ON THE 2-ADIC K-LOCALIZATIONS OF H-SPACES

A.K. BOUSFIELD

Abstract

We determine the 2-adic K-localizations for a large class of H-spaces and related spaces. As in the odd primary case, these localizations are expressed as fibers of maps between specified infinite loop spaces, allowing us to approach the 2-primary v_1-periodic homotopy groups of our spaces. The present v_1-periodic results have been applied very successfully to simply-connected compact Lie groups by Davis, using knowledge of the complex, real, and quaternionic representations of the groups. We also functorially determine the united 2-adic K-cohomology algebras (including the 2-adic KO-cohomology algebras) for all simply-connected compact Lie groups in terms of their representation theories, and we show the existence of spaces realizing a wide class of united 2-adic K-cohomology algebras with specified operations.

1. Introduction

In [20], Mahowald and Thompson determined the p-adic K-localizations of the odd spheres at an arbitrary prime p, expressing these localizations as homotopy fibers of maps between specified infinite loop spaces. Then, working at an odd prime p in [8], we generalized this result to give the p-adic K-localizations for a large class of H-spaces and related spaces. In the present paper, we obtain similar results for 2-adic K-localizations of such spaces, using our preparatory work in [10] and [11]. By a 2-adic K-localization, we mean a $K/2_\ast$-localization (see [2], [3]), which is the same as a $K^\ast(\cdot; \hat{\mathbb{Z}}_2)$-localization, since the $K/2_\ast$-equivalences of spaces or spectra are the same as the $K^\ast(\cdot; \hat{\mathbb{Z}}_2)$-equivalences. Our localization results in this paper will apply to many (but not all) simply-connected finite H-spaces and to related spaces such as the spheres S^{4k-1} for $k \geq 1$. We show that these results allow computations of the v_1-periodic homotopy groups (see [13], [15]) of our spaces from their united 2-adic K-cohomologies, and thus allow computations of the v_1-periodic homotopy groups for a large class of simply-connected compact Lie groups from their complex, real, and quaternionic representation theories. The present results will be extended in a

Received December 18, 2006, revised January 20, 2007; published on March 6, 2007.
2000 Mathematics Subject Classification: 55N15, 55P60, 55Q51, 55S25.
Key words and phrases: K-localizations, v_1-periodic homotopy, 2-adic K-theory, united K-theory, compact Lie groups.

Copyright © 2007, International Press. Permission to copy for private use granted.
subsequent paper to cover the remaining simply-connected compact Lie groups and various spaces related to the remaining odd spheres. This work has been applied very successfully by Davis [14] to complete his 13-year program (with Bendersky) of calculating the v_1-periodic homotopy groups of all simply-connected compact Lie groups, and has also been applied by Bendersky, Davis, and Mahowald [1].

Throughout this paper, we work at the prime 2 and rely on the **united 2-adic K-cohomology**

$$K^*_CR(X; \mathbb{Z}_2) = \{K^*(X; \mathbb{Z}_2), KO^*(X; \mathbb{Z}_2)\}$$

of a space or spectrum X as in [10]. This combines the usual periodic cohomologies with certain operations between them, such as complexification and realification.

For our H-spaces and related spaces X, the cohomology $K^*_CR(X; \mathbb{Z}_2)$ is essentially determined by the 2-adic Adams Δ-module

$$\tilde{K}^{-1}_\Delta(X; \mathbb{Z}_2) = \{\tilde{K}^{-1}(X; \mathbb{Z}_2), \tilde{KO}^{-1}(X; \mathbb{Z}_2), \tilde{KO}^{-5}(X; \mathbb{Z}_2)\}$$

which combines the specified cohomologies with the additive operations among them (see Definition 6.1). In fact, for most simply-connected finite H-spaces X, we expect to have an isomorphism $K^*_CR(X; \mathbb{Z}_2) \cong \tilde{L}(M)$ where $M = \{M_C, M_R, M_H\}$ is the submodule of primitives in $\tilde{K}^{-1}_\Delta(X; \mathbb{Z}_2)$ and where \tilde{L} is a functor that we introduce in Lemma 4.5, extending the 2-adic exterior algebra functor on complex components.

For a simply-connected compact Lie group G, the required 2-adic Adams Δ-module may be obtained as the indecomposables $QR\Delta G = \{QRG, QR_RG, QR_HG\}$ of the complex, real, and quaternionic representation ring $R\Delta G = \{RG, R_RG, R_HG\}$ (see Definition 10.1), and we have:

Theorem 1.1. For a simply-connected compact Lie group G, there is a natural isomorphism $K^*_CR(G; \mathbb{Z}_2) \cong \tilde{L}(QR\Delta G)$ of algebras.

