go be the 
corresponding quotient. 

The same construction as above gives a morphism 

5 : S*(H) 0 A*(H® JTi^Z)) -> H*KJBo,Z) , 

and one has a natural restriction map p : iir^(So,Q) —» iJ*rb(B*,Q). On the other 
hand, one can generalize Brussee's method in the orbifold framework and construct a 
virtual fundamental class [M^g^W]™ G H^M^^A^WIQ)' 

In this case, our invariant is the map 

GGWiCoantKy,) : [5*(if)® A*(iJ®i7i(y,Z))]2e ^Q , 

ti^(po*(ti),[M(lf^o)(A)]vir>- 

3. A Kobayashi-Hitchin correspondence. In this section we introduce and 
study a complex geometric version of the moduli problem above, and we prove a 
Kobayashi-Hitchin type correspondence which relates the gauge theoretical and the 
complex geometric moduli spaces. 

For i e {1,..., m}, let £f = (1^, 5®) be a holomorphic line bundle on F, where 5® 
is a fixed semiconnection on the differentiable line bundle L®. Let also (^)i<j<r be a 
system of differentiable complex line bundles, and A a system of complex isomorphisms 

A, : Oj^ILf']-» i°. 

Our complex geometric moduli problem asks: 
Classify all systems ((£?)i<z<r> (^j)i<i<r)) where Sj is a semiconnection in Lj 

such that 

and tpj is a 5j-holomorphic section in Lj. Two systems are considered equivalent if 
they belong to the same orbit of the complex gauge group GC := C00(Y, K^), i. e. of 

ac = {(/i,.../r)GC00(y,c*n n/J; = iv;e{i,...,m}}. 

The configuration space is the product 

1 (A,t/) 

A:-- JjAiLj) 
3=1 J so •?'=1 
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and the equation we consider is just the holomorphy condition 

8j<Pj=0, l<j<r. (H) 

DEFINITION 3.1. A system ((£j)i<*<r> (^j)i<i<r) ^ called simple (strictly simple) 
if one of the following equivalent conditions is satisfied: 
i) its stabilizer is finite (respectively trivial), 
ii) There is point y € Y such that the stabilizer of (<pi(y),..., <Pr(y)) ^th respect to 
the natural action of K^ in the vector space (B^L^ is finite (trivial), 
Hi) There is point y G Y such that the stabilizer of (ipi(y), • •., ¥V(2/)) w^ respect to 
the natural action of Kw in the vector space ©^il^y is finite (trivial). 

REMARK 3.2. A system {(8j)i<i<r, (^jh^r) is simple if and only if 

{a £ kei(v 0 idc)| atfj = 0 Vj € {1,..., r}} = 0 . 

The simple (strictly simple) systems form an open subspace of A which we denote 
bv   i[simPle ( Jssimple\ 

An important role will be played by the moduli spaces 

Mtrl°(X) := HT/^c , ^f^A) := [^^1^ 

where [%/4
simPle]# stands for the space of simple solutions of the integrability equation 

(H). Note that the data V, Lj, L® can be deduced from A, so the notation M8™9 e(A) 
makes sense. 

Using standard gauge theoretical methods (see [LO], [OT1], [Su]), one obtains 

THEOREM 3.3. The moduli space Ms^p[e(X) (Ms
6
3omple(X)) has a natural struc- 

ture of a complex analytic orbifold (complex analytic space). 

Note that this complex orbifold (complex space) is in general not smooth and not 
Hausdorff. The local models of the orbifold structure are (possibly singular) complex 
spaces endowed with finite group actions; they are obtained using local slices for the 
£/c-action. 

There is also an abstract (functorial) formulation of our complex geometric clas- 
sification problem, which does not use gauge theoretical methods, but only classical 
deformation theory: 

Fix an integer matrix V € Mmjr(Z) as above, let c = (cj)i<j<r be a system of 
integers, and let C0 = (£^)i<i<m be a system of holomorphic line bundles. 

DEFINITION 3.4. A holomorphic system of type (V,c, C0) is a system 

((^j)l<J<r» (£i)l<i<mj (V^l^j^r) > 

where Cj is a holomorphic line bundle of degree Cj on Y, Si : (S)[£7- Vj] -* & is a 
3=1 

holomorphic isomorphism, and (fj G H0(Cj). 
An isomorphism between two such systems 

((£j)l<j<r, (£t)l<i<Tin (Vjh^j^r)  ,   ((£j-)l<J<r» (^i)l<*<m, (Vjh^j^r) 

is a system of holomorphic isomorphisms (UJ)J, Uj : Cj —> £'• such that <//• = Uj(ipj) 

and e'i o [®jUj Vj] = e'. 
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A system of type (V, c, C0) is called simple (strictly simple) if its group of auto- 
morphisms is finite (trivial). 

Using standards techniques of deformation theory, one introduces the notion of 
families of simple systems of type (V, c, C0) parameterized by a complex space Z 
and the notion of isomorphism of such families. The functor which associates to 
every complex space Z the set of isomorphism classes of families of simple (strictly 
simple) systems parameterized by Z, is represented by a complex space A4S£™P e(V, c) 

(A4rple(Kc)). 
Choosing Q = deg(Li) and £° = (1^,5°), one gets a natural embedding 

A^^omple(A) ^-> A^£™ple(V, c). Note, however, that this embedding is not surjective: 
the gauge group C00(y, C*)r of (Lj)j acts in a natural way on the space A of systems 

(\i)i of complex isomorphisms A* : 0 [L •  3] —> Z^, and one can easily see that there 
3=1 

is a canonical isomorphism: 

Ms£p[e(V,c)=     .    ]J ^mple(A). 
[A]GA/coo(y,c,,')r 

The quotient    /C°O(Y C*)r   'ls  a ^1(^7ro(^ii;))-torsor,   so it  has   ^(Kyj)^9^ 
elements. 

