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O-minimal Structures
and Real Analytic Geometry

Lou van den Dries

ABSTRACT. O-minimal structures originate in model theory. At the same time
this subject generalizes topics like semialgebraic and subanalytic geometry,
and provides an efficient framework for developing Grothendieck’s topologie
modérée. No previous knowledge of the topic is assumed, and we include
proofs of some basic o-minimal results. Next we indicate applications in several
areas, and discuss various ways of building o-minimal structures on the real
field. These structures are displayed in an inclusion diagram. We conclude
with a list of open problems.
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Introduction

Semialgebraic and subanalytic geometry are characterized by many finiteness prop-
erties and other tameness features. These properties turn out to be consequences of
a few simple axioms, namely the axioms for o-minimal (= order-minimal) struc-
tures. Several interesting o-minimal structures do not fit into the subanalytic uni-
verse, and it is this fact that makes a difference. I will discuss the subject of o-
minimality starting from scratch, and consider some applications, especially those
of a real algebraic and real analytic nature. Notions and results referred to in this
introduction will be made explicit later in the paper.

The theory of o-minimal structures began in the early 1980’s in [12], [53], [54],
motivated by Tarski’s famous problem on the decidability of the real exponential
field [68], as well as by more general model-theoretic concerns. Khovanskii’s sug-
gestive work [30] on the topology of solution sets of exponential polynomial equa-
tions gave a strong impulse. It was noticed [13] that by a slight twist subanalytic
geometry falls under the roof of o-minimality, which greatly clarified subanalytic
matters for model theorists. These trends merged and were enriched by new ideas
in Wilkie’s solution [72] in 1991 of the geometric part of Tarski’s original problem,
which implies in particular the o-minimality of the real exponential field. (The
remaining arithmetic part of Tarski’s problem reduces to Schanuel’s conjecture in
transcendental number theory, as shown in [42].)

Another influence is Grothendieck’s 1984 “Esquisse d’un Programme” [24],
which contains an eloquent plea for developing tame topology (topologie modérée).
Many suggestions in sections 5 and 6 of that program are strikingly similar to actual
o-minimal results. This makes perfect sense: a lot of model theory is concerned with
discovering and charting the “tame” regions of mathematics, where wild phenomena
like space filling curves and Goédel incompleteness are absent, or at least under

control. As Hrushovski put it recently:
Model Theory = Geography of Tame Mathematics.

O-minimality is only a small part of that enterprise. It should also be said that the

subject owes much to semialgebraic and subanalytic geometry: many constructions
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and arguments go through with only minor changes, acquiring in this cheap way a
much wider range of validity.

We stay mostly in the classical real setting, to take advantage of its special
features and simplify the exposition. (The model-theoretic scope of o-minimality
is larger and has its own special features which I will point out now and then.)
Sections 1-3 contain very basic facts on o-minimality, with selected proofs, while
after that the paper has more of a survey character. The book [14] treats many of

the topics of sections 1-4 in more detail and greater generality.

Notation. We let m and n range over N = {0,1,2,...}. Given SC X x Y
andz € X weput S; :={y€Y :(z,y) € S}, and given alsoamap f: 5 = Z we
let fy : Sz = Z be defined by f:(y) = f(z,).

1. Generalities, and Examples

Structures on the real line and Definability.

DEFINITION 1.1. A structure S on the real line consists of a boolean algebra

S, of subsets of R™ for each n = 0,1,2,..., such that

1. the diagonals A;; := {z € R": z; = z;}, 1 < i < j < n, belong to Sy;

2. A€ S,,,B€S, = AXBE Sntn;

3. A€ Spy; => m(A) € S, where 7 : R*! — R" is the projection map
defined by w(21,...,Zn+1) = (ZT1,---,Zn);

4. the ordering {(z,y) € R?: z < y} of the real line belongs to S,.

Such a structure is usually generated as follows. We are given a collection A of sub-
sets of the cartesian spaces R™ for various n, such that the ordering {(z,y) : < y}
belongs to A. Then we add to A the diagonals, and close off under boolean opera-
tions, cartesian products and projections, to obtain Def(.A), the smallest structure
on the real line containing A. Sets in Def(A4) are said to be definable from A, or
just definable if A is clear from context. The definable sets may be much more
complicated—topologically or otherwise—than the sets in A. Given A one aims
for a more or less effective characterization of the definable sets, but this can be

difficult, or even impossible.
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EXAMPLE 1.2. (Semialgebraic sets). Let A = alg be the collection whose ele-
ments are {(z,y) : £ < y}, the one-point sets {r} with r € R, and (the graphs of)
addition and multiplication (as subsets of R3).

A semialgebraic set in R™ is by definition a finite union of sets of the form
{reR": f(z) =0,01(2) > 0,...,9(2) > 0}

where f and the g’s are real polynomials in n variables. It is easy to see that
semialgebraic sets are definable, but less obvious that they are exactly the definable
sets. This last fact is essentially the content of the Tarski-Seidenberg theorem [68],
[63], which says that the image of a semialgebraic set in R™*! under the projection
map R™! — R” is semialgebraic in R™.

Thus the definable sets are generated from alg in a very simple way. They are
very tame objects. For example, each semialgebraic set is a finite disjoint union of
connected real analytic submanifolds of its ambient cartesian space, each of these
manifolds being semialgebraic, and analytically diffeomorphic to some cartesian

space R¥.

ExaMmPLE 1.3. Let A := algU {Z}, so A contains besides the sets of example
1.2 also the set of integers as an element. Then the situation changes drastically: all
open subsets and even all Borel subsets of each R™ become definable. Generating
Def(A) requires arbitrarily many alternations of projection and complementation
operations; see [29], Exercise 37.6., and [14], p.16. These facts are closely related
to the logical discoveries in the 1930’s by Godel et al. Since there are definable
(even Borel) bijections between the line R and the plane R?, key geometric notions
like dimension get obliterated.

It makes no difference if in the definition of .4 we replace the set Z by the
(graph of the) sine function, since Z = {z € R : sin(rz) = 0} is then definable.

Hereditary properties. Let us fix a structure S on the real line. It will be
convenient to refer to the sets in S as the “definable sets”, even though S may not
be presented to us in the form Def(A). All intervals are definable; here and below,
an interval is always an open interval (a,b) CR, ~c0c <a<b< +o0. f ACR"
is definable, so is its closure cl(4). Given definable sets A C R™ and B C R™ we
say that a map f : A — B is definable if its graph I'(f) C R™*" is definable. In
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that case, given any definable A’ C A and B’ C B, the restriction f|A': A" = B,
the image f(A’'), and the inverse image f~!(B’) are also definable. The definable
sets with the maps between them as morphisms form a category under the usual
composition of maps, and a morphism f : A — B is an isomorphism in this category
if it is a bijection. This category has products: if f : A = B and g : A = C are
morphisms, so are (f,g) : A — B x C, and the projection maps B x C — B and
BxC—C.

Suppose S contains addition and multiplication. Then, given a definable real
valued function f on an open definable set U C R™ and a natural number k, the
set U¥) of points in U in a neighborhood of which f is C* is definable, and the
partials of order at most k of f are definable functions on U k),

There are many basic facts of this kind. They can be quickly verified by writing
the condition for a point to belong to the set in question as a logical formula with
variables ranging over R, and observing that the logical connectives and quantifiers
correspond to operations on sets under which § is closed, see [18], Appendix A for

details. Thus familiar definitions in e-é style imply hereditary properties.

Definable manifolds. It is easy to go beyond the cartesian spaces R" as
ambient spaces: introduce definable manifolds. Let k € N U {oo,w}. Then a
definable C*-atlas of dimension m on a set M is a finite collection {f; : i € I'} of
bijections f; : U; = fi(U;) between sets U; C M and open definable sets fi(Uy) C
R™ such that

1. M=,V

2. for all i,j € I the set f;(U; NU;) C R™ is definable and open in f;(U;), and

the transition map
fij = fio f71: fiUinU;j) = f;(U; N U3)
is a definable C*-diffeomorphism.
Two definable C*-atlases of dimension m on a set M are equivalent if their union
is also one. A definable C*-manifold of dimension m is a set M equipped with
an equivalence class of definable C*-atlases of dimension m on M. Given such
a definable manifold M with atlas {f; : i € I} as above we equip M with the

topology that makes the maps f; homeomorphisms, and we declare A C M to be
definable if each set f;(A) C R™ is definable. Given definable C*-manifolds M and
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N of dimensions m and n we make the cartesian product M x N into a definable
C*-manifold of dimension m + n in the usual way. As in the cartesian setting we
shall say that a map f : A — B between definable sets A C M and B C N is
definable if its graph is a definable subset of M x N. The category of definable
subsets of cartesian spaces R™ and definable maps between them now appears as a
full subcategory of the category of definable subsets of definable C*-manifolds and
the definable maps between them. Also the other hereditary properties of definable
subsets of cartesian spaces and definable maps between them that we mentioned
before go through. For S = {semialgebraic sets} the definable manifolds are known
as Nash manifolds, see [65].

Suppose S contains addition and multiplication. Then, given £ > 0 and a
definable C*-manifold M, we can construct in the obvious way the tangent and
cotangent bundles TM and T*M of M as definable C*~!-manifolds. The various
natural maps associated to these objects, such as the projection maps TM — M
and T*M — M, and the addition of tangent vectors, are definable maps. We can
talk about definable vector fields, definable differential forms, and so on ...

Enough has been said to make the point that S gives rise to a kind of self-
contained universe in which we can freely carry out the usual finitary geometric
constructions. But this universe may be so large that most of mathematics fits in
it, as in example 1.3 above. When does a structure S on the real line produce a

comparatively small world, and what parts of mathematics live there?

O-minimality. There is indeed a simple condition, namely “o-minimality”,
that guarantees a relatively tame mathematical world. Fortunately, this condition

can be verified in cases of genuine interest.

DEFINITION 1.4. A structure S on the real line is said to be o-minimal if
the sets in S; are exactly the subsets of R that have only finitely many connected
components, that is, the finite unions of intervals and points. (The “o-minimality

axiom”.