This will follow from Theorem 10.3. It extends results of Hodgkin [17], Seymour [23], Minami [21], and others on $K^*(G; \mathbb{Z}_2)$ and $KO^*(G; \mathbb{Z}_2)$. Our main result on $K/2^\star$-localizations will apply to a space X with $K^*_CR(X; \mathbb{Z}_2) \cong \tilde{L}M$ for a 2-adic Adams Δ-module M that is **strong** (see Definition 7.11). This technical algebraic condition seems relatively mild and holds for $QR\Delta G$ when G is a simply-connected compact simple Lie group **other than E_6 or Spin$(4k + 2)$ with k not a 2-power** by work of Davis (see Lemma 10.5).

For a strong 2-adic Adams Δ-module M, we obtain two stable 2-adic Adams Δ-modules $M = \{M_C, M_R, M_H\}$ and $\bar{p}M = \{\bar{p}M_C, \bar{p}M_R, \bar{p}M_H\}$ where $M_C = M_C, M_R = \text{im}(M_R \to M_C)$, and $M_H = \text{im}(M_H \to M_C)$; and we obtain two corresponding $K/2^\star$-local spectra $E\bar{p}M$ and $E\bar{p}M$ such that $K^{-1}_\Delta(E\bar{p}M; \mathbb{Z}_2) = \bar{M}, K^0(E\bar{p}M; \mathbb{Z}_2) = 0, K^{-1}_\Delta(E\bar{p}M; \mathbb{Z}_2) = \bar{p}M,$ and $K^0(E\bar{p}M; \mathbb{Z}_2) = 0$ (see Definition 8.1). Stated briefly, our main localization result is:

Theorem 1.2. If X is a connected space with $K^*_CR(X; \mathbb{Z}_2) \cong \tilde{L}M$ for a strong 2-adic Adams Δ-module M, then its $K/2^\star$-localization $X_{K/2}$ is the homotopy fiber of a map from $\Omega^\infty E\bar{p}M$ to $\Omega^\infty E\bar{p}M$ with low dimensional modifications.

This will follow from Theorem 8.6. It will apply to simply-connected compact Lie groups with the above-mentioned exceptions, and it should apply to many
other simply-connected finite H-spaces and related spaces; in fact, there must exist a great diversity of spaces with the required united 2-adic K-cohomology algebras by:

Theorem 1.3. For each strong 2-adic Adams Δ-module M, there exists a simply-connected space X with $K_1^{CR}(X;\mathbb{Z}_2) \cong LM$.

This will follow from Theorem 8.5. For our spaces X, we also obtain results on the 2-primary v_1-periodic homotopy groups $v_1^{-1}\pi_*X$, which are naturally isomorphic to stable homotopy groups $\pi_*\tau_2\Phi_1X$, where $\tau_2\Phi_1X$ is the 2-torsion part of the spectrum Φ_1X obtained using the v_1-stabilization functor Φ_1 constructed in [4, 9, 16, and 18]. From this standpoint, the homotopy $v_1^{-1}\pi_*X$ is essentially determined by the cohomology $KO^*(\Phi_1X;\mathbb{Z}_2)$, since there is an exact sequence

$$\cdots \to KO^{n-3}(\Phi_1X;\mathbb{Z}_2) \xrightarrow{\psi^3-9} KO^{n-3}(\Phi_1X;\mathbb{Z}_2) \to (v_1^{-1}\pi_*X)^\#$

where $(-)^\#$ gives the Pontrjagin dual (see Theorem 9.2). A space X is called $K/2_*$-durable when the $K/2_*$-localization induces an isomorphism $v_1^{-1}\pi_*X \cong v_1^{-1}\pi_*X_{K/2}$ or equivalently $\Phi_1X \cong \Phi_1X_{K/2}$. This condition holds for all connected H-spaces (and many other spaces), and our $K/2_*$-localization result implies:

Theorem 1.4. If X is a connected $K/2_*$-durable space (e.g. H-space) with $K_1^{CR}(X;\mathbb{Z}_2) \cong LM$ for a strong 2-adic Adams Δ-module M, then there is a (co)fiber sequence of spectra $\Phi_1X \to \mathcal{E}M \to \mathcal{E}\rho M$ with a $KO^*(-;\mathbb{Z}_2)$ cohomology exact sequence

$$0 \to KO^{-8}(\Phi_1X;\mathbb{Z}_2) \to \tilde{M}_C/(\tilde{M}_R + \tilde{M}_H) \xrightarrow{\lambda^2} \tilde{M}_C/\tilde{M}_R \to KO^{-7}(\Phi_1X;\mathbb{Z}_2)$$