Next we introduce some notations. Let E be a complete simplicial fan with 
E(l) C {R^o^1,... ,E>o^r}, and let T = (Tj)i<j<r be a system of r complex vector 
spaces. 

We put 

[/(E, T) := {r € 0^=1^1 3a € E  such that TJ ^ 0 VJ G {1,..., r} for which 

o^-7 is not a face of a} . 

DEFINITION 3.5. Let E be a complete simplicial fan in Rm such that 

E(l)c{R>ov1,...,R>ovr} • 

A system ({Cj)i<j<r> (^)i<i<mj (^jOi^Xr) of type (V,c, C0) will be called E-stable if 
one of the following equivalent conditions is satisfied: 

1. There exists a non-empty Zariski open set YQ cY such that for every y GYQ 

one has (vi(y),..., (friv)) € f/(E, Cy). 
2. <peU(Z,H0(C)). 

Here we denote by H0(C) the system (H0{£j))i<j<r-    The stability condi- 
tion is obviously an open condition, hence it defines open subspaces A4'c~st(V,c) C 

Ma£pl°(V, c), M%«{\) C Mtple(X). 

THEOREM 3.6.   Let A = I A^ : <g)£=1[L- Vj] —> L®)   be a system of unitary iso- 

morphisms, where Lj, L® are Hermitian line bundles,  and V = (Vj)  E Mm)r(Z) 
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is an integer matrix with the properties Pi, P2. Let A0 = (A^)ij A® G A(L^) be 
a system of fixed Hermitian connections. Let S be a complete simplicial fan with 
E(l) C {R^ot;1,... ,R>ot>r}; and let t e ifo(S). Then there is a natural isomorphism 
of real analytic orbifolds 

Proof. By the universal Kobayashi-Hitchin correspondence for universal vortices 
[Mul], [LT2], there is a natural isomorphism of real analytic orbifolds 

where the right hand side denotes the moduli space of integrable pairs (5, cp) 
which are analytically stable with respect to the moment map fiw + it,  z   H-> 

-MN2,...,krl2) + it. 
Recall that a pair (5, <p) is (/i^ + 2t)-analytically stable if for every £ E ker v one 

has 

/ 
*nv,+ii(iP,s(€))volg >0 

But 

A^+uOp, s(0)(y) = lim ( pv 

/keWfaiy)^ 

-«  = 

\|c^|Vp(y)|a/ 

-(t,0    if ^ < 0 Vj 1 < j < r for which ^(y) ^ 0 
00       if 3j 1 < j < r such that ^ (y) 7^ 0 and ^ > 0 . 

This shows that (J, <p) is (idw + it)-analytically stable if and only if for every 
£ 6 keru for which (t,£) > 0 there exists a point y 6 Y and an index j G {1,... ,r} 
such that ^-(y) ^ 0 and ^ > 0. It is easy to see, using the holomorphy of <p, that 
this happens if and only if there exists a point y G Y such that for every £ G ker v 
for which (t,f) > 0 there is some j G {l,...,r} such that ipj(y) ^ 0 and ^ > 0. 
This holds if and only if there exists y G Y such that ip(y) is analytically stable with 
respect to the natural action of Ku 

D 
on 0^=1^,2/ and the same moment map \iw + it. 

4.  Complex geometric description of the moduli spaces. 

4.1. Linear spaces associated with Poincare line bundles. Let S be a holo- 
morphic bundle over the product X x P of two complex manifolds, with X compact 
and finite dimensional. The disjoint union 

PEP 

has a natural structure of a holomorphic linear space over P. There are two ways to 
construct this linear space: 
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1. Using infinite dimensional analytic geometry: 
We define H^ (£) as the vanishing locus of the relative 9-equation equation 
as follows: 
Fix Hermitian structures on X and £. For every (p, q) and k > 0 the union 
^x (£)k := UpeP^k(^\{p}xx^^x) ^ naturally aholomorphic locally trivial 
Banach bundle over P.  The holomorphic sections in A^(£)k over an open 
set Q C P are the sections in [pr^AjJ?) 0 £}\QXX which are L|-Sobolev in 
the X-direction and holomorphic in the Q direction. 
Then Hx(£) is defined as the vanishing locus of the relative differential 

Bs/x ■■= A™(£)k -> A^Wk-! 

The result does not depend on the Sobolev index k G N. 
2. Using the duality between linear spaces and coherent sheaves: 

One defines Hx(£) as the linear space which corresponds to the sheaf 

Note that if H0(£\u,}xx) = 0 for generic p £ P, then [prp]*(£) == 0, whereas 
the linear space Hx(£) is non-trivial as soon H0(£\{pjxx) ^ 0 for at least 
one p G P. 
The equivalence between the two definitions follows from the explicit descrip- 
tion of the structure sheaf of the complex subspace defined by an equation 
with values in an infinite dimensional complex Banach space (see [Dou], [LT]). 

Let now Y be a complex curve, and fix a point yo G Y.   For every class c G 
H2(Y, Z) denote by $P£0 the Poincare line bundle over Y x Picc(y) which is trivial on 
{yo} x Picc(y). Denote by ££0 the corresponding linear space over Picc(y), i. e. 

2Cyo=H0YWC
yo). 