The o-minimality axiom states the strongest possible compatibility of S with the
ordering (and hence topology) of the real line. It has numerous consequences, see

sections 2-4. The class of semialgebraic sets is clearly o-minimal. Here is a much
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simpler o-minimal structure. It is of interest because triangulation (see section 3)

sometimes reduces problems to the semilinear setting:

EXAMPLE 1.5. (Semilinear sets). We let A consist of the ordering, the single-
tons {r} (r € R), the scalar multiplications z — Az : R = R (A € R), and of
addition. It is not hard to show that then Def(.A) consists of the semilinear sets:

the subsets of R™ (for each n) that are finite unions of sets of the form

{zeR": fi(z) = = fi(z) =0,91() >0,...,q(z) >0}
where the f; and g, are real polynomials in n variables of degree at most 1. Given
any bounded semilinear sets Aj,..., Ay C R" there is a finite simplicial complex

K in the affine space R™ such that each A; is a union of open simplices of K.

Terminology. The o-minimality of Def(.A) is also expressed by saying that
R4 is o-minimal. Here R is thought of as R equipped with the sets in A as
basic relations. Usually these relations other than the ordering are (graphs of) real
valued functions, the basic or primitive functions of R 4.

Thus Rajg, whose definable sets are exactly the semialgebraic sets, is o-minimal.
We refer to Raig as the real field. A structure S on the real line that contains all
semialgebraic sets is also called a structure on the real field, and if A D alg,

then we call R4 an expansion of the real field.

The next three examples of o-minimal expansions of the real field bring us roughly
to the state of knowledge of 1994. (In section 5 we sketch the new o-minimal

expansions of the real field that were constructed more recently.)

ExXAMPLE 1.6. (Globally subanalytic sets). Let an be the collection whose
elements are: the ordering, addition, multiplication, and the functions f : R =+ R
(for all n) such that f|I™ is analytic, I = [-1,1], and f is identically 0 outside I™.
We call these functions f restricted analytic functions. The choice of the cubes I"
is just a convenient normalization. The expansion Ran of the real field is called the
real field with restricted analytic functions. One can show that the definable
sets of Ran are exactly the so-called globally subanalytic sets.

These sets are obtained as follows. First, a subset A of an analytic manifold

M is said to be semianalytic in M if M can be covered by open subsets U such
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that each AN U is a finite union of sets of the form {z € U : f(z) = 0,¢:(z) >
0,...,q:(z) > 0} where f and the g’s are analytic functions on U. Next, a subset
B of an analytic manifold M is said to be subanalytic in M if M can be covered
by open subsets U such that each BN U is of the form w(A) for some relatively
compact A C U x R? which is semianalytic in U x RP, where 7 : U x R? = U
is the projection map, and p may depend on B and U. Finally, a subset of R is
said to be globally subanalytic if it is subanalytic in the larger compact analytic
manifold P}, where P; = RU{oo} is the real projective line. One should be aware
that the graph of the usual exponential function exp is subanalytic in R?, but not
globally subanalytic. The twist of considering globally subanalytic sets is needed to
make subanalyticity fall under o-minimality, see [13].

The theory of semianalytic sets is due to Lojasiewicz [41], who also showed
that subanalytic sets in R? are semianalytic in R?. Subanalytic sets were then
introduced by Gabrielov [22] and Hironaka [27], who proved among other things the
“theorem of the complement”: if a subset of an analytic manifold M is subanalytic
in M, then its complement is also subanalytic in M. This result easily implies that
the definable sets of R,y are exactly the globally subanalytic sets, as claimed. That
Ran is o-minimal follows then from Lojasiewicz’s theorem that relatively compact
semianalytic sets have only finitely many connected components. See Bierstone &
Milman [4] for an efficient exposition of the Lojasiewicz-Gabrielov-Hironaka theory

of semi- and subanalytic sets.

A different treatment of subanalyticity is in Denef-Van den Dries [11]. This ap-
proach has a p-adic analogue, with applications to Poincaré series of p-adic analytic
sets. Another advantage is that the globally subanalytic sets in R™ get directly de-
scribed in terms of equations and inequalities, in the style of semialgebraic sets.
The polynomial functions in the defining equations and inequalities for semialge-
braic subsets of R™ are replaced by the functions on R” obtained via composition

(substitution) from:

1. constant functions, coordinate functions zi,...,z,, addition and multipli-
cation,
2. the restricted analytic functions,

3. the reciprocal function £ — 1/z, with the convention 1/0 := 0.
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EXAMPLE 1.7. (Subexponential sets). Let alg,exp := algU {exp}, where exp
is the usual exponential function on R. Then the corresponding expansion Raig, exp
of the real field is called the real exponential field. Its definable sets are the subex-
ponential sets, which are obtained as follows.

The exponential sets in R are by definition the sets of the form

{r € R": P(zq,...,Zn,€™,...,€"") =0},

where P is a real polynomial in 2n variables. A subexponential set in R" is by
definition the image of an exponential set in R"** (for some k) under the projec-
tion map R™** — R". The notion of “exponential set” is ad hoc, but the class
of subexponential sets is comparatively intrinsic and stable: Wilkie’s theorem [72]
says that the complement of a subexponential set in R" is again subexponential in
R". This remarkable result implies immediately that the definable sets of Raig, exp
are exactly the subexponential sets, as claimed. By Khovanskii [30] the exponen-
tial sets, and hence the subexponential sets, have only finitely many connected
components. Thus Raig, exp is 0-minimal.

Wilkie used model-theoretic techniques. A purely geometric proof has now
become available, by combining recent works of Gabrielov [23] and of Lion & Rolin

[36], as indicated in [37].

EXAMPLE 1.8. (Analytic-exponential sets). Let an,exp := an U {exp}. Then
Ran exp i8 O-minimal, as was first shown in [17] by adapting Wilkie’s method.
Subsequently, Van den Dries, Macintyre and Marker found a much shorter proof
[15], which gave in addition an explicit description of the definable subsets of R™:
just replace the polynomial functions in the defining equations and inequalities
for semialgebraic subsets of R™ by the functions on R" obtained via composition
from the same functions as in the description above for globally subanalytic sets,
augmented by the exponential function, and its inverse, the logarithm function
(extended to all of R by setting log(x) = 0 for z < 0).

The model-theoretic approach of [15] has suggested a completely geometric
proof [36] of the above characterization of the definable sets, with useful construc-

tive features.
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Analytic-geometric categories. From Ran and Ran,exp We can pass to a
category of manifolds different from that of definable manifolds. More generally,
let R 4 be o-minimal, and suppose all restricted analytic functions are definable in
R4. Then, given any analytic manifold M of dimension m (definable or not) we
introduce a collection %4(M) of distinguished subsets of M, by making A C M
belong to €4(M) if for each point z € M there is an open neighborhood U of z,
an open V C R™ and an analytic isomorphism h : U — V such that A(UNV) is
definable in R4. (One can always take V = R™.) For example, an(M) turns out
to be exactly the collection of subanalytic sets in M.

We obtain a so-called analytic-geometric category €4: its objects are the pairs
(A, M) as above with A € €4(M), and its morphisms (4, M) — (B, N) are the
continuous maps A — B with graph in €4(M x N). The properties of these
categories are routine consequences (using charts and partitions of unity) of those
of the corresponding o-minimal structures. Typically, finiteness properties of R 4
become local finiteness properties in €4. For details, see Van den Dries-Miller [18],
where these categories are also characterized axiomatically, independent of their
o-minimal origin.

This categorical reorganization was useful to Schmid and Vilonen [60], [61],
[62]. In their proof of the Barbasch-Vogan conjecture in the representation theory
of Lie groups they had to go outside the subanalytic setting and work in the category

(gan, exp-

General o-minimal structures. In the model theory of o-minimal structures
we go beyond the real line as follows. Let (R, <) be any nonempty dense linearly
ordered set, without smallest or largest element, “dense” meaning that if a < b,
then there is ¢ with @ < ¢ < b. The ordering gives rise to a topology on R in the
usual way, and each cartesian power R™ is equipped with the product topology.
One defines the notion of a structure S on (R, <) exactly as in the case of the
real line, and o-minimality of & means that the sets in S; are exactly the finite
unions of intervals and points, where “intervals” are the sets (a,b) with a < b,
a,b € RU{—o0,+o0}. Thus, assuming S is o-minimal, definable subsets of R have
a least upper bound in R U {—o00,+00}. This suggests that much of basic real
variable theory might go through for definable sets and maps. Indeed it does, with
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some notions suitably modified. (For example, the correct version of connectedness
for a definable set in R™ is that it is not a union of two disjoint nonempty definable
open subsets. A basic real variable result goes through in the following way: the
image of a closed bounded definable set under a continuous definable map is again

closed and bounded.)

Starting with Pillay & Steinhorn [54], the subject of o-minimality has been sys-
tematically pursued in this generality. This makes good sense even if our primary
interest is in the real case: in the model-theoretic setting subsets of R™ acquire
“generic” points outside the reals, with benefits similar to the use of generic points
in algebraic geometry. Of greater weight perhaps is that model theory focuses at-
tention on a novel kind of intrinsic property of mathematical structures, having to
do with “classification up to bi-interpretability”. In this connection new methods
were developed to obtain coordinatization theorems that are reminiscent of geomet-
ric algebra and Hilbert’s 5th problem. For o-minimal structures a definitive result
of this nature was achieved by Peterzil & Starchenko in [51]. Roughly (and locally)
speaking, these structures are shown to fall into three intrinsically different classes,
called “trivial”, “linear”, and “nonlinear”. It is hard to do justice to this direction
in the subject without introducing elaborate terminology and machinery. Here is a
consequence of the Trichotomy Theorem in [51] that pertains just to the nonlinear

case and is easy to state.

COROLLARY 1.9. Let S be an o-minimal structure on (R,<). Suppose that
there is a definable map f : R"*' — R such that for any two intervals I and J
there exists a € R™ for which f, maps I onto J. Then there exist definable functions
+,-: R?2 — R such that (R,<,+,") is an ordered real closed field. In particular, if
(R, <) is order isomorphic to the real line, then there is such an order isomorphism

under which S corresponds to an o-minimal structure on the real field.