$$\to 0 \to \tilde{M}_H/(\tilde{M}_R \cap \tilde{M}_H) \to KO^{-6}(\Phi_1X;\mathbb{Z}_2) \to \tilde{M}_R \cap \tilde{M}_H \xrightarrow{\lambda^2} \tilde{M}_H \to KO^{-5}(\Phi_1X;\mathbb{Z}_2) \to 0 \to KO^{-4}(\Phi_1X;\mathbb{Z}_2) \to \tilde{M}_C/(\tilde{M}_R \cap \tilde{M}_H) \xrightarrow{\lambda^2} \tilde{M}_C/\tilde{M}_H$$

$$\to KO^{-3}(\Phi_1X;\mathbb{Z}_2) \to (\tilde{M}_R + \tilde{M}_H)/(\tilde{M}_R \cap \tilde{M}_H) \xrightarrow{\lambda^2} \tilde{M}_R \to KO^{-2}(\Phi_1X;\mathbb{Z}_2) \to \tilde{M}_R + \tilde{M}_H \xrightarrow{\lambda^2} \tilde{M}_R \to KO^{-1}(\Phi_1X;\mathbb{Z}_2) \to 0.$$

This will follow from Theorem 9.5. It allows effective computations of 2-primary v_1-periodic homotopy groups as shown by Davis [14], and its complex analogue implies that our spaces X are usually $\tilde{K}\Phi_1$-good, which means that $\bar{Q}K^n(X;\mathbb{Z}_2)/\lambda^2 \cong K^n(\Phi_1X;\mathbb{Z}_2)$ for $n = -1, 0$.

Theorem 1.5. If X is as in Theorem 1.4 with $\lambda^2: \tilde{M}_C \to \tilde{M}_C$ monic, then X is $\tilde{K}\Phi_1$-good.

This will follow from Theorem 9.7. It will be used in a subsequent paper to show that all simply-connected compact Lie groups (and many other spaces) are $\tilde{K}\Phi_1$-good, which is useful because the v_1-periodic homotopy groups of $\tilde{K}\Phi_1$-good spaces are often accessible by [10], even when our $K/2_*$-localization theorems do not
apply. From the perspective of [10], the present work verifies important examples of \hat{K}/Φ_1-good spaces beyond the odd spheres.

Throughout the paper, spaces and spectra will belong to the usual pointed simplicial or CW homotopy categories. To provide a suitably precise setting for our main theorems and proofs, we must devote considerable attention to developing the algebraic infrastructure of united 2-adic K-cohomology theory. The paper is divided into the following sections:

1. Introduction
2. The united 2-adic K-cohomologies of spectra and spaces
3. The 2-adic ϕCR-algebras
4. The universal 2-adic ϕCR-algebra functor \hat{L}
5. Stable 2-adic Adams operations and $K/2_\ast$-local spectra
6. On the united 2-adic K-cohomologies of infinite loop spaces
7. Strong 2-adic Adams Δ-modules
8. On the $K/2_\ast$-localizations of our spaces
9. On the v_1-periodic homotopy groups of our spaces
10. Applications to simply-connected compact Lie groups
11. Proofs of basic lemmas for \hat{L}
12. Proof of the Bott exactness lemma for \hat{L}
13. Proofs for regular modules
14. Proof of the realizability theorem for \hat{LM}

Although we have long been interested in the K-localizations and v_1-periodic homotopy groups of spaces, we were prompted to develop the present results by Martin Bendersky and Don Davis. We thank them for their questions and comments.

2. The united 2-adic K-cohomologies of spectra and spaces

We now consider the united 2-adic K-cohomologies

$$K_{CR}^\ast(X; \hat{\mathbb{Z}}_2) = \{K^\ast(X; \hat{\mathbb{Z}}_2), KO^\ast(X; \hat{\mathbb{Z}}_2)\}$$

of spectra and spaces X, focusing on their basic structures as 2-adic CR-modules or CR-algebras. We first recall:

Definition 2.1 (The 2-adic CR-modules). By a 2-adic CR-module, we mean a CR-module over the category of 2-profinite abelian groups (see [10, 4.1]). Thus, a 2-adic CR-module $M = \{M_C, M_R\}$ consists of \mathbb{Z}-graded 2-profinite abelian groups M_C and M_R with continuous additive operations

- $B: M_C^\ast \cong M_C^{\ast -2}$,
- $t: M_C^\ast \cong M_C^\ast$,
- $B_R: M_R^\ast \cong M_R^{\ast -8}$,
- $\eta: M_R^\ast \rightarrow M_R^{\ast -1}$,
- $c: M_R^\ast \rightarrow M_C^\ast$,
- $\rho: M_C^\ast \rightarrow M_R^\ast$.