The Poincare line bundle ^3£0 has a gauge theoretical description, which we sketch 
here briefly: 

Let Lc be a differentiable line bundle of Chern class c, and let A^L0)^ be the 
Li completion of the affine space of semiconnections on Lc for a sufficiently large 
Sobolev index k. Denote by (^(Y, €*)&+! C C(Y, €*)&+! the kernel of the evaluation 
morphism ev^ on the (k + l)-Sobolev completion C(Y,C*)&+i of the gauge group 
C^iYX*). The group Cyo(y,C*)ib+i acts freely on A(IS)k. 

The line bundle T := pry (Lc) on the product Y x A(Lc)k comes with a tautolog- 
ical integrable semiconnection, which agrees with S over Y x {6} for every 5 G *4(£c)> 
and which is the standard 9-operator over the infinite dimensional fibres {y} xA(Lc)k. 

The free action ofCy0(Y, C*)A:+I on Y x .4(Lc)fc admits a tautological holomorphic 
linearization in the line bundle T. Therefore, as in the finite dimensional framework, 
one can regard the Cy0(Y, C*)k+i-quotient of T as a holomorphic line bundle over 

YXA{L'}t/cmiY,C-U1=
Y*WW -'2/0 

This quotient line bundle is just the Poincare bundle ^o. 

REMARK 4.1.  Using this gauge theoretical description of the Poincare line bundle, 
one gets a corresponding gauge theoretical description of the associated linear space 
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£yQ.   This linear space can be identified with the finite dimensional subspace cut out 
by the holomorphy condition Sip = 0 in the quotient 

/Cyo(r,(L )A:+I 

Consider now the divisor P£ := {y} x Picc(y) of Y x Picc(y). Any point y € Y 
defines a topologically trivial holomorphic line bundle 

over Picc(r). Let 7rc : Y x Picc(Y) -> Picc(r) be the natural projection. 
We have the exact sequence of sheaves on Y x Picc(y): 

o — mj* ®PV*Y(KY) —♦ iyCy0V]v ® pr*Y(KY)(PZ) 

and ; a canonical isomorphism 

pr^(Ky)(Py
c)pc = Ope , 

which is induced by the obvious isomorphism [^y]({y}){y} — C. Therefore we get a 
morphism 

WyoyV = ^Wyolfy —> i?1<(^o]V ® (Pry)*^) , 

which induces a morphism of linear spaces 

PV
C
    • Pc  —» mc 

c
 yoy * ^2/0       ^yoy 

over Picc(y). As a map of sets, ev£o2/ is just the evaluation map associated with the 
point y. 

PROPOSITION 4.2. Let by : Picc(y) -> Picc+1(y) 6e the isomorphism defined by 
h{[C\) := [C{{y})\. 

1. There is a canonical isomorphism 

(idyX^n^-P^1))^. 

2. There is an exact sequence of linear spaces over Picc(Y) 

o — *$» — ^(O -^^ WKi) ■ 
Proof. The first property follows from the universal property of the Poincare line 

bundle. The second property can be obtained as follows: 
Using the exact sequence of line bundles over Y x Picc+1(Y) 

0 — KT ® prMtfy) — [^1]V ® pry(^y)(Py
c+1) — 

—> KCT ® P^(Xy)(Py
c+1)   e+1  —> 0 
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one gets an exact sequence of sheaves on Picc+1(y): 

<+1(K1]V ® PI*Y(KY)(PZ
+1

)) — v^mtT ® pr^(^y)(Py
c+1)pc+1) 

The claim follows now from the first statement and the definition of the morphism 
evc+1. □ 

COROLLARY 4.3. Let {yi,... ,yk} be a finite set of Y and let LD be the iso- 
morphism Picc(y) —> Picc+ (Y) defined by the divisor D = J^iVi- Then there is a 
canonical isomorphism 

(«,).(•££,) = k* ©' 
U=i 

c+fc   .  rxc+k 
vyoyi ' ^yo Vyoyi 

2=1 

Note that the linear space £yjj"fc becomes a vector bundle ifc + A: > 2(^ — 1). This 
remark will play an important role in the following section. 

4.2. Moduli spaces of stable systems as subspaces of locally trivial toric 
fibre bundles. Let B be a complex space, let T = {T^IKJKT be a system of holo- 
morphic linear spaces over B, and let E be a complete simplicial fan with 

£(l)c{R>ot;i,...,R>ot>r} • 

Note that the union UB^IT) •'= Ufces ^(^^J,) is an 0Pen subspace of the fibre 
r 

product YIBTJ-   Since the natural if^-action on C/j5(S,T) admits local slices, the 

quotient 

x^m-.-VB&T)/. 
1C~ w 

has a natural complex analytic (in general singular) orbifold structure. It comes with 
a natural proper morphism to B. 

DEFINITION 4.4.  The morphism ^^(T) —> B will be called the toric fibration 
associated with the data (i(;,E,T). 

Consider the map 

Pic(F) : f]Pic^(Y) —> JJPic^^Y) 
3=1 1=1 

defined by the matrix V. The complex manifold 

(X,v) 

s°  la 

can be identified with a connected component of the fibre Pic(y)  1([L0,5°]) of Pic(F); 
it is an abelian variety of dimension #(Y)(r — m). 
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Denote by c the system (cj)i<j<r, by ££ the system (£yo))i<?<r5 and by Pc the 
system of projections pCj : ^=1 Pic0' (Y) -* p'lcCj (X)- 

THEOREM 4.5.  Choose t £ KQ(E) and fix yo G Y.  There is a canonical isomor- 
phisms of complex analytic orbifolds 

^„-st(A)~Xs,p(^(40)|p). 