In accordance with a general trend in model theory, the definable groups in an
o-minimal structure (the group objects in its category of definable sets) have been
studied extensively, see in particular the series of papers [48], [49], [50]. Loosely
speaking, these objects behave like Lie groups and algebraic groups.
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2. The Monotonicity Theorem and its Consequences

The monotonicity theorem is the fundamental one-variable result of the subject.
We fix an o-minimal structure S on the real line, and give in this setting a quick
proof of the monotonicity theorem and of its smooth version, following [12]. (The
monotonicity theorem for arbitrary o-minimal structures is more difficult, and is
due to Pillay & Steinhorn [54].)

Next we derive curve selection, introduce the polynomial/exponential dichotomy
for o-minimal structures on the real field, indicate some Lojasiewicz type inequali-

ties, and discuss a recent answer to an old question of Hardy.

MOoONOTONICITY THEOREM. Let f: I — R be a definable function on an in-
terval I = (a,b). Then there are a = ag < a1 < --+ < ax < ag4+1 = b such that for
each i =0,...,k the restriction f|(a;,a;y1) is continuous, and either constant, or

strictly increasing, or strictly decreasing.

PROOF. We establish three claims.
1. f is continuous at some point of 1.

If there is an interval J C I such that f(J) is finite, then for at least one point ¢ €
f(J), the inverse image f~1(c) is infinite and hence contains a subinterval of I, and
f will be constant, hence continuous, on that particular subinterval. Thus we may
assume that f(J) is infinite for each interval J C I. We now construct inductively
a descending sequence [ry, s1] D [r2,82] 2 -+, with [rn,8,] CI,0< s, — 1, < %,
Tn < Tnt1 < 8nt1 < 8p, such that f([ra,sn]) C Jn, an interval of length < 1.
(Then f will be continuous at the unique point in (Y, ,[rn, sn].) For Ji, take any
interval of length < 1 contained in f(I), and for [ry,s;] take any segment with
0 < 8y —r < 1such that [ry,s,] C f~!(J). Having constructed [ry,s,] C I with
0 < sp — T < %, we choose an interval Ju11 C f([rn,sn]) of length < 7> and
then choose [rnt1, 8n4+1] C f7(Jn41) N (Tn,y 8n) such that 0 < sp41 — o < 737
This proves Claim 1.

2. f is continuous at all but finitely many points.

To see this, note that the set {z € I : f is not continuous at z} is definable. If it
were infinite, it would contain an interval, contradicting Claim 1 for the restriction

of f to that subinterval.
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So we may assume for the rest of the proof that f is continuous.
3. There is a subinterval of I on which f is either constant or strictly monotone.

For this, let p,q € I, p < g, and suppose f is not constant on (p,q). Then f([p,q])

contains a segment [¢,d], ¢ < d, and we define

9:[c,d) - [p,g), g(y) = min{z € [p,q]: f(z) =y}.
The function g is injective and definable, hence continuous on some interval J C
[c, d] by Claim 2. Therefore g is strictly monotone on J. Thus f is strictly monotone
on the interval g(J) C [p, ¢], which proves Claim 3.
Now let E be the set of all points z € I such that there is no subinterval of I
around z on which f is constant or strictly monotone. Then E is definable, and
cannot contain an interval, by Claim 3. So E has to be finite, say E = {a,...,ax}-

Then the theorem holds with these a;’s. O

For the rest of this section we shall assume that S contains addition and multipli-

cation, that is, S is an o-minimal structure on the field of real numbers.

SMOOTH MONOTONICITY THEOREM. Let p be a positive integer. Then in the
Monotonicity Theorem we can take the a; such that in addition f is of class C? on

each subinterval (a;,a;4+1),1=0,...,k.

PRroOOF. First note that if the function f in the Monotonicity Theorem is dif-
ferentiable, then f' is definable. Thus by induction on p it suffices to prove the

desired result for p = 1. Next we establish a few claims.

1. Let ¢ € I. Then the right and left derivatives

fl(c+) = l;m .f(x) f( ) and fl(c—) o= lim 1\ E T JY (I) (C)

zte  T-—cC
of f at cexistin RU {-—oo, +o00}.
This follows from the Monotonicity Theorem: the difference quotients displayed are
clearly definable functions of z.
2. Suppose f is continuous and f'(c*t) > 0 for all ¢ € I. Then f is strictly
increasing, and its inverse f~!, defined on the interval f(I), satisfies

(F'(d") = for d := f(c),c € I.

f’( ct)’

This is clear.
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3. Suppose f is continuous and the functions f'(z*) and f'(z™) are real valued

and continuous on I. Then f is of class C?.

For this, it is enough to show that f'(z%) = f'(z~) for all z € I. Suppose that
f'(c*) > f'(c™) for some c € I. Take some r such that f'(ct) >r > f'(c”). Then
by continuity there is an interval J C I around c¢ such that f'(z+) > r > f'(z™)
for all z € J. Hence the continuous function g: J — R defined by g(z) = f(z) —rz
satisfies ¢'(z*) > 0 and ¢'(z~) < 0 on J. By Claim 2, this means that g is both
strictly increasing and strictly decreasing, which is impossible.
4. {zel: f'(z*) = +00} is finite.
Otherwise, there is an interval J C I such that f'(z*) = +o00 for all z € J. We
may also assume that f is continuous on J, so f is strictly increasing on J, hence
f'(z7) > 0for all z € J. After shrinking J suitably, we may further assume that
either
(i) f'(z”)=+ocoforallz € J, or
(i) f'(e=)eRforalzeJ.
In case (i) the inverse g of f|J satisfies g'(y) = ¢'(y~) = 0 for y € f(J). (Claim
2.) Therefore g is constant, contradicting injectiveness. In case (ii) we apply the
same argument as in the proof of Claim 3. to reach a contradiction.
Next, by the Monotonicity Theorem we reduce to the case of a continuous f.
By Claim 4 we may also assume that the functions f'(z*) and f'(z~) are real

valued on I and (again by Monotonicity) continuous on I. Now apply Claim 3. O

REMARK. For all presently known o-minimal structures on the real field the de-
finable functions are piecewise analytic, that is, the Smooth Monotonicity Theorem

holds even with p = w.

Definable choice, and curve selection. We shall pick out from each non-
empty definable set A C R™ an element e(A) € A in a “definable” way. The idea
is to let e(A) be the midpoint of A, if m =1 and A is a bounded interval, and then
use induction on m. In detail:

1. Let A C R be definable and non-empty. If A has a least element, take e(A)

as this least element. If not, let (a,b) be its leftmost interval, i.e.

a:=infA,a e RU{-o0}, b:=sup{z:(a,z) C A}.
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Then a < b, (a,b) C A. Put

0, ifa = —o00, b = +00,
b-1, ifa=—o00,b€R,
a+1, ifa€eR, b= 400,
%(a+b), ifa,b € R.

2. Let A C R™ be definable, A # @, m > 1. Then n(4) C R™"!, and
we assume b := e(m(4)) € w(A) has been chosen. Then we put e(4) :=
(b7e(Ab))'

Then we can conclude:

e(A) :=

PROPOSITION 2.1. (Definable Choice)

(i) If S € R™" is definable, then there is a definable map f: n(S) - R"
such that T(f) C S, where m: R™t™ — R™ is the projection map given by
(1, -y Tmtn) = (T1,. ., Tm)-

(i) For each definable equivalence relation on a definable set X C R™ there
ezists a definable subset of X that intersects each equivalence class in ezactly

one point.
PROOF. For (i), define f(z) := e(S;) for z € 7(S). For (ii), note that
{e(A) : A is an equivalence class}

is a definable set of representatives as required. O

COROLLARY 2.2. (Curve Selection) Let X C R™ be a definable set, and let
a € c(X)\ X. Then there is a definable continuous injective map

v:[0,¢) = R™ (for some e > 0)

such that v(0) = a and y(t) € X for0 <t <e.

PROOF. The definable set {|a—z| : £ € X} contains arbitrarily small elements,
hence contains an interval (0,¢), € > 0. That is, for each t € (0,¢) thereis z € X
such that |a —z| = t. By Definable Choice there is then a definable map v: [0,¢) —

X such that |a — ()] = t for 0 < t < e. By decreasing ¢ if necessary we may

assume by the Monotonicity Theorem that v is continuous. O

Given any positive integer p we can arrange that v is of class C?: use a definable

reparametrization and the Smooth Monotonicity Theorem.
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Hardy fields and the Growth Dichotomy. By the Monotonicity Theorem
the germs at +o0o of the definable real valued functions on intervals (a, +00) form
an ordered field H(S) with respect to the usual ring operations on germs; the germ
of such a function f is positive if ultimately f(z) > 0. (“Ultimately” means “for
all sufficiently large z”.) We also write H(R) for H(S) when S = Def(A).

Examples. The field H(Raig) is isomorphic to the field of real Puiseux series in
z~! that are algebraic over the rational function field R(z). The field H(Ray) is
isomorphic to the field of real Puiseux series in ™! that converge for all sufficiently
large real values of x. The isomorphism is given in both cases by taking the sum

of the series for sufficiently large real values of z.

By the Smooth Monotonicity Theorem H(S) is also a differential field, since each
germ in H(S) has a differentiable representative whose derivative has its germ in
H(S). Thus H(S) is a so-called Hardy field in the sense of Bourbaki [6], see also
Rosenlicht [57]. The subject of Hardy fields is a modern incarnation of work on
“Orders of infinity”, see Hardy [25]. One aspect of o-minimality is that it can be
seen as an extension of the theory of Hardy fields to higher dimensions.

Among many results by Rosenlicht on Hardy fields is Proposition 6 in [58]. It
says that if f belongs to a Hardy field K D R(z) and f > z" for all n, then there is
g € K such that g(z)/log f(z) = 1 as £ — +oo (letting = denote both the germ at
+o00 of the identity function on R, and a real variable). Miller [44] noticed that this
fact, in combination with special “closure under composition” properties of H(S),
leads to the following surprising dichotomy among o-minimal structures on the real
field.