satisfying the relations
\[
\begin{align*}
2\eta &= 0, & \eta^3 &= 0, & \eta B_R &= B_R \eta, & \eta r &= 0, & c \eta &= 0, \\
t^2 &= 1, & t B &= -B t, & t r &= r, & t c &= c, & c B_R &= B^4 c, \\
r B^4 &= B_R r, & cr &= 1 + t, & rc &= 2, & r B c &= \eta^2, & r B^{-1} c &= 0.
\end{align*}
\]

For \(z \in M^*_C \) and \(x \in M^*_R \), the elements \(t z \in M^*_C \) and \(r B^2 cx \in M^*_R \) are sometimes written as \(z^* \) (or \(\psi^{-1} z \)) and \(\xi x \). For a spectrum or space \(X \), the united 2-adic \(K \)-cohomology
\[
K^*_CR(X; \hat{\mathbb{Z}}_2) = \{ K^*(X; \hat{\mathbb{Z}}_2), KO^*(X; \hat{\mathbb{Z}}_2) \}
\]
has a natural 2-adic \(CR \)-module structure with the usual periodicities \(B: K^*(X; \hat{\mathbb{Z}}_2) \cong K^{*+2}(X; \hat{\mathbb{Z}}_2) \), and \(B_R: KO^*(X; \hat{\mathbb{Z}}_2) \cong KO^{*+8}(X; \hat{\mathbb{Z}}_2) \), conjunction \(t: K^*(X; \hat{\mathbb{Z}}_2) \cong K^*(X; \hat{\mathbb{Z}}_2) \), Hopf operation \(\eta: KO^*(X; \hat{\mathbb{Z}}_2) \rightarrow KO^{*-1}(X; \hat{\mathbb{Z}}_2) \), complexification \(c: KO^*(X; \hat{\mathbb{Z}}_2) \rightarrow K^*(X; \hat{\mathbb{Z}}_2) \), and realification \(r: K^*(X; \hat{\mathbb{Z}}_2) \rightarrow KO^*(X; \hat{\mathbb{Z}}_2) \).

Definition 2.2 (Bott exactness). As in [10, 4.1], we say that a 2-adic \(CR \)-module \(M \) is **Bott exact** when the Bott sequence
\[
\cdots \rightarrow M_R^{*+1} \xrightarrow{\eta} M_R^* \xrightarrow{c} M_C^* \xrightarrow{r B^{-1}} M_R^{*+2} \xrightarrow{\eta} \cdots
\]
is exact, and we note that the 2-adic \(CR \)-module \(K^*_CR(X; \hat{\mathbb{Z}}_2) \) is always Bott exact for a spectrum or space \(X \). To compare \(CR \)-modules, we shall often use:

Lemma 2.3. For Bott exact 2-adic \(CR \)-modules \(M \) and \(N \), a map \(f: M \rightarrow N \) is an isomorphism if and only if \(f: M_C \rightarrow N_C \) is an isomorphism.

Proof. For the “if” part, we treat the Bott sequences of \(M \) and \(N \) as exact couples, and we note that \(f \) induces an isomorphism of the associated spectral sequences since \(f: M_C \cong N_C \). Using the map of second derived couples with \(f: M^{(2)}_C \cong N^{(2)}_C \), we easily see that \(f: \eta^2 M_R \cong \eta^2 N_R \); then using the map of first derived couples with \(f: M^{(1)}_C \cong N^{(1)}_C \), we easily see that \(f: \eta M_R \cong \eta N_R \); and finally using the original map of exact couples, we easily see that \(f: M_R \cong N_R \).

Definition 2.4 (The free 2-adic \(CR \)-modules). For each integer \(n \) and \(L = C, R \), there is a **monogenic free 2-adic \(CR \)-module** \(F^L(g, n) \) on a generator \(g \in F^L(g, n)_n \) having the universal property that, for each 2-adic \(CR \)-module \(M \) and \(y \in M^n \), there is a unique map \(f: F^L(g, n) \rightarrow M \) with \(f(g) = y \). The 2-adic \(CR \) modules \(F^C(g, n) \) and \(F^R(g, n) \) are given more explicitly by
\[
\begin{align*}
F^C(g, n)^{n-2i} &= \hat{\mathbb{Z}}_2 \oplus \hat{\mathbb{Z}}_2 = (B^i g) \oplus (B^i g^*), & F^C(g, n)^{n-2i-1} &= 0, \\
F^C(g, n)_R^{n-2i} &= \hat{\mathbb{Z}}_2 = (r B^i g), & F^C(g, n)_R^{n-2i-1} &= 0, \\
F^R(g, n)_C^{n-2i} &= \hat{\mathbb{Z}}_2 = (B^i g), & F^R(g, n)_C^{n-2i-1} &= 0, \\
F^R(g, n)_R^{n-8i} &= \hat{\mathbb{Z}}_2 = (B^i R g), & F^R(g, n)_R^{n-8i-1} &= \mathbb{Z}/2 = (B^i R \eta g), \\
F^R(g, n)_R^{n-8i-2} &= \mathbb{Z}/2 = (B^i R \eta^2 g), & F^R(g, n)_R^{n-8i-4} &= \hat{\mathbb{Z}}_2 = (B^i R \xi g), \\
F^R(g, n)_R^{n-8i-k} &= 0 \text{ for } k = 3, 5, 6, 7.
\end{align*}
\]