Proof. We denote by Qy0 C Qc the kernel of the evaluation morphism evy0 : Qc - 
(\,v) 

K^ associated with yo. Gy0 acts freely on the configuration space  115=1 ^(A?) 
<S0 

Denote by 115=1 ^(^i)      ^^e space of systems of semiconnections 5 = (Sj)j G 

nLa^A?) such that ([^]):/ G P. The larger configuration space 

J p 

x0AO(^) 

comes with a free action of C^(Y, C*)r, and using the gauge theoretical interpretation 
of the linear spaces associated with Poincare line bundles (Remark 4.1) , one sees 
easily that the complex subspace cut out by the integrability condition 5(f = 0 in the 
quotient 

x^A^Lj) 
3=1 czwr 

is precisely 

= np((Pci(£a)Wi)- 

On the other hand, after suitable Sobolev completions, the natural morphism 

1 (A,*) 

x©^0^) 
J (5° i=i 3=1 

x0^o(i,-) 
J^1 / 

c~(y,c*r 
becomes an isomorphism of Banach manifolds, and induces an isomorphism of complex 
spaces 

[*,¥>]€   L- 

1 (A,w) 

j=i 

x©^0(^) 
<50 J=l 

7 2/o 

<fy> = 0 
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According to Theorem 3.6, a class [5, (p] is fiw + zt-stable if and only if the cor- 
responding element in this fibre product belongs to C/p(£,p*(£§0)|p). Therefore one 
obtains an isomorphism 

M%«(\)*UPP'PX£™)\P)/KC. 

Now fix effective divisors Dj on Y of sufficiently large degrees dj such that 
/i1(£/) = 0 for every holomorphic line bundle C of degree Cj := Cj + dj. We as- 
sume that Dj is a set of dj distinct simple points yj, 1 < i < dj. Denote by D the 
system of divisors Dj and by 

r r 

iD:llPicCj(Y)^l[Picci(Y) 
j=i i=i 

the isomorphism defined by the system of maps ®0(D)- Set Pf := LDJ^P). 

The toric fibration p' : X^pi{p*i{S^0)\pi) —> P' is a locally trivial fibre bundle 
over P'. Let qj be the natural map 

^ : IP^o-> Pi^'OO • 

The maps ev j   ^  : ZyQ —> ^3 3 i are equivariant with respect to the natural 

actions of the group i^, so they define sections e) in the orbifold line bundles 

Upt{Z,p*c,(£i0)) 
C*    '= - '"      I TSC 

over the locally trivial toric fibre bundle X£}p/(p*,(£§0)|p/). 

Combining Corollary 4.3 and Theorem 4.5, we get the following description of 
our moduli space as the vanishing locus of a system of sections in line bundles over a 
locally trivial toric fibre bundle. 

THEOREM 4.6.  (Embedding theorem) There are canonical isomorphisms 

l<?<r 

Using these isomorphisms and the methods developed by Fulton ([Pu], p. 244) 
and Behrend-Fantechi, one can endow M^ost{\) with a distinguished homology class, 
namely the virtual fundamental class associated with the section 02,^(ej) in the bundle 

©ij£} over the smooth orbifold X^pi(p*c,(£yQ)\pi). We will call this class the algebraic 
geometric virtual fundamental class. Note that the construction of the embedding 
in Theorem 4.6 depends on the (non-canonical) parameters yo and Dj, hence the 
obtained virtual fundamental class might a priori depend also on these parameters. 
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5. Identifying virtual fundamental classes. The purpose of the this 
chapter is to show that, at least in the smooth case, the algebraic geometric 
virtual fundamental class obtained in the previous section coincides with the correct 
virtual fundamental class of our moduli space, namely with the virtual fundamental 
class associated with its initial gauge theoretical construction (see section 2.1). 
Consequently, the algebraic geometric virtual fundamental class does not depend 
on the non-canonical parameters yo and Dj which occur in the construction of the 

embedding of the moduli space in the smooth toric fibre bundle Xj:ip'(p*,(£y0)\pf). 

We come back to the gauge theoretical construction of the moduli spaces 
Mfost(X): 

The configuration space of our moduli problem is 

A = n ■*(£*) 
(M 

x0Ao(Li) = [^(L)]8',')xAo(L)l 

6o        i=i 

where L := ®jLj is regarded as a rank r vector bundle with structure group [C*]r. 
The space 

[A"'(Y)*r]v := {(ax,... ,ar) € A«(y)®r| 5>W= 0> 
3 

is the model vector space of the affine space [^[(i)]^    • 
In order to complete our configuration space, we fix a large integer k ^> 0 and a 

real number 5 € (1,2). 

We denote by [Ap^(Y)®r}vk ([A(L)]$£ ) the completion of the vector space 

[AM(Y)®r]v (affine space [JL(L)]$v) ) with respect to the Sobolev norm 1% (Sobolev 
Z^-topology), and by LS(L) the completion of A0(L) with respect to the Sobolev 
norm Ls. 

Thus our completed configuration space is 

Ai := [AL)]$2 x L'{L) . 

The reason for completing the configuration space in this odd way will become 
clear later: the completed configuration space contains in particular pairs whose sec- 
tion component is meromorphic with simple poles. 

Note that, if we fix a Hermitian metric on L, then the function \(p\2 associated 
to an Ls-section tp is not integrable, so the vortex equation is not well defined on 
the completed configuration space. In particular, one cannot use such a Sobolev 
completion to prove a Kobayashi-Hitchin correspondence. 