THEOREM 2.3. Either the exponential function is definable, or for each defin-

able function f : (a,+00) = R there ezists a natural number n such that ultimately

|f(z)] <z

Polynomial growth. We say that S—and R 4 when S = Def(A)—is poly-
nomially bounded if the second possibility in the last theorem is realized. For
example, Raig and Ran are polynomially bounded, by the Puiseux expansion re-

sults just mentioned. Suppose S is polynomially bounded. Then

{r € R: the function z — z" : (0, +00) — R is definable }
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is a subfield of R, called the field of exponents of S, and of R4 when § = Def(A4).
Thus the field of exponents of Raig and of Ran is Q. Any subfield E of R is the
field of exponents of some polynomially bounded o-minimal expansion R 4 of the
real field, in fact, one can take A = an U {z" : r € E}, where z denotes the
identity function on (0, +00), see [46]. The field of exponents turns out to be a
significant invariant associated to a polynomially bounded S, for partly model-
theoretic reasons we won’t go into. Here we just state a complement from [44] to

the dichotomy theorem above.

PROPOSITION 2.4. Suppose S is polynomially bounded. Then, given any defin-
able function f : R — R such that ultimately f(z) # 0, there exist real constants c
and r, with ¢ # 0 and r in the field of exponents of S, such that f(z) = cx™ + o(z")

as r — +00.

Ho6rmander-Lojasiewicz inequalities. There are several inequalities involv-
ing polynomials and analytic functions that go under that name, and they extend
easily to the polynomially bounded o-minimal setting, see [18]. Here is an example,

which is actually in the form of an equality (implying inequalities).

PROPOSITION 2.5. Suppose S is polynomially bounded. Let A C R™ be closed,
and let f,9: A = R be continuous and definable with f~1(0) C g(0). Then gV =
hf for some positive integer N and some continuous definable function h: A — R..

(Thus, if A is compact, there is a constant C > 0 such that |g|V < C|f|.)

In applications g is often the distance to f~1(0), or f the distance to g~1(0). There
is a generalization to arbitrary S: instead of raising g to the N th power we apply

a suitable one-variable function to g:

With f,g, A as in the last proposition and any integer p > 0 we have pog = hf for
some continuous definable h : A — R and some strictly increasing odd definable

function ¢ : R = R of class CP, with ¢()(0) =0 for all i < p.

This result serves some of the same purposes as the standard Lojasiewicz inequali-

ties, see [18].

Exponential growth. We say that S—and R4 when § = Def(A)—is ex-
ponentially bounded if for every definable real valued function f on an interval
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(@,+00) there is a natural number n such that ultimately |f(z)| < exp, (z). Here
exp,(z) is the n'® iterate of the exponential function, e.g. exp,(z) = exp(exp(z)).

The expansion Raig, exp is exponentially bounded. This result from [17] is
obtained by showing that each germ in the differential field H(Raig, exp) Satisfies
an algebraic differential equation, and then appealing to well-known theorems on
Hardy fields, see [58]. At the end of [17] there is an incorrect claim that this
route is also available for Ran, exp. Nevertheless, Rap exp is exponentially bounded,
as shown in [16] by means of an explicit embedding of the ordered differential
field H(Ran, exp) into an ordered differential field of generalized formal series over
R, namely the field R((z~!)*F of so-called logarithmic-exponential series. This
embedding extends the embedding of H(Rapn) into the field of real Puiseux series

in ™! discussed earlier, and can be seen as its analogue for H(Rap, exp)-

Logarithmic-exponential series. This is a large topic related to asymp-
totic questions, Dulac’s problem ([21], [28]), and o-minimality. It merits a sur-
vey by itself. Here we restrict ourselves to pointing out that this embedding
H(Ran,exp) — R((@1)'F is a natural byproduct of the model-theoretic treatment
of Ran,exp in [15], and that one can read off numerous properties of H(Ran, exp)
from this embedding.

For those familiar with model-theoretic lingo we can say more: given any o-
minimal R4 we can equip the ordered field H(R 4) with natural extra operations
so that it becomes an elementary extension of R 4, and equals the definable closure
over R of (the germ of) z. Thus, by general properties of o-minimal structures from
[54], given any other elementary extension R of R 4 and an element y > R from R,
we obtain a unique elementary embedding of H(R 4) into R that is the identity on R
and sends (the germ of) z to y. We now apply this to .4 = an,exp. The ordered field
R((z~!)LE is already equipped with a natural exponential operation extending the
exponential function on R. The restricted analytic functions also extend naturally
to any field of formal series over R with divisible value group, and in particular to
the field of logarithmic-exponential series. The quantifier elimination and complete
axiomatization of the elementary theory of Ran,exp in [15] implies that with these
extended operations R((z:‘l))LE is an elementary extension of Ran, exp- Hence we

obtain an elementary embedding H(Ran,exp) — R{((z~1)'F sending the germ of
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z to the element z of our formal series field. Exponential boundedness of Ran, exp

~“1)LE each

now follows immediately from the fact that by the construction of R((z
logarithmic-exponential series is less than some iterate exp,, z.
Logarithmic-exponential series were originally introduced by Dahn & Goring
[10] in connection with Tarski’s problem on real exponentiation. Another source is
Ecalle’s profound work [21] on Dulac’s problem. One version of Ecalle’s “trigebre
R[[[z]]] des transséries” is identical with R((z~!))'¥, and one can show that the

image of the embedding above is Ecalle’s field of “transséries convergentes”.

A question of Hardy. Here we consider an application of the above embed-
ding. Hardy [25] views the logarithmic-exponential functions as providing a natural
scale for asymptotic comparisons at +o0o. These functions are the (partially defined)
one-variable functions that can be obtained by composition (or substitution) from
semialgebraic functions, log and exp, where the semialgebraic functions may, like
addition and multiplication, have several arguments. Logarithmic-exponential func-
tions are cleariy definable in Ralg exp, and their germs at +oo form the smallest
real closed Hardy field containing R(z) and closed under exp and log.

Hardy asked whether the compositional inverse of a logarithmic-exponential
function f(z) defined for all large z and increasing to 400 as r — +00, is always
asymptotic to some logarithmic-exponential function. He also suggested that the
function (log z)(loglog z) might be a counterexample.

Shackell [64] gave the first counterexample by showing that the compositional
inverse of (loglog z)(logloglog z) is not asymptotic to any logarithmic-exponential
function. His argument does not apply to (logz)(loglogz). This last function is a
counterexample as well, by [16], where properties of the embedding of H(Ran, exp)

into the field of logarithmic-exponential series are the key.
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3. Cell Decomposition

In this section we fix again an o-minimal structure S on the real line. We then
prove under a mild extra assumption the basic fact that each definable set in R™
can be partitioned into finitely many so-called cells. It is then easy to assign a
dimension to definable sets, and to show this dimension function is well behaved.
Next we establish a smooth version of the cell decomposition theorem, and indicate
briefly how to improve further to get Whitney stratifications and triangulations.

Cells are nonempty definable sets of an especially simple nature. They are
defined inductively as follows:

1. The cells in R* = R are just the points {r} and the intervals (a,b).

2. Let C C R™" be acell. If f,g: C = R are definable continous functions

such that f < g on C, then

(f,9) :={(z,r) e C x R: f(z) <7 < g(2)}

is a cell in R™*1. If f : C — R is a definable continuous function, its graph
I'(f) € C x R, as well as the sets

(=00, f) = {(z,r) € C xR :7 < f(a)}
and

(fy+00) :={(z,r) e C xR : f(z) < r}
are cells in R™*!. Finally, C x R C R"t! is a cell.

3. By convention we also consider the one-point set R? as a cell.

The picture on the next page might be useful to digest this definition. This notion
of cell is from [12] and was inspired by Lojasiewicz’s proof of Tarski’s theorem
on the real field, see [41]. Something like cells appears even in an old paper of

Koopman and Brown [34].
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It is very useful in inductive proofs to view the cells defined in clause 2 as fibered over
their projection C. For each cell C in R™ there is a unique tuple i = (i(1),...,%(m))
with 1 < i(1) < --+ < i(m) < n such that the projection map (z1,...,2Zn) +>
(Ti(1)s-- -, Ti(m)) : R™ = R™ restricts to a homeomorphism ¢ from C onto an
open cell in R™. With this map m¢c we reduce problems to the case of open cells.
Let C be a cell in R™. It is easy to show:

1. if C is open, then C is homeomorphic to R",

2. if C is not open, then its closure cl(C) has empty interior,

3. C is locally closed in R™.

DEFINITION 3.1. A decomposition of R™ is a special kind of partition of R™

into finitely many cells. We introduce decompositions inductively:

1. A decomposition of R! = R is a collection

{(~00,a1),{a1}, (a1,02), - .., {ar}, (ax, +o0)},
where a; < --- < aj are points in R.
2. Assuming that the class of decompositions of R™ has been defined, a de-
composition of R™*! is a finite partition P of R™*! into cells such that
7(P) := {m(A) : A € P} is a decomposition of R™. (Here and below

7 : R™*l 5 R™ is the usual projection map.)
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Let D = {Ay,...,Ax} be a decomposition of R™, A; # A; whenever i # j. Let
fir <+ < fin@i) : Ai = R be continuous definable functions, ¢ = 1,...,k. Then

D; == {(=o00, fu),T(fur), (fr, fiz), - - -, T(fin(i)), (Fingiy» +00) }
is a partition of A; x R into cells, and D* := D; U --- U Dy, is a decomposition of
R™*1. (See figure.) Each decomposition of R™*! is obtained in this way from a

decomposition D of R™. Note that D = {n(C) : C € D*} = n(D*).

R A

I'(i3)

[(f;)
N

')

Paa—

A; A S

We say that a decomposition D of R™ partitions a set S C R™ if S is a union of

cells in D.

CELL DECOMPOSITION THEOREM.
(Im) Given any definable sets A;,..., Ay C R™, there is a decomposition of R™
partitioning each A;.
(II,,) Given any definable function f: A — R, A C R™, there is a decomposition
D of R™ such that D partitions A and each restriction f|B: B — R, with

B € D, is continuous.
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As in [12] we prove this theorem here only under the extra assumption that S has
the following uniform finiteness property: Whenever S C R™*! is definable and
Se C R is finite for each £ € R™, then there is N € N such that

|Sz| <N for allz € R™.