We note that \(F^C(g, n) \) and \(F^R(g, n) \) are Bott exact for all \(n \). In general, a free
2-adic CR-module on a finite set of generators may be constructed as a direct sum of the corresponding monogenic free 2-adic CR-modules. To test for this freeness, we may use:

Lemma 2.5. For a Bott exact 2-adic CR-module M (e.g. for some $M = K_{CR}^*(X; \mathbb{Z}_2)$), if M_c is a free module over $K = \mathbb{Z}_2[B, B^{-1}]$ on the generators $\{a_i\}, \Pi \{b_j\}, \Pi \{b^*_j\}$ for finite sets of elements $\{a_i\}$ in M^*_R and $\{b_j\}, \{b^*_j\}$ in M^*_C, then M is a free 2-adic CR-module on the generators $\{a_i\}$ and $\{b^*_j\}$.

Proof. The canonical map to M from the specified 2-adic CR-module is an isomorphism by Lemma 2.3.

To describe the multiplicative structure of $K_{CR}^*(X; \mathbb{Z}_2)$ for a space X, we introduce:

Definition 2.6 (The 2-adic CR-algebras). By a 2-adic CR-algebra $A = \{A_C, A_R\}$, we mean a 2-adic CR-module with continuous bilinear multiplications $A^*_L \times A^*_L \to A^*_{L+n}$ and elements $1 \in A^*_L$ for $m, n \in \mathbb{Z}$ and $L = C, R$ such that:

(i) the multiplication in A^*_C and A^*_R is graded commutative and associative with identity 1;

(ii) $B(zw) = (Bz)w = z(Bw)$ and $(zw)^* = z^*w^*$ for $z \in A^*_L$ and $w \in A^*_C$;

(iii) $B_R(xy) = (B_Rx)y = x(B_Ry)$, $\eta(xy) = (\eta x)y = x(\eta y)$, and $\xi(xy) = (\xi x)y = x(\xi y)$ for $x \in A^*_R$ and $y \in A^*_R$;

(iv) $c1 = 1$ and $c(xy) = (cx)(cy)$ for $x \in A^*_R$ and $y \in A^*_R$;

(v) $r((cz)x) = (r(cz))x$ for $x \in A^*_R$ and $z \in A^*_C$.

Equivalently, a 2-adic CR-algebra A consists of a 2-adic CR-module with a commutative associative multiplicative action $A \hat{\otimes}_{CR} A \to A$ with identity $\xi \to A$ for $\xi = FR(1, 0)$ $\cong K_{CR}^*(pt; \mathbb{Z}_2)$, where $\hat{\otimes}_{CR}$ is the (symmetric monoidal) complete tensor product for 2-adic CR-modules [11, 2.6].

Definition 2.7 (Augmentations and nilpotency). For a 2-adic CR-algebra A, an augmentation is a map $A \to \xi$ of 2-adic CR-algebras which is left inverse to the identity $\xi \to A$. When A is augmented, we let $\hat{A}(m)$ denote the augmentation ideal, and for $m \geq 1$ we let $A(m) = \hat{A}(m)$ denote the m-th power of A given by the image of the m-fold product $\hat{A} \hat{\otimes}_{CR} \cdots \hat{\otimes}_{CR} \hat{A} \to \hat{A}$. Thus, $\hat{A}(m)_C$ is the image of the m-fold product $A^*_C \hat{\otimes}_{CR} \cdots \hat{\otimes}_{CR} A^*_C \to A^*_C$, while $A(m)_R$ is the image of the m-fold product $A^*_R \hat{\otimes}_{CR} \cdots \hat{\otimes}_{CR} A^*_R \to A^*_R$ plus the realization of $A(m)_C$. The indecomposables of A are given by the 2-adic CR-module $\hat{Q}A = \hat{A}/\hat{A}(2)$. We call A nilpotent when $\hat{A}(m) = 0$ for sufficiently large m and call A pro-nilpotent when $\cap_m \hat{A}(m) = 0$ or equivalently when $A \cong \lim_m A/\hat{A}(m)$. For a space X, the cohomology $K_{CR}^*(X; \mathbb{Z}_2)$ has a canonical augmentation $K_{CR}^*(X; \mathbb{Z}_2) \to \xi$ induced by the basepoint $pt \subset X$ with the usual augmentation ideal $\hat{K}_{CR}^*(X; \mathbb{Z}_2) = \{\hat{K}^*(X; \mathbb{Z}_2), \hat{KO}^*(X; \mathbb{Z}_2)\}$. Moreover, when X is connected, the cohomology $K_{CR}^*(X; \mathbb{Z}_2)$ is pro-nilpotent since it is the inverse limit of the cohomologies $K_{CR}^*(X_\alpha; \mathbb{Z}_2)$ for the finite connected subspaces $X_\alpha \subset X$, where each $K_{CR}^*(X_\alpha; \mathbb{Z}_2)$ is nilpotent.
3. The 2-adic ϕCR-algebras