As usual we let C/j(r+1 be the completion of the gauge group with respect to the 
Ll+i norm- 

The left hand term Sip in the integrability equation 

Scp = 0 (H) 

should be regarded as an element of the distribution space I/i1(Ay1 <g) L). 
One can show that the completion procedure above does not introduce new orbits 

in the moduli space, hence 
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PROPOSITION 5.1. Any weak solution (Si,(pi) £ A^ of the integrability equation 
(H) is Gk+i-eQu'i>valent to a smooth solution, which is unique up to Qc-equivalence. 

Proof. To prove this, one brings 5i in Coulomb gauge with respect to a 
smooth semiconnection 5Q using a gauge transformation of the type exp(^), u E 
[yt00(y)er]fc 1. The new semiconnection 5^ := 5 • exp('u) will be smooth, since the 
(0,1) form 5[ — Si solves an elliptic equation with smooth coefficients. The I/-section 
^i ::= ^i * exp(u) will also be smooth, by elliptic regularity. □ 

COROLLARY 5.2. If (5, cp) £ As
k is an integrable pair, then </? G I/|+1(Z/). 

We suppose for simplicity that the if^-action on [/(£) is free, so that all (weak) 
solutions of the system (iJ, Vg) have trivial stabilizers. Therefore they belong to the 
subspace [-4^]** of weak pairs with trivial stabilizer. 

Since we use a very weak Sobolev topology on the second factor of our configu- 
ration space, the general procedure ([DK], [LT]) to endow the quotient 

B** := W7rc 

with the structure of a Banach manifold must be adapted carefully. The usual (formal) 
L2-adjoint of the infinitesimal action 

at a point p = (5, ip) is given by the formula 

j 

where the pairing (•,•) stands for the pointwise Hermitian product. The difficulty 
comes from the fact that, when cp is only an ZZ-section, [jDp]* does not necessarily 

extend to a bounded operator [A01(Y)®r]vk x LS(L) -> [i400(y)er]^1. 
However, one can modify this adjoint operator to get bounded operators with the 

desired properties. The restriction of D® to the Lie algebra 

Lie(i^) =keri;0C 

of the subgroup of constant gauge transformations is given by 

/-♦(O,-/¥>)• 

The operator m^ : kerv (8) C —> LS(L) defined by multiplication with (p is injective, 
since (5, ip) is an irreducible pair. The image of this operator is a finite dimensional 
subspace of the Banach space LS(L), hence it is closed and has a closed complement. 
Therefore, m^ admits a continuous left inverse, say q^ : LS(L) —> kerv 0 C. We set 

qp(a,i>) :=a*a-gvW , qp : [A01 (Y)®r]l (BL°(L) - [A00(Y)®'}^ . 

Note that, since the operators <9* and q^ take values in direct summands, one has 

ker qp = ker d* ® ker q^ . (3) 
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PROPOSITION 5.3. Put 

Vp,£ := {p-f(a,^)| qp(a,ip) = 0, ||a||L2<e, ||^||L-<e}» 

and de/me /pje : V^je x G^+i —> [As
k] by the formula (pf, j) \-> p' - 7. 

1. Let p = (5,ip) € plfc]** be a weak strictly irreducible pair. Then there exists 
Cp > 0 such that fp,£p defines a diffeomorphism from VV,E x C/j[?+i onto an 
open neighbourhood of the orbit p- Gk+i ^n [^]**- 

2. There is a unique Banach manifold structure on B** such that the natural 
maps Vp,£p —> B** become smooth parametrizations. 

Proof. We first seek e sufficiently small such that /p^ becomes injective. Let 
(ai^i) G ker<?p, gi G G%+1 such that 

(p+(ai,^i))-0i = (p+ (0^2,^2)) -92 - 

Put 7 := gig^1- It follows that 

7-
1a7 = a2 - ^ , (7~1 - 1)^ = 7^2 - Vi • (4) 

Write 7 = fc + 70, where k G [C]r and 70 G d*(A01(Y,Cr)k+2). The first relation 
can be written as 

97o = k(a2 - ai) + 70(^2 - Oil) . (5) 

Taking into account that (ai,(pi) G ker^p and using (3), we get d*{a2 — ai) = 0, so 
(5) yields 

A70 = d*[70(012-ai)] . 

This gives an estimate of the form 

|| 7o \\LI+1< 
C
 II 7o(a2 -ai) ||L2< c' \\ 70 ||LJ+1II (^2-^1) ||LJ   • 

If we choose e < T£J, this inequality implies 70 = 0, hence k = 7 G K^. The second 
relation in (4) can be written as 777,^(7 — 1) = ^2 — ^i- Using (a^,^) G ker^p and 
(3), one obtains 

(7 - 1) = Q^m^j - 1) = ^(V>2 - V>i) = 0 . 

This shows that gi = ^2, and (ai,^i) = (0^2,'02). 

Now we want to prove that, for sufficiently small e, /p,e is etale. It suffices to 
prove this property at the points of the form (p',e). Indeed, since fp,e(pf,hi) = 
fp}e(p

l\h) • 7, it follows that fp^ is etale in (^,7) if and only if it is etale in (p',e). 
Write p' = p 4- (a', ijjf). One has 

d(p>,e)fpAai ^ w) = (a + 9u, ^ - uicp + ^O) • 

For t// = 0, this operator is invertible. Its inverse 

r : [A01(Y)®r]vk ffi LS(L) —> kergp © [A00(F)®'-];+1 
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is given by 

r(a, v) = (a - dGda, [Gda — q^ ((G<9a)<£ + v)] (p + v, Gda — q^ ((Gda)ip + v)) , 

where G denotes the Green operator of the Laplacian A = d*d. 
Since the linear bounded operator d(p',e)/p,e depends continuously on the param- 

eter X/J' G L3(L), it must remain invertible for ip' sufficiently small. 
The second statement follows easily from the first. D 

The map h : [^]** —> Li1(Ay1 <g> L), given by (5,<p) i-> 5^?, is equivariant with 
respect to the action of the gauge group Gk+n hence it descends to a holomorphic 
Predholm section ^ in the Banach bundle 

over S**. 
Using the regularity result given by Proposition 5.1, it follows that the moduli 

space Ms
6
Somp e(A) is the vanishing locus of the holomorphic Predholm section f). Under 

our assumptions, the moduli space Mfost(\) of E-stable pairs is a compact subspace 
of this vanishing locus. 