Making this extra assumption is justifiable on pragmatic grounds: the proof that
a particular kind of structure is o-minimal usually yields also the above uniform
finiteness property. In fact, this uniform finiteness property is always satisfied,
and is obtained along the way in the proof of the cell decomposition theorem for
arbitrary o-minimal structures (not just those on the real line) by Knight, Pillay

and Steinhorn [54], [33], see also [14].

PROOF (CELL DECOMPOSITION THEOREM). By induction on m. Note that
(Ip), (Ilp) are trivial and (I;) is clear by the definition of o-minimality. Now let
m > 1, and assume (I1), ..., (L), (1), .. ., (Ilm—1); we shall derive (II,) and then
(Im+1)-

Let f: A — R be definable. By (I,,), it suffices to show that then A is a union
of definable sets Aj, ..., Ay such that each f|A; is continuous. So by (1) we may

as well assume that A is already a cell. We distinguish two cases:

1. A is not an open cell. Then consider the commuting diagram
A

Ple \

p(A) R

-1

fop

where p := m4. Since p(A) is a cell in R" for some n < m, the inductive

assumption gives us a partition of p(A4) into definable sets
p(A, - p(AR), (A1, Ak C A)

such that each (f o p~1)|p(A;) is continuous. Then each f|A; is continuous.

2. A is an open cell. Put

A':={z € A: f is continuous at z}.
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Note that A’ is definable. We claim:
(x) A’'is dense in A.

If we accept this claim, then we can use (I,,) to get a partition of A into
cells By,..., By such that A\ A’ and A’ are unions of B;’s. If B; is an open
cell, then A' N B; # @ by (%), so B; C A’, and thus f|B; is continuous. If
B; is not open,vapply the first case to f|B;.
So it remains to prove (*). With “box” we mean a cartesian product of intervals.
Let B = (a1,b1) X -+ X (@m, bm) be any box in A. It is enough to show that f is
continuous at some point of B.
If f takes only finitely many values on some box B’ C B, then by (I,,), B' is
a union of cells By,..., B, on each of which f is constant. So at least one B; has
to be open; then f is continuous at each point of B;.
From now on we assume f takes infinitely many values on each box B’ C B.
We now construct inductively a decreasing sequence {I,},., of intervals and a

sequence {Bp},.., of bounded boxes in B such that for all n > 1:
length(I,) < hl-, f(B,) CI,, and cl(Bnt1)C By
Then f will be continuous at each point of (),-; Bn; by compactness of cl(B,) C
R™, this intersection is not empty.
To find I, we write f(B) = (U;f’:1 J,,) UF, with each J, an interval of length

< 1 and F finite. Then

o0

B= U nBuJFHnnB).
p=1

r€F
By writing each of the sets f~!(Jp) N B and f~!(r) N B as a finite union of cells,

we get B as a countable union of cells. By the Baire category theorem one of those
cells has to be open, and such an open cell cannot be contained in f~!(r) N B for
anyr € F.

Thus we obtain an interval I; of length < 1 and a bounded box B; C B such
that f(B1) C I;. Once we have constructed I, and B, with length(l,) < %, we
obtain in the same way an interval I,4, C f(B,) and a box B,4+; C B such that
length(Int1) < 737, cl(Bnt1) € Bn, and f(Bnt1) € Int1.

This finishes the proof of (*), and hence of (II,,). Now for the proof of (I;41).

We first make two useful observations.
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1. Given any two decompositions D;, Ds of R™*!, there is a decomposition
D* of R™*! refining both, i.e. D* partitions the cells in D; U Ds.
To see this, we reduce first (using (I,)) to the case that there is a decomposition
D of R™ such that
D = 7(D1) = n(Dy).
Given D € D let f; < --- < fp : D = R be definable and continuous such that the

cells of D, that project onto D under 7 are

(—007 fl)’P(fl)y (f17f2): v ’F(fp)’ (fp,+00),

and let g1 < --- < g¢ : D = R be definable and continuous such that the cells of

D, that project onto D under m are

(—00,91), F(gl): (91792), oo 1F(gq)a (gq7 +OO).

Now clearly this cell D can be partitioned further into definable sets Dy (A € Ap,
Ap a finite index set) such that for all i € {1,...,p}, j € {1,...,q} either fi(z) <
gi(z) for all z € Dy, or fi(z) = g;(z) for all z € Dy, or fi(z) > g;(z) for all
z € D). Now refine D to a decomposition D’ of R™ that partitions for each D € D
all Dy, A € Ap. Then it is clear that D; and D; can be refined to a common
decomposition D* of R™*! such that 7, (D*) = D', which proves Observation 1.

Given a definable set S C R we define its type 7(S) as follows: Let ry < -+ <7
be the points of bd(S); put ro := —00, Tg41 := +00; then 7(S) = (11,..., T2k+1) €
{~1,1}2k+1 where

Toing = +1, if (ri,riq1) €S
T -1, i (riyri) TR\ S

R +1, ifr; €8
7 1-1, ifr;eR\S

Thus 7(@) = (-1), 7((1;2]U {3}) = (-1,-1,+1,+1,-1,+1, —1). With this nota-
tion, it follows from the uniform finiteness property:

2. Let A C R™*! be definable. Then
{r(A;):z € R™}
is finite, and for each 7 = (11,...,T2k+1) € {—1,1}2**!, k € N, the set

{zeR™:7(A;) =7}
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is definable.

We can now finish the proof of (I,,+1). Using Observation 1, it suffices to consider
a single definable set A C R™*! and show there is a decomposition of R™+1
partitioning A. For this, we first use Observation 2 and (I,,) to find a decomposition
D of R™ such that for each D € D there is a tuple 7 € {—1,1}2**! (k depending
on D) such that 7(A;) = 7 for all z € D. Let us fix our attention on one D € D
with 7 as above. Then clearly there are definable functions f; < --- < fx: D - R
such that for each ¢ = 0,...,k (fo := —00, fir+1 := +00) either (fi, fir1) € A or
(fisfisn)NA =@, and foreach s = 1,... k, either T(f;)) CAor I'(f)) N A = @.
Now use (IL;) to partition D into finitely many cells such that the restriction of

each f; to each of those cells is continuous. Now apply (I,.) again. O

CoROLLARY 3.2. If A C R" is definable, then A has only finitely many con-

nected components (each definable and path connected). O

Finiteness results like this often remain true with uniform finite bounds when there

is a definable dependence on parameters:

COROLLARY 3.3. If S C R™*t" s definable, then there is a natural number M

such that for each point a € R™ the fiber S, has at most M connected components.

For the proof, take a partition of S into M cells, and note that for a cell C in R™+"

and a € R™ the fiber C, is either empty or a cell in R™.

Dimension. For a cell C whose homeomorphic image under n¢ is an open cell
in R%, we put dim(C) = d. We assign a dimension to any nonempty definable set
A by taking a finite partition of A into cells, and letting dim(A4) be the maximum
of the dimensions of the cells in this partition (this maximum is independent of the
partition). We also put dim(@) := —oco. This naive definition of dimension agrees
with most other notions of dimension that make sense, but it is better behaved as
the following facts indicate. Given definable sets A C R™, B C R™ and a definable
(not necessarily continuous) map f: A — B we have:

1. dim(A) > dim(f(A)), with equality if f is injective,

2. for each natural number e the set

B(e) := {b€ B :dim f~}(b) = €}
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is definable, and dim(f~(B(e)) = dim(B(e)) +e.
3. dim(cl(A) \ A) < dim(A) for nonempty A.

The last property is useful in inductive arguments and constructions. These facts
on dimension are obtained using cell decomposition by simple direct arguments,

with no need to appeal to deeper topological results like those of Brouwer.

For the rest of the section we assume that S contains addition and multiplication.
Let p € {1,2,3,...}U{oo,w}. Then a CP-cell is by definition just a cell that is also
a CP-submanifold of its ambient cartesian space. (“Submanifold” always means

“embedded submanifold” in these notes.)

SMo0TH CELL DECOMPOSITION THEOREM. Letp € N, p > 0. Then

(In) Given any definable sets Ai,...,Ar C R™, there is a decomposition of R™
into CP-cells partitioning each A;.

(II,,) Given any definable function f: A - R, A C R™, there is a deéomposi-
tion D of R™ into CP-cells such that D partitions A and each restriction
fIB: B = R, with B€ D and B C A, is of class CP.

PROOF. We just do the case p = 1. (The general case then follows by induction

on p.) If f and A are as in (II;,) and z € int(A), we define

Vi) = (%(z),...,%(z)) €R",

provided these partials exist; if some (8f/0z;)(z) does not exist, then V f(z) is not
defined. Take

A':={z € A:z € int(A) and Vf(z) is defined}.

Along with (I,) and (II,,), we will prove
(IIL,,) A\ A’ has empty interior.
(Analogous to claim () in the proof of ordinary Cell Decomposition.)

We proceed by induction on m: (I;) is trivial, (IIl;) and (II;) are easy con-
sequences of the Smooth Monotonicity Theorem. Now we shall assume that (I;),
(IIz) and (II1;) hold for all d < m, and now derive successively (In+1), (Ilm41)
and (Ilp41).
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Let A;,...,Ax € R™! be definable. We want to find a decomposition of

R™t! into C'-cells partitioning each A;. By ordinary cell decomposition,

- there is a decomposition D of R™*! partitioning each A;. Then 7(D) =

(IIIm+1 )

(Hm+ 1 )

{m(D) : D € D} is a decomposition of R™. Let n(D) = {Ci,...,Cp}. For
i=1,...,n, let the cells of D that project onto C; be

(—007 fil)v F(fil)) (fil’fiZ)) ceey F(fia)’ (.fis, +°°)7

where fi;: C; & R (j = 1,...,8 = s(i)) is definable and continuous, fi; <
=+ < fis- By (Im) and (II,) we may assume, after suitably refining 7(D),
and D accordingly, that all C; are C*-cells and all f;; are C'. Then D is a
decomposition as required in (In,41).