To capture some additional features of the 2-adic CR-algebras $K^*_{CR}(X; \hat{\mathbb{Z}}_2)$ for spaces X, we now introduce the 2-adic ϕCR-algebras. These structures are often surprisingly rigid and will allow us to construct convenient bases for $K^*_{CR}(X; \hat{\mathbb{Z}}_2)$ in some important general cases, for instance, when X is a simply-connected compact Lie group.

Definition 3.1 (The 2-adic ϕCR-algebras). By a 2-adic ϕCR-algebra A, we mean a 2-adic CR-algebra with continuous functions $\phi: A^0_C \to A^0_R$ and $\phi: A^{-1}_C \to A^0_R$ such that:

- (i) $c\phi a = a^*a$ and $c\phi x = B^{-1}x^*x$ for $a \in A^0_C$ and $x \in A^{-1}_C$;
- (ii) $\phi(a + b) = \phi a + \phi b + r(a^*b)$ and $\phi(x + y) = \phi x + \phi y + rB^{-1}(x^*y)$ for $a, b \in A^0_C$ and $x, y \in A^{-1}_C$;
- (iii) $\phi(ab) = (\phi a)(\phi b)$, $\phi(ax) = (\phi a)(\phi x)$, and $\phi B^{-1}(xy) = (\phi x)(\phi y)$ for $a, b \in A^0_C$ and $x, y \in A^{-1}_C$;
- (iv) $\phi(1) = 1$, $\phi(ka) = k^2\phi a$, $\phi(a^*) = \phi a$, $\phi(kx) = k^2\phi x$, and $\phi(x^*) = -\phi x$ for $a \in A^0_C$, $x \in A^{-1}_C$, and $k \in \hat{\mathbb{Z}}_2$.

For convenience, we extend the operation ϕ periodically to give $\phi: A^0_C \to A^0_R$ and $\phi: A^{-1}_C \to A^0_R$ with $\phi w = \phi B^i w$ for all i and elements w. For a space X, the cohomology $K^*_{CR}(X; \hat{\mathbb{Z}}_2)$ has a natural 2-adic ϕCR-algebra structure with $\phi: K^*(X; \hat{\mathbb{Z}}_2) \to KO^0(X; \hat{\mathbb{Z}}_2)$ as in [11, Section 3]. In particular, $\xi \cong K^*_{CR}(pt; \hat{\mathbb{Z}}_2)$ is a 2-adic ϕCR-algebra with $\phi(k1) = k^21$ for $k \in \hat{\mathbb{Z}}_2$. For a 2-adic ϕCR-algebra A, an augmentation is a map $A \to \xi$ of 2-adic ϕCR-algebras which is left inverse to the identity, and we retain the other notation and terminology of Definition 2.7. Thus, for a space X, the ϕCR-algebra $K^*_{CR}(X; \hat{\mathbb{Z}}_2)$ has a canonical augmentation and is pro-nilpotent whenever X is connected. To capture some other needed features, we introduce:

Definition 3.2 (The special 2-adic ϕCR-algebras). A 2-adic ϕCR-algebra A is called special when:

- (i) A is augmented and pro-nilpotent;
- (ii) $z^2 = 0$ for $z \in A_0^C$ with n odd;
- (iii) $y^2 = 0$ for $y \in A_R^0$ with $n \equiv 1, -3 \mod 8$;
- (iv) $c\phi x = 0$ for $x \in A_R^n$ with $n \equiv -1, -5 \mod 8$.

For a connected space X, the cohomology $K^*_{CR}(X; \hat{\mathbb{Z}}_2)$ is a special 2-adic ϕCR-algebra by [11, Section 3].