PROPOSITION 5.4. 
i) There exists a Hausdorff open neighbourhood JB(E) of Mf~st(^) in B** such that 

Zftlsp)) = Mf^iX). In particular, Mfost(X) is an open subspace of Mfomple{X). 
ii) The virtual fundamental class of M^ost(X) defined by the Fredholm section 5|^(s) 
coincides with the virtual fundamental class obtained using the usual Sobolev comple- 
tion 

Ak := [A{L)\§y x L&L) 

and the corresponding Fredhom section ^ in the Banach bundle 

€k:=[Ji''}xQc+iLl_M1<»L) 

over the Banach manifold 

'Q\ 

Proof, 
i) We define (compare with Definition 3.5) 

E/2(E) := {(5, tp) G As
k\ 3a G E  such that ^ ^ 0 Vj £ {1,..., r} for which 

R^o^7 is not a face of a} . 

The set U^ is obviously open in As
k and Gh+i-invariant. Since K^ acts freely on 

C/(E) C Cr, it follows that </£+1 acts freely on £/g(E), hence I7^(E) C [Af.]**. One 
the other hand, an integrable pair (5, y?) is obviously E-stable. Put 

B(E) := C/2(E)/#+1 . 
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ii) Since the proof uses the explicit definition of the virtual fundamental class associ- 
ated with a Predholm section, we recall briefly this construction. Let s be a Predholm 
section in a Banach bundle E over a Banach manifold B, and suppose, for simplicity, 
that the vanishing locus Z(s) C B is compact. 

The virtual fundamental class [^(s)]™ is obtained in two steps: 

a) one shows that, for a sufficiently small open neighbourhood BQ of Z(s) in J5, there 
exists a finite rank subbundle Er of E\B0 such that the section So induced by s in the 
quotient bundle EQ := E\B0/E' is regular. 

b) The restriction of 5 to the finite dimensional manifold Z(so) takes values in the 
bundle of finite rank Ef\z(so)'-> let s' be the induced section in E'\z(So)' One has 
Z(s) = Z(s'), and one defines 

[Z{s)r := W)\7 , 

where [Z(5/)]^ir stands for the cap product 

[Z(s'))f := e(E'\ziso),s') n [Z(so)} € Hd{Z{s'),Z) . 

Here e(jE;'|Z(So),s') G H
T
^

E,
\Z{SQ),Z{SQ) \ Z{s,),Z) is the localized Euler class of 

E'\z{so) with respect to the section s' (see [Br], [OT2] for details). The class [Z(s')\$r 

is a priori an element in the Cech homology of Z{s') (which coincides with the usual 
homology in our case), and it does not depend on the chosen finite rank subbundle E'. 

Now we come back to the proof. The idea is very simple: we show that, applying 
step a) in a suitable way to the sections 5? Jjfc in the two bundles (£, (£&, one gets 
the same finite dimensional manifold Z(SQ), the same bundle over Z(SQ), and the 
same section s'. Therefore, the above two-step procedure yields the same virtual 
fundamental class, because the final step b) will be actually the same. 

Consider the Banach bundle 

One has an obvious continuous injective bundle morphism g' c-> (B. Note also that 

By Corollary 5.2, every integrable pair p = (5, <p) € As
k belongs to the standard 

completed configuration space Ak- Therefore, the differential dph maps 

Tp{Ak) = [A»\Y)®r\l*Ll(L) 

onto L^_1(Ay1 0 L). Let Kp be the (finite dimensional) cokernel of the restriction 

dAww-KxiftL) ■■ [A0l{Y)^}l x Ll{L) -+ LUiA^QL) . 

The family of cokernels (Kp)jl^=0 descend to a linear space A over .M^oimple(A), which 
is a quotient linear space of the restriction $\Mssimp\e,Xy 

Since Mfost(X) is compact, there exists a finite system 5 = (sj)i<Kn of sections 
of # which span ^[pj, for every [p] G Mfost(X). A generic perturbation s' = (5{)i<Kn 

of 5, which is sufficiently close to s, will have the following properties: 
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1. It still spans ^j, for every [p] G .M^o~st(A). 
2. It is fibrewise linear independent in every point \p] G M.fost(\). 

The system s' spans a rank n subbundle €' of the restriction of ^ to a sufficiently 
small neighbourhood of Mfoat(\). 

But the inclusion 

Ll-ii^Y ® L) —> ii^A^1 0 L) 

induces an isomorphism 

\h([An<ynxLl{L))*   ^  Y        '/imidph) 
3 

for every integrable pair p. This follows using the duality Lij = [^i""1]"8 and stan- 
dard Lp - theory. Therefore, the system s' also spans the cokernels of the absolute 
differentials of the section \) in the points of M.foat(X). The section [)o induced by fj in 
the quotient bundle <£/<£' is therefore regular on a sufficiently small neighbourhood of 
Mfost(X). Hence one can use the finite dimensional manifold Z(i)o) and the induced 
section fy in i£'\z(t)o) to compute the virtual fundamental class of [^^"^(A)]^11". 