Let f: A — R be definable, A C R™t1, and define A’ as above. It suffices
to show that, given a box U x (a,b) C A, where U is a box in R™, we have
(U x (a,b)) N A" # @. By Smooth Monotonicity, there is, for each u € U,
an interval (a(u),B(u)) C (a,b) such that (8f/0zm+1)(u,t) exists for all
te (a(u),ﬂ(u)). By Definable Choice, we may assume that o, 3: U = R
are definable. Using Cell Decomposition we can shrink U such that a, 3 are
continuous on U. Shrinking U further and changing a and b we may assume
that 8f/0%m41 is defined on U x (a, b).

Take any t € (a,b). By applying (IIL,;,) to the function

z+ f(z,t): U - R,

we see that there must exist zo € U such that (0f/0z;)(zo,t) exist for
i =1,...,m. Also (8f/0Tm+1)(z0,t) exists, since (zo,t) € U x (a,b).
Hence (zo,t) € A’.

Let f: A — R be definable, A C R™*!. Put

A' = {z € int(A) : Vf(z) exists}.

Take a decomposition D of R™*! partitioning A and A’ such that Vf is
continuous on each open celllof D contained in A’. (Such a D exists, by
ordinary cell decomposition.) Similar to an argument in the proof of ordinary
Cell Decomposition, and using the inductive assumption, we obtain, for each
non-open cell C' € D with C C A, a finite partition Pc of C into definable
sets such that f|D is C* for each D € Pc.
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By (I,.41), there is a decomposition D' of R™*! that partitions each
cell in D and each set in Pg, for all C € D, C C A, and consists entirely of
C*-cells. It is easy to check that if B € D', B C A, then f|B: B — Ris CL.

This finishes the inductive step, and hence the proof of the theorem. O

REMARK. For all known o-minimal structures on the real field the Smooth Cell

Decomposition Theorem holds even with p = w.

Stratification. In a cell decomposition the cells C' need not fit nicely together
at their frontiers 8C := cl(C)\ C. Since dim(dA) < dim(A) for nonempty definable

A, we can use standard inductive arguments to improve matters:

Given definable sets A;,...,Ar in R™ and an integer p > 0 there exists a finite
Whitney stratification of R™ that partitions each A;, and all of whose strata are
CP-cells.

Definable maps can be similarly stratified. All this extends easily to the various
categories of definable manifolds, and to the analytic-geometric category associated
to S if an C S. Also, if the Smooth Cell Decomposition Theorem holds for S with
p = 00, respectively, p = w, then the above goes through with p = oo, respectively

p = w. See [18] for precise statements, definitions, proofs and references.

Triangulation. Another way of improving on cell decomposition is by trian-

gulation. The following is the triangulation theorem from [14].

THEOREM 3.4. For any definable sets A;,..., Ay C A C R™ there is a de-
finable homeomorphism h from A onto a finite union of open simplices of a finite
simplicial complezx K in R™ such that each h(A;) is a finite union of open simplices

of K.

Here is a brief sketch of the proof, which proceeds by induction on m as in the
semialgebraic case [5]. Let m > 0 and assume triangulation holds for lower values
of m. We may assume A is compact. Let B be the union of the boundaries of A
and of the A;’s, so B is definable with dim(B) < m. In the semialgebraic case this
means that B is contained in the zero set of a nonconstant polynomial, so that by
Noether normalization we can assume that each “vertical” line p + R.ep, (where

em = (0,...,0,1) is the vertical basis vector of R™) intersects B in a uniformly
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bounded finite number of points. Next we triangulate the projection of 4 in R™~!
compatibly with the projections of the A;’s, and show that this triangulation can
be “lifted” to a triangulation as desired. In the general case we proceed roughly in
the same way, using as a substitute for Noether normalization the following “good

directions” lemma [14].

LEMMA 3.5. Let B C R™ be definable, m > 0, with dim(B) < m. Then there
1s a unit vector e € R™ such that all lines p+ R.e intersect B in only finitely many

points.

4. Further Properties of Definable Sets

In this section we discuss the following items:

e Euler characteristic.

o Generic triviality of definable continuous maps.

e Shiota’s o-minimal “Hauptvermutung”.

e Results on (Hausdorff) limits of definable families of sets.

e The Vapnik-Chervonenkis property of definable families of sets.

This is just a selection among possible topics. Throughout this section we fix an
o-minimal structure S on the real field, and “definable” is with respect to S. (Most

results discussed actually go through for o-minimal structures on the real line.)

Euler characteristic. (See [14], Chapter 4, and also [59] for the semilinear
case.) The “naive” Euler characteristic E(A) of a definable set A C R™ is given by
E(A) := Ziel(—l)dim(c‘), where A is the disjoint union of cells C;, with i ranging
over the finite index set I. With some effort one shows this is independent of the
choice of C;’s, and that E(A) = E(B) whenever there is a definable (not necessarily
continuous) bijection from A onto B C R™. This naive Euler characteristic provides
a finitely additive integer valued measure on the boolean algebra of definable subsets
of any given definable set, and is also multiplicative under cartesian products.
Using the triangulation theorem one can show that two definable sets A and B
are definably equivalent (that is, there is a definable bijection from A onto B) if

and only if dim(4) = dim(B) and E(A) = E(B).
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Generic Triviality. Let ACR™ and B C R™ and f : A — B be definable,
with f continuous. The map f gives rise to a family {f~1(b)}sep of definable
subspaces of A, and it is natural to ask how the topology of f~!(b) varies with b.

On this level of generality the following theorem is an answer.

THEOREM 4.1. We can partition B into finitely many definable subsets By, ..., By
such that each restriction f; := f|f~Y(B;) : f~(B;) — B is S-trivial, that is, given
any b; € B; there is a definable homeomorphism

hi s f7H(Bi) = B x f7*(bs)
such that f; = m; o h; where m; : B; X f~1(b;) — B; is the projection map.

Hence all fibers over B; are (definably) homeomorphic, and thus there are only
finitely many topological types among the fibers f~1(b) as b ranges over B. In the
semialgebraic case the theorem is due to Hardt [26]. That case implies for example
the well-known result that for each pair (n,d) € N? there are only finitely many
topological types among the zero-sets in R™ of real polynomials in n variables of
total degree at most d.

See [14], Chapter 9 for arbitrary S, and refinements, and also for details con-
cerning the applications to be discussed now.

Applying the generic triviality theorem to § = {subexponential sets} we obtain
a finiteness result for polynomials similar to the above, with “degree” replaced by

“number of monomials” :

COROLLARY 4.2. For each pair (n,k) € N? there are only finitely many topo-
logical types among the zero-sets in R™ of real polynomials in n variables having at

most k monomials.

This result is in the spirit of earlier theorems by Khovanskii [30], {31], [32], bound-
ing the Betti numbers of such sets in terms of n and k. Indeed, the idea is to use
Khovanskii’s change of variables z; = e¥, i = 1,...,n to construct finitely many
continuous subexponential maps such that each zero-set as above occurs as a fiber
of one of those maps, and then to apply the generic triviality theorem to Raig, exp-
A minor problem that this change of variables only works in the region where all

z; > 0. In fact, slightly different changes of variables are used.
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An elaboration along these lines proves the following finiteness result conjec-

tured by Benedetti and Risler [3]:

COROLLARY 4.3. Given any n,p,k € N there are only finitely many different
embedded homeomorphism types of semialgebraic subsets of R™ defined by at most
p polynomial equations and (§trict) inequalities where each polynomial has additive

complezity at most k.

Here the embedded homeomorphism type of a set S C R™ refers to the homeomor-
phism type of the pair (R",S). (The generic triviality theorem extends to pairs
of definable sets.) The additive complezity of a rational function f(Xi,...,X,) €
R(Xi,...,X,) is said to be < k if f can be obtained from the variables Xi,..., X,
and real constants using at most k additions and an unlimited number of multi-
plications and divisions. (The additive complexity of a polynomial is more natural
than its number of monomials, since the latter can jump drastically under a simple
change of variables like substituting X + 1 for a variable X.)

One can also generalize by considering the topological types of maps rather
than sets, where maps f and g are equivalent if there is a homeomorphism between
their domains and a homeomorphism between their codomains transforming f to
g. Coste [9] has positive results for R-valued maps in the o-minimal context similar
to the above results for sets. (These results do not seem to extend to R2-valued

maps, but see [66].)

Shiota’s work. This is closely connected to the topics above. Shiota [66] ob-
tains some basic results of differential topology in an o-minimal setting, for example
the transversality theorem and the first and second isotopy lemmas of Thom. The
difficulty here is that the objects to be constructed from the definable data must
remain definable. Thus the method of integrating vector fields cannot be used, and
new proofs have to be found, some of which are long and complicated. Shiota’s book
also develops some o-minimal singularity theory where various kinds of definable
sets and maps and their germs are classified under suitable equivalence relations.

A very remarkable theorem ([66], Chapter III) is the following.

THEOREM 4.4. Any two definably homeomorphic compact semilinear sets are

semilinearly homeomorphic.
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We remark that the compact semilinear sets in R™ are exactly the polyhedra |K|
spanned by finite simplicial complexes K in R", and that a semilinear homeomor-
phism between such spaces is the same as a PL-homeomorphism. In other words,
the theorem says that the “Hauptvermutung” holds in the o-minimal setting. It
is not clear (to me) whether Shiota’s proof provides a “definable” way of passing

from a given definable homeomorphism to a semilinear one.

Limit Sets. Let A C R™*" be definable. Then A gives rise to a collection
{Az : £ € R™} of definable subsets of R™. Identifying each subset of R™ with its

characteristic function R™ — {0,1} produces an inclusion
{4; :z € R™} C {0,1}}".

The right hand product has the product topology with the discrete topology on each
factor {0,1}, making the product space a totally disconnected compact Hausdorff
space. Thus a set ¥ C R™ is in the closure of {4, : z € R™} in this product
space if and only if Y agrees on each finite set F C R™ with some A, that is,
YNF = A;NF for some z € R™ depending on F. Let us call Y in that case a
limit set of {4, : z € R™}. (For example, the union of an increasing sequence
of A;’s is such a limit set, as well as the intersection of a decreasing sequence of

Az’s.)