Definition 3.3 (Simple systems of generators). Let A be a special 2-adic ϕCR-algebra. By a simple system of generators of odd degree for A, we mean finite ordered sets of odd-degree elements $\{x_i\}_i$ in A_R and $\{z_j\}_j$ in A_C such that A_C is an exterior algebra over $\tilde{K}^* = \hat{\mathbb{Z}}_2[B, B^{-1}]$ on the generators $\{cx_i\}_i \cup \{z_j\}_j \cup \{z_j^*\}_j$.
Such a simple system determines associated products

\[x_{i_1} \cdots x_{i_m}(\phi z_{j_1}) \cdots (\phi z_{j_n}) \in A_R, \]

\[(cx_{i_1}) \cdots (cx_{i_m})(c\phi z_{j_1}) \cdots (c\phi z_{j_n})w_{k_1} \cdots w_{k_q} \in A_C, \]

where: \(i_1 < \cdots < i_m \) with \(m \geq 0 \); \(j_1 < \cdots < j_n \) with \(n \geq 0 \); \(k_1 < \cdots < k_q \) with \(q \geq 1 \); each \(w_{k_i} \) is \(z_{k_i} \) or \(z_{k_i}^* \) with \(w_{k_q} = z_{k_q} \); and \(\{k_1, \ldots, k_q\} \) is disjoint from \(\{j_1, \ldots, j_n\} \) in each complex product.

Proposition 3.4. If \(A \) is a Bott exact special 2-adic \(\phi CR \)-algebra with a simple system of generators of odd degree, then \(A \) is a free 2-adic CR-module on the associated products.

Proof. This follows by Lemma 2.5. \(\square \)

When the cohomology \(K^*_CR(X; \hat{Z}_2) \) of a connected space \(X \) has a simple system of generators of odd degree, this result will determine the 2-adic CR-algebra structure of the cohomology, provided that we can compute the squares of the real simple generators of degree \(\equiv -1, -5 \mod 8 \), since the squares of the other simple generators and of their \(\phi \)’s must vanish. For a simply-connected compact Lie group \(G \), we shall see that the cohomology \(K^*_CR(G; \hat{Z}_2) \) must always have a simple system of generators of odd degree by Theorem 10.3 below.

4. The universal 2-adic \(\phi CR \)-algebra functor \(\hat{L} \)

We must now go beyond simple systems of generators and develop functorial descriptions of cohomologies \(K^*_CR(X; \hat{Z}_2) \) using universal special 2-adic \(\phi CR \)-algebras. Our results will apply, for instance, when \(X \) is a suitable infinite loop space (Theorem 6.7) or a simply-connected compact Lie group (Theorem 10.3). We start by introducing the algebraic modules that will generate our universal algebras.

Definition 4.1 (The 2-adic \(\Delta \)-modules). By a 2-adic \(\Delta \)-module \(N = \{N_C, N_R, N_H\} \), we mean a triad of 2-profinite abelian groups \(N_C, N_R, \) and \(N_H \) with continuous additive operations

\[t: N_C \cong N_C, \quad c: N_R \to N_C, \quad r: N_C \to N_R, \]

\[c': N_H \to N_C, \quad q: N_C \to N_H \]

satisfying the relations

\[t^2 = 1, \quad cr = 1 + t, \quad rc = 2, \quad tc = c, \quad rt = r, \]

\[c'q = 1 + t, \quad qd' = 2, \quad tc' = c', \quad qt = q \]

as in [10, 4.5]. For \(z \in N_C \), the element \(tz \) is sometimes written as \(z^* \) or \(\psi^{-1}z \). For a 2-adic CR-module \(N \) and integer \(n \), we obtain a 2-adic \(\Delta \)-module \(\Delta^n N = \{N_C^n, N_R^n, N_R^{n-4}\} \) with \(c' = B^{-2}c: N_R^{n-4} \to N_C^n \) and \(q = rB^2: N_C^n \to N_R^{n-4} \). In particular, we obtain a 2-adic \(\Delta \)-module \(K^*_\Delta(X; \hat{Z}_2) = \Delta^n K^*_CR(X; \hat{Z}_2) \) for a space \(X \).
We say that a 2-adic Δ-module N is torsion-free when N_C, N_R, and N_H are torsion-free, and we say that N is exact when the sequence

$$\cdots \rightarrow N_C \xrightarrow{(r,q)} N_R \oplus N_H \xrightarrow{c-c'} N_C \xrightarrow{1-t} N_C \xrightarrow{(r,q)} N_R \oplus N_H \rightarrow \cdots$$

is exact (see $[10, 4.5]$). It is straightforward to show:

Lemma 4.2. A 2-adic Δ-module $N = \{N_C, N_R, N_H\}$ is torsion-free and exact if and only if:

(i) $c: N_R \rightarrow N_C$ and $c': N_H \rightarrow N_C$ are monic;

(ii) N_C is torsion-free with $\ker(1 + t) = \im(1 - t)$ for $t: N_C \rightarrow N_C$;

(iii) $cN_R + c'N_H = \ker(1 - t)$ and $cN_R \cap c'N_H = \im(1 + t)$.