On the other hand, the restriction <S'\B** is a rank n subbundle of (£&, and the 

induced section [^]o in the quotient bundle is regular around Mfo8t(\). 
The proof is now completed since €' C §, so 

Z([fa]o) = Zfa) 

by elliptic regularity. D 

REMARK 5.5. The method used in the proof of the proposition above can be 
used to show that the virtual fundamental class obtained using the standard Sobolev 
completion Ak, does not depend on the (sufficiently large) index k. 

The analogous statement should be, true for all gauge theoretical problems of 
Fredholm-type. 

PROPOSITION 5.6.  The Kobayashi-Hitchin correspondence gives an identification 

which maps [M^AO^X)}™^ onto [Mffi\)]f. 

Proof By the Proposition above, it suffices to show that the Kobayashi-Hitchin 
isomorphism maps [M^AO^X)}™^ onto [Mf*(\)]}g- 

But this follows by exactly same argument as in the proof of Theorem 3.2 in 
[OT2]. The main ingredient is the technique developed in [T] (see also [LT]) to prove 
that the Kobayashi-Hitchin correspondence is a global isomorphism of real analytic 
spaces. D 

Let E be a Hermitian vector bundle on Y. The distribution space L8_i(E) is the 
topological dual of the Banach space L* (JB

V
), where t is related to 5 by the formula 

7 + H- 
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Since s < 2, it follows that t > 2, hence on has a bounded embedding LKE^) C 
C0(EW).   In particular, for every point y G Y one has a well defined continuous 
evaluation map evy : L^E^) —» Ey . Let Lt

1(E
y)y be the kernel of this map. 

The exact sequence of Banach spaces 

0 _> L[(Ev)y —> 1*^) ^^ ^v —» 0 

splits topologically, so one gets an exact sequence of dual spaces 

0 —> Ey —, Li^) -2t [LU^),]* —» 0 . 

The monomorphism on the left is the embedding of the space of Dirac distributions 
concentrated in y in the space Ls_i(E) . 

More generally, if D = {2/1,..., yk} C E is a finite set, one has an exact sequence 

0 -* 0 Ey — L!^) -£♦ ^(i?^]* —» 0 , 
y€D 

where L^{E
W
)D is the closed subspace of L^ (£v) consisting of L^-sections of Ew which 

vanish on D. 

LEMMA 5.7. Let E be a C00 vector bundle on Y, 5 a semiconnection on E, and 
let £ be the corresponding holomorphic bundle. Let D C Y be a finite set. Consider 
the bounded operators 

LS(E) M Li^A?? 0 E) -^ > [Li(AS? 0 £)^]*   : 

i.  One has 

ker p^^oj   =H0(S(D)) . 

j8.   PFften deg(Ev 0 Ay (-£>)) < 0, the map p[^®E] o 5 is surjective. 

Proof. 

1. A section cp G LS(E) belongs to ker p^ J o 5 if and only if (fy? is a linear 

combination of Dirac distributions concentrated in the points of D. This means that 
ip is meromorphic with poles of order at most 1 in the points of D. 

2. The composition p^D
Y     J o 5 is the adjoint of the composition 

L*1([AS,
1
]
V
 ® E^D ^ Li([A5?]v ® .B7) -£♦ i:i(£;v), 

where the operator 8' is the adjoint of 8, i. e. it satisfies the identity 

f (8,(a),p)vol9 = J (a,6(l3))volg 

for all smooth sections a € A0([A5?]V 0 £v), /3 G A0(£7). 
The crucial observation is that 8r is just the tensor product semiconnection <Jcan 0 

8V on the bundle Ay 0 Ev, where 8can is the canonical holomorphic structure on 
AiP = Ky and 8V is the dual semiconnection on J5V. 
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On the other hand, the composition 5' o iD is Predholm, because the space 
Ii([A5?]v ® Ey)D is closed and has finite codimension in L\([M$)W ® Ey). 

Therefore the surjectivity of the composition p^        J o 5 is equivalent to the 
injectivity of 8f o iD. Let £ be the holomorphic bundle defined by 8. 

By elliptic regularity we have 

ker^' o iD) = {se H0
{KY ® £v)| s\D =0} = H0

(KY 0 £V(-D)) , 

which vanishes, when deg(£'v ® ify (-!>)) < 0. D 

Now we come back to our gauge theoretical problem. For 1 < j < r let Dj C Y 
be a finite set of points, and denote by D the system (Dj)j. The same argument 
applied to the line bundles Ay1 ® Lj yields the exact sequence 

0 — 0 0 (^ ® ^)» — ©^-i^S-1 ® ^i) -^ ©[ii(A5? ® ^)^]* — o , 

where L^Ay1 ® L^Dj is the space of ij-sections of Ay1 ® Lj which vanish on Dj. 
We denote by <£o the associated bundle of the principal bundle [.4£]** —» B** with 

standard fibre 

i 

and by (£' the associated bundle with fibre 

(A^b^QQtA^L.V 
i  yzDj 

One obtains an exact sequence of Banach bundles over B**: 

0 —► €' —>€-^^o —> 0 , (*) 

where tp is the bundle epimorphism induced by pD> Let fjo be the induced section 
(jo •= *D 0 5- 

PROPOSITION 5.8. Suppose that #Dj + deg(Lj) > 2gY - 2 for all j e {1,..., r}. 
Tften tte section \)Q := TD O ^ z's regular at every point [£, y?] o/ zfe vanishing locus. 