THEOREM 4.5. Each limit set of {A; : £ € R™} is definable. In fact, there is
a definable set B C R™*™ (for some m’ ) such that

{By :z' € R™} = the collection of limit sets of {A, : ¢ € R™}.

Hausdorff Limits. With definable A C R™*" as before, we now focus on
K4 :={A;:z € R™, A; is compact},

the collection of compact fibers, which is a subset of the space C(R™) of compact
subsets of R". We equip KX(R™) with the Hausdorff metric induced by the usual
euclidean metric on R™. It is well-known that then X(R") is locally compact. A
Hausdorff limit of X4 is by definition a compact set Y C R" (i.e. a point of
K(R™)) that is in the closure of K4 in IC(R™). We have the following analogue of

the theorem on limit sets:
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THEOREM 4.6. Each Hausdorff limit of K4 is definable. More precisely, if
Ka # @, then there is a definable set B C R™ ™™ such that {B, : &' € R™} is
exactly the collection of Hausdorff limits of K 4.

The only known proofs of these theorems on limit sets use model theory, see Marker
and Steinhorn [43], Pillay [52], and also Brocker [7] for the semialgebraic case.
The connection with model theory arises in an entirely natural way as follows. The
definable set A C R™*" extends naturally to a definable set A(R) C R™*", where
R is an elementary extension of the expansion Rs. For sufficiently saturated R the
limit sets of the collection {A; : z € R™} are exactly the sets A(R); N R™ with

z € R™. Hausdorff limits can be characterized in a similar way.

The Vapnik-Chervonenkis Property. Let A C R™*" be definable. The

collection of sets {A; : = € R™} also has a remarkable combinatorial property:

THEOREM 4.7. There are numbers C = C(A) > 0 and d = d(A) € N such
that each finite set F C R™ has at most C - |F|® subsets of the form F N A, with
z € R™, where |F| is the cardinality of F.

This is a purely combinatorial manifestation of the fact that the sets A, vary in a
highly restricted way as z ranges over R™: the total number of subsets of a finite
set F'is 2/F| which grows much faster than C - |F|¢ as |F| — oo.

In probabilistic terms the theorem says that {4, : z € R™} is a Vapnik-
Chervonenkis class [70]. This means in particular that if the sets A, are events
in a probability space, then the convergence of their relative frequencies to their
probabilities is uniform in z in certain ways. This plays a role in the mathematics
of pattern recognition, neural networks, and learning theory, see Vapnik [71].

In model-theoretic terms the theorem is equivalent to saying that Rs does
not have Shelah’s independence property, and in this form it already appears in
[64]. Laskowski [35] observed this equivalence and gives a more combinatorial
proof of the theorem. (With some preliminaries added this last proof is essentially
reproduced in [14], Chapter 5.)

There is also more recent work by Wilkie, Macintyre and Sontag on these

matters.
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5. Building o-minimal Structures on the Real Field

In this section we discuss how one actually goes about proving that some given
expansion R4 of the real field is o-minimal. We also give a brief account of recent
work in constructing such expansions, and finish with a diagram displaying the
main known o-minimal expansions of the real field.

Needless to say, a “natural” class of real functions—on some interval, say—is
only a candidate for generating an o-minimal structure, if these functions behave
“tamely”; in particular, they should not oscillate infinitely often, or have infinitely

many isolated zeros.

Elimination theory. This is a general idea that makes sense whenever a
set is structured by endowing it with functions and relations. We give a precise
definition in the relevant case. Let the collection A consist of the ordering on the
real line, and of real valued functions on R™ for various n (among which may be
addition and multiplication). We then define the class of .A-functions to be the
smallest collection of real valued functions on the spaces R™ (for all n) such that
the coordinate functions (zi,...,2,) — z; : R® = R (1 < i < n) are A-functions
and such that we can substitute in functions of A4, that is, if f : R™ — R belongs
to A, and g1,...,9 : R™ = R are A-functions, then f(g1,...,gs) : R™ = R is
an A-function. (Hence the A-functions are definable in R 4.)

Next, an A-set in R™ is by definition a finite union of sets of the form
{zeR™: fi(z) = = fu(z) = 0,91(z) > 0,..., q() > 0}
where the f’s and g’s are A-functions on R". The A-sets are clearly definable in

R4. (In logical terms they are exactly the “quantifier-free definable” sets, the sets

that can be defined in R4 by formulas without quantifiers.)

DEFINITION 5.1. We say that R4 eliminates quantifiers if for each n the
image of an A-set in R™*! under the projection map R™*! — R™ is an A-set in

R™

Thus the definable sets are exactly the A-sets in the (a priori unlikely) case that
R4 eliminates quantifiers. To see why this resembles the old idea of “elimination”,
note that given a system of A-equations and A-inequalities with n parameters and

one unknown, the definition above expresses that solvability of the system in R
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is equivalent to the parameters satisfying certain .4-equations and A-inequalities.
In logical terms it implies that any formula with quantifiers (in a certain formal
language associated to R 4) is equivalent in R 4 to a quantifier-free formula.

Suppose A contains all {r}, r € R, and we manage to show that the A-subsets
of R are finite unions of intervals and points, and that R 4 eliminates quantifiers.
Then R 4 is obviously o-minimal.

For the field of real numbers Raqjg the classical Sturm theorem on the number
of real zeros of a real polynomial is the key fact underlying such an elimination
theory, as Tarski [68] realized. There is a variety of other proofs ([63], [41]) that
Rajg eliminates quantifiers. Among these is a beautiful model-theoretic argument
by A. Robinson [56], which makes it appear as a natural corollary to the Artin-
Schreier theory [2] of real closed fields. This model-theoretic approach has been
suggestive and influential among model-theorists in finding elimination theories in
other situations. The case Rapexp Was treated this way in [15], using also ideas
of Ressayre [55]. It is worth noting that in this case one has to add the logarithm
function (extended to all of R by some convention) to eliminate quantifiers. This is
typical: a correct choice of “basic” functions and relations is essential for elimination
to be possible. (Another example is Rayn, where we add 1/z to the basic functions

to eliminate quantifiers.)

Model-completeness. This notion is a weaker variant of quantifier elimi-
nation, and is much less sensitive to the choice of basic relations and functions
generating our structure. It applies again very generally, but we just introduce it
in the case of interest. With A as above, a sub-A-set in R™ is by definition the
image of an .4-set in R"** (for some k) under the projection map R"t* — R".
(In logical terms these sets are exactly the “existentially definable” sets, the sets

that can be defined in R 4 by so-called existential formulas.)

DEFINITION 5.2. We say that R 4 is model-complete if the complement of

each sub-A-set in R™ is again a sub-A-set in R™.

Thus if R 4 is model-complete, then the definable sets are exactly the sub-.4-sets.
Suppose A contains all {r}, r € R, all A-sets have only finitely many connected

components, and R 4 is model-complete. Then R 4 is o-minimal.
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As the name suggests, model-completeness has a model-theoretic significance.
This was established by A. Robinson. As with quantifier elimination, there are
useful model-theoretic criteria that can help in proving model-completeness. In the
terminology above, Gabrielov’s “Theorem of the Complement” [22) means model-
completeness for Ran. Gabrielov also proved an interesting strengthening, where
not all analytic functions on cubes, but only those belonging to a collection closed
under partials are considered, see [23]. While the arguments in [22] and [23] are
very geometric, Wilkie’s proof of the model-completeness of Raig exp did take place

in Robinson’s model-theoretic setting.

We now describe some new (post '94) expansions whose o-minimality was obtained
via quantifier elimination or model-completeness. Later in this section we turn to
recent work by Wilkie and others that have led to o-minimality in a quite different

way.

Generalized convergent power series. We consider an expansion Ran- of
the real field, in which we can define for example all functions of the form
oo
z - chw"" :[0,a] = R, a>0

n=0

with strictly increasing exponents a;,, > 0 such that _ |cn|(a + €)* < oo for some
€ > 0 (so the displayed sum is safely convergent). In particular, Ran+ defines the
function ¢(—logz) = Y oo, z'°¥™ on [0,e7?].

More generally, let X = (Xi,...,Xn) be a tuple of indeterminates, and r =
(r1,...,7s) be a tuple of positive reals. Then we define R{X*}, to be the ring of
all generalized formal power series

f(X) = Z coX* withcy, € R, X% := X - X2

a€[0,00)™
such that {a : ¢, # 0} C Sy X - -+ x Sy, for suitable well-ordered subsets .S; of [0, 00),
and such that Y, [ca|r® < +00. A series f(X) of this form defines a real valued
function
z - fz):= anm"‘
on the cube [0,71] X - - - x [0, 7] which is analytic on its interior. Let an* consist of
the ordering, addition, multiplication, and all functions on R" (for all n) that are

given on [0, 1] by a series in R{X*}, as above with r; > 1,...,7, > 1, and that
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vanish identically outside [0, 1]". Then the main result from [19] by Van den Dries

and Speissegger is:

THEOREM 5.3. The expansion Ran~ of the real field is model-complete, o-minimal,

and polynomially bounded.

The proof uses inductive arguments involving Weierstrass preparation and blow-
up maps (much as in Tougeron [69]) to reduce to a situation where a judicious
application of Gabrielov’s technique of “fiber cutting” is possible. Unlike Rgy, it
does not seem that Ran- can be made to eliminate quantifiers by just adding 1/z

to the basic functions.

Multisummable power series. The paper [19] was a kind of warm-up for
dealing with Rg in [20]. The geometric arguments are very similar, but the analytic
preliminaries are more demanding. As before G extends alg, but to list exactly the
basic functions of G in detail would lead too far. The main point is that we get
into the territory of functions with divergent asymptotic expansions. Among the
functions definable in Rg (but not in Ran+ or Ranexp) are:

1. The function f on [0, 1] given by

f(z)=/0 vz

It is analytic on (0,1] but only C® at 0, Its Taylor expansion at 0 is the

divergent series - (—1)"n!X™ as

2. The function ¢ on [0,1] given by 1(0) = 0 and

logT'(z) = (z— %) logz —z + %10g7r+¢ (1>

T
for x > 1 (Stirling expansion).
For the complicated definition of the functions in G one has to go to the complex
plane and use the theory of multisummability, as extended in a rather subtle way
to several variables by Tougeron [69]. We refer to [20] for details, and the proof of
the following.