The 2-adic Δ-module

$$K_*^\Delta(X; 2\mathbb{Z}) = \{K^{-1}(X; 2\mathbb{Z}_2), KO^{-1}(X; 2\mathbb{Z}_2), KO^{-5}(X; 2\mathbb{Z}_2)\}$$

of a space X has additional operations θ which we now include in:

Definition 4.3 (The 2-adic $\theta\Delta$-modules). By a 2-adic $\theta\Delta$-module $M = \{M_C, M_R, M_H\}$, we mean a 2-adic Δ-module with continuous additive operations $\theta: M_C \rightarrow M_C, \theta: M_R \rightarrow M_R$, and $\theta: M_H \rightarrow M_H$ satisfying the following relations for elements $z \in M_C, x \in M_R$, and $y \in M_H$:

$$\theta cx = c \theta x, \quad \theta c'y = c \theta y, \quad \theta tz = t \theta z, \quad \theta qz = \theta rz, \quad \theta rz = \theta rz.$$

In general, θrz may differ from $r \theta z$, and we let $\tilde{\theta}: M_C \rightarrow M_R$ be the difference operation with $\tilde{\theta} z = \theta rz - r \theta z$ for $z \in M_C$. Using the above relations, we easily deduce:

$$\tilde{\theta} cx = 0, \quad \tilde{\theta} c' x = 0, \quad \tilde{\theta} tz = \tilde{\theta} z, \quad 2 \tilde{\theta} z = 0,$$

$$c \tilde{\theta} z = 0, \quad \tilde{\theta} rz = 0.$$

For a space X, the cohomology $K_*^\Delta(X; 2\mathbb{Z}_2)$ has a natural 2-adic $\theta\Delta$-module structure by $[11$, Section 3$]$ with the operations

$$\theta = -\lambda^2: K^{-1}(X; 2\mathbb{Z}_2) \rightarrow K^{-1}(X; 2\mathbb{Z}_2),$$

$$\theta = -\lambda^2: KO^{-1}(X; 2\mathbb{Z}_2) \rightarrow KO^{-1}(X; 2\mathbb{Z}_2),$$

$$\theta = -\lambda^2: KO^{-5}(X; 2\mathbb{Z}_2) \rightarrow KO^{-1}(X; 2\mathbb{Z}_2).$$

Moreover, this structure interacts with the 2-adic ϕCR-algebra structure of $K_*^{CR}(X; 2\mathbb{Z}_2)$ in several ways.

Lemma 4.4. For a space X, we have:

(i) $\eta \tilde{\theta} z = \tilde{\theta} z$ for $z \in K^{-1}(X; 2\mathbb{Z}_2)$;

(ii) $x^2 = \eta \theta x$ for $x \in KO^{-1}(X; 2\mathbb{Z}_2)$;

(iii) $y^2 = B_R q \theta y$ for $y \in KO^{-5}(X; 2\mathbb{Z}_2)$.

Proof. This follows from $[11$, Section 3$]$. \square
We shall take account of these relations in our universal algebras. For a 2-adic \(\theta \Delta \)-module \(M \) and a special 2-adic \(\phi CR \)-algebra \(A \), an admissible map \(\alpha: M \to A \) consists of a 2-adic \(\Delta \)-module map \(\alpha: M \to \Delta^{-1} \tilde{A} \) such that:

(i) \(\eta \phi \alpha z = \alpha \bar{\phi} z \) in \(A^{-1}_C \) for each \(z \in M_C \);
(ii) \((\alpha x)^2 = \eta \theta x \) in \(A^{-2}_R \) for each \(x \in M_R \);
(iii) \((\alpha y)^2 = B_R \eta \theta y \) in \(A^{-10}_R \) for each \(y \in M_H \).

We say that a special 2-adic \(\phi CR \)-algebra \(A \) with an admissible map \(\alpha: M \to A \) is universal if, for each special 2-adic \(\phi CR \)-algebra \(B \) with admissible map \(g: M \to B \), there exists a unique \(\phi CR \)-algebra map \(\bar{g}: A \to B \) such that \(\bar{g} \alpha = g \).

Lemma 4.5. For each 2-adic \(\theta \Delta \)-module \(M \), there exists a universal special 2-adic \(\phi CR \)-algebra \