Proof. It suffices to show that the differential at p = (5, ip) of the restriction of 
PD 

0h to the slice V^ep provided by Proposition 5.3. is surjective.2 

On the other hand, the differential of h at p vanishes on the tangent space at the 
orbit p - Gk+v so ^ suffices to show that the differential of pp o h at p is surjective. 
But 

_9_ 
dip 

(PD o h) = pD o 5 , 

so the result follows from the previous lemma. D 

2In the infinite dimensional framework the surjectivity of the differential at a point does not 
suffices to assure that the map is a submersion at that point. One also has to check that the kernel 
of the differential has a closed complement. But this condition is obviously satisfied in our case, since 
this kernel has finite dimension. 
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We recall Brussee's associativity principle for virtual fundamental classes associ- 
ated with Predholm sections ([Br], [OT2]) in the special case of sections with compact 
vanishing locus. 

THEOREM 5.9. Let 

0 —► E' —> E —>Eo —^0 

be an exact sequence of Banach bundles over a Banach manifold B, and let s be a 
Fredholm section in E with compact vanishing locus Z(s). Suppose that the induced 
section SQ in the bundle EQ is regular in every point of its vanishing locus Z(so)- 
The restriction s|z(so) can ^e regarded as a section s/ in £l/|^(So). Via the obvious 
identification Z(s) = Z{sf) one has 

[Z{8)X* = [Z(S')}7 ■ 

Using this we can prove our main result 

THEOREM 5.10. The identifications given by the Kobayashi-Hitchin correspon- 
dence (Theorem 3.6) and by the embedding theorem (Theorem 4-6) map the virtual fun- 
damental class induced by the Fredholm description of the moduli space A^(t,^,A0)(^) 
onto the algebraic geometric virtual fundamental class defined by the system of sections 

e'j on the smooth algebraic variety XE,p'(p*/(£yo)|p')- 

Proof First note that, by Proposition 5.6, it suffices to compare the gauge 
theoretical virtual fundamental class [^^"^(A)]^11" with the algebraic geometric vir- 

tual fundamental class defined by the sections e*- on the smooth algebraic variety 

We apply the associativity principle to the restriction of the exact sequence (*) to 
the open set £*(£) of B**. The hypothesis of this principle is verified by Proposition 
5.8. 

Put ZQ := ^(fJolBrs))? and let f)' be the induced section in S'lzo- K follows that 

[Al?o-st(A)]f = [Zint' ■ 
We claim that: 

a) With the notations of section 4, there is a natural identification 

^0 = [^|p]*(XS,P'(Pc'(4'o)|P')), 

where, on the right Xx^p*(pl,(£%0)\p') was considered as a toric fibre bundle over 
P' := LD(P). 

b) Via the identification above, the sections [^DIP]*^}) coincide with the components 
of i)'. 

The proof of the two claims is easy: for a) one uses the first statement in Lemma 
5.7 to get a set theoretical bijection; then the method used in the proof of Theorem 
4.5 gives the needed isomorphism. Note that this time, one just has to identify two 
smooth complex manifolds, so it is not necessary to take ringed space structures 
into account. For b) it suffices to notice that the components of fy and the sections 
[^|p]*(^) are induced by evaluation maps associated with the points of Dj. 
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On the other hand, by the Lemma below, Brussee's virtual fundamental class 
associated with a regular section in an algebraic vector bundle over a smooth algebraic 
variety coincides with the corresponding Fulton virtual fundamental class via the cycle 
map (see [Fu], ch. 19.1 - 19.2). D 

LEMMA 5.11. Let E —> X be an algebraic vector bundle of rank r over a smooth 
n-dimensional algebraic variety X, and let s be a section in E. 

Then the Fulton virtual fundamental class Z(s) G An-r{Z(s)) is mapped onto the 
Brussee virtual fundamental class [Z(s)Ys

u via the cycle map 

clz{s) : An-rW*)) —> Hfg_r)(Z(s),Z) , 

where   A*(Z(s))   denotes   the   Chow  groups   of  the   complex  scheme   Z(s)   and 
HfM(Z(s),Z) the Borel-Moore homology groups of Z(s). 

Proof We will give the proof in the case when Z(s) is compact. This case is 
sufficient for our purposes, and the general case follows the same idea. 

Note first that the Cech homology of Z(s), to which [Z(s)]gir belongs, coincides 
with the standard singular homology ([Br], Ch. 2). Let SE ' X —> E be the zero- 
section of E. By definition, one has 

[Z(S)]f = S*(TE) n [X] 6 H2in_r)(Z(s),Z) , 

where TE £ H2r(E,E\im(sE),Z) is the Thorn class of E, and [X] is the fundamental 
class of X in Borel-Moore homology. 

Since E is a smooth algebraic variety, the class Z(s) can be identified with the 
refined intersection product of algebraic cycles im(sE) • im(s) G ^4n_r(im(s£) fi ini(s)) 
via the obvious identification im(s£) nim(s) = Z(s) (see [Fu] ch. 8.1, Corollary 8.1.1, 
Ch. 14.1). Therefore, by Corollary 19.2 [Fu], we get 

clZ(s)(Z(s)) = dz(s)(im(s£) • im(s)) = cZZ(a)(im(s£)) • clZ(s)(im(s)) = 

= [imM • M*)] > 

where the dot in the last two term stands for the refined topological intersection ([Fu], 
p. 378). Note now that the Poincare dual 

PD([im(sE)}) G H2r(E,E\im(sE),Z) 

of [im^js)] in E is just the Thorn class r^. Therefore, 

[im(sE)} - [Ms)} =TEn s+[X] = {s\z(s))* {S*(TE) n [X}) 

in H*(im(sE) H im(5),Z). This shows that 

ciz{3)m) = s*(TE)n[x} = [z(s)}:». 

D 
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