THEOREM 5.4. The expansion Rg of the real field is model-complete, o-minimal,

and polynomially bounded.

Both Ran+ and Rg admit analytic cell decomposition.
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Adding exponentiation. Using a combination of model theory and valuation

theory [20] also proves:

THEOREM 5.5. Suppose R 4 is a polynomially bounded o-minimal expansion of
the real field in which the restriction of the exponential function to [0,1] is definable.

Then R 4 exp is 0-minimal and ezponentially bounded, where A,exp := AU {exp}.

In fact, we have a quantifier elimination for R 4 exp “relative to R4”, by taking as
basic functions all functions on R™ (for all n) that are definable in R 4, as well as
the functions exp and log.

In particular we obtain some new exponentially bounded o-minimal expansions

of the real field:

1. Ran exp, in which for example functions given on a suitable interval (a, +o0)
by a convergent Dirichlet series are definable,

2. Rg exp, in which the Gamma function on the positive real line is definable.

The embedding of H(Ran, exp) into the field of logarithmic-exponential series has a

natural extension to an embedding of H(Rg exp) into this field.

Adding Pfaffian functions. Charbonnel [8] proposes a method completely
different from those discussed so far to obtain the o-minimality of the exponential
field of reals. While the proof claimed in [8] has serious flaws, the new direction
suggested by it has turned out to be viable.

Throughout this subsection R4 denotes an expansion of the real field, such
that, except for the ordering, A consists of C* functions on R™ for various n.

Wilkie 73] shows:

THEOREM 5.6. Supporse that for each A-set S in R™t™ there is a bound B =
B(S) € N such that for all a € R™ the fiber S, has at most B connected compo-

nents. Then R 4 is o-minimal.

Take the smallest collection A* of subsets of the spaces R™ such that A* contains
all A-sets and is closed under taking finite unions and intersections, topological
closures (in an ambient cartesian space), and projections (images under projection
maps R*"t1 — R™). A salvagable part of [8] says that the tameness hypothesis of
the theorem is inherited by the sets in A*. Wilkie shows that .A* is also closed under
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taking complements. Thus in the theorem the definable sets of R 4 are exactly the
sets in A*. This result produces new o-minimal expansions of the real field as
follows. Let f : R™ — R be Pfaffian over R 4, that is, f is C*° and

of
61:,'

for suitable C* functions F; on R"*! that are definable in R 4.

(z) = Fi(z, f(z)) throughout R™ ,fori=1,...,n

COROLLARY 5.7. If R4 is o-minimal, and f as above is Pfaffian over R4,

then R 4,5 is also o-minimal, where A, f := AU{f}.

This follows from the theorem above applied to A, f instead of .A. The hypothesis
of the theorem is satisfied for A, f by a variant of Khovanskii’s theorem {30]. Note
that the process of adjoining Pfaffian functions can be repeated, since the new basic
function f is C*°.

For the concrete o-minimal structures on the real field mentioned so far, one
can indeed always take a generating set .4 that satisfies the C*° assumption made

in the beginning of this subsection.

Adding Rolle leaves. Geometrically it is more natural to consider 1-forms
and integral manifolds that are not necessarily graphs of functions. Moussu and
Roche [47] have an extension of Khovanskii’s finiteness theorem to intersections
of so-called Rolle leaves of analytic 1-forms with semianalytic sets. Wilkie’s work
inspired Lion & Rolin [38] to obtain o-minimality in that setting. This has been
further extended and simplified by Speissegger [67] so that no analyticity or C*
assumptions are needed any longer, and one can work over an arbitrary o-minimal
expansion of the real field.

Here are more details. Let R 4 be an o-minimal expansion of the real field, and
let w = aidzy + - - + andz, be a definable 1-form of class C! on some definable
open set U C R", where the definability of w means that the coefficient functions

a; are definable in R 4. Let
Sing(w) ;== {z € U :a1(z) = -+ = ap(z) =0}

be the singular set of w. We view the equation w = 0 as defining a hyperplane field
on the open set U \ Sing(w). A Rolle leaf of the equation w = 0 is a connected
(embedded) integral manifold L of this hyperplane field, such that L is closed in
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U \ Sing(w) and any C-curve v : [0,1] = U \ Sing(w) with ¥(0),v(1) € L is
tangent to the hyperplane field at some point, that is, w(vy(t),7'(t)) = 0 for some
€ (0,1). (The Rolle condition on the leaf prevents non o-minimal behaviour such
as spiraling. The graph of a Pfaffian function f as in the last subsection is a Rolle
leaf of Fidzy + -+ + Fpdz, — dxny; = 0.) With this terminology we have [67]:

THEOREM 5.8. Let R4 be an o-minimal expansion of the real field. Let A%
be A augmented by all Rolle leafs of all equations w = 0, where w ranges over the

definable 1-forms of class C' on definable open sets. Then R 4+ is o-minimal.

This process can now be repeated with A% to produce A%+, and continuing this
way, and taking the union of A, A%, AT, ..., we obtain a collection Pf(A)
such that Rpg 4) is an o-minimal expansion of the real field and Pf(A) contains
every Rolle leaf of any equation w = 0 with w a definable 1-form of class C* on a
definable open set, where “definable” refers to definability in Rpg4). We call Pf(A)
the Pfaffian closure of A. It is not known if it gives rise to the same definable sets
as the “Pfaffian closure” obtained by iterating Wilkie’s method when we start with
an A satisfying the C*°-assumption in Wilkie’s theorem.

The way the theorem is proved gives considerable control over the definable
sets, and allows Lion & Speissegger [40] to show that if R 4 admits “analytic cell

decomposition”, so does Rpg(4)-

This concludes our survey of the various constructions. The inclusion diagram
on the next page summarizes which o-minimal expansions of the real field can be

obtained by these methods. The idea of such a display came from Macintyre.
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Rps(g)
Rps(alg) Rept(an) Repf(an+)
/ Rg P
Ralg,exp Ran,exp Ran* ,exp
— Rg
Ralg Ran Ran*

The known o-minimal expansions of the real field.

In this diagram an arrow R4 — Rp means that Def(4) C Def(B). The bottom
arrows connect the polynomially bounded expansions, the upward pointing ones go
to the expansions that can be built on top of the polynomially bounded ones by
adding exp and taking the Pfaffian closure. It seems to be unknown if Rpyalg) is
exponentially bounded.

Added in proof: Recently C. Miller and P. Speissegger have shown that all

expansions in the diagram above are exponentially bounded.
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6. Open Problems

We start with some clear-cut and well-known questions.

1. Is each o-minimal structure on the real field exponentially bounded?
2. Do all o-minimal structures on the real field have analytic cell decomposi-
tion? Same question with “analytic” replaced by “C*”.

3. Is there a largest o-minimal structure on the real field?

A positive answer to any of these questions would be too good to be true.

Here are some more open-ended questions.

4. Let the function f : [0,1)> — R be continuous and definable in the o-
minimal expansion R4 of the real field, and let g : [0,1] = R be given by
g(z) = fol f(z,y)dy. Is then R4 4 o-minimal, where A, g := AU {g}?

5. Does quasianalyticity imply o-minimality?

6. Do the “analysable functions” in the sense of Ecalle [21] generate an o-

minimal structure on the real field?

Question 4 was asked some years ago by L. Brocker for Ralg, and has a positive
answer in that case. More generally, let f : R™*" — R be globally subanalytic
such that for each £ € R™ the function f; on R" is (Lebesgue) integrable. (For
example, f could be the characteristic function of a bounded subanalytic set in

R™*") Then the function
T~ / f(z,y)dy
Rn

on R™ is definable in Ran exp. More precise results of this kind have been obtained
by Lion & Rolin [39]. What happens is that integration introduces logarithms, as
in [y 'dy = logz. Here is a rough idea of [39]. First, reduce to considering
functions on cubes [0,1]™*". As shown in [36], globally subanalytic functions on
such cubes can be expanded into “Puiseux-Laurent” type series with respect to the
last variable, piecewise uniformly with respect to the other variables. Integrating
these series termwise with respect to the last variable may introduce logarithms
of globally subanalytic functions, but these enter only in a polynomial way, which

allows the process to be repeated for other variables.
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As to question 5, let @ be a ring of real valued C*° functions on a connected open
set U C R™, and suppose @ is closed under taking partial derivatives. Call @
quasianalytic if for each point a € U the Taylor homomorphism
fe Y f-(-z#‘lxa : Q — R[[X]), where X = (X1,...,Xx),
a€Nn ’

is injective. For a polynomially bounded o-minimal expansion R 4 of the real field,
the definable C* functions on (definable) U form such a quasianalytic ring, see
[45]). Question 5 asks for a kind of converse to this. For example, by the Denjoy-
Carleman theorem, given an interval I, the C* functions f on I such that for some

positive integer k,

(n) k "
M_n_'(fﬂ < (H log; n) for all z € I and n > exp,(1),
' i=1

form such a quasianalytic ring (where log; denotes the i iterate of log). Do
the restrictions of these functions to [0,1] (with I D [0,1]) generate a polynomi-
ally bounded o-minimal expansion of the real field? All signs point to a positive
answer—in which case the first part of question 2 would have a negative answer,
since these Denjoy-Carleman functions on [0, 1] are in general not analytic (although

all analytic functions on [0, 1] are among them).

A positive answer to question 6 might be of interest in connection with the part
of Hilbert’s 16th problem that concerns the number of limit cycles of polynomial
vector fields on the real plane. Ecalle [21] and II’yashenko [28] have both written
formidable books proving that this number is always finite for each particular poly-
nomial vector field on the plane. It would be very desirable to have this finiteness
property as part of the o-minimality of a suitable expansion of the real field. It is

this consideration that leads to question 6.

We should also mention Arnold’s paper [1]. Some of the problems listed there are

very much in the spirit of o-minimality.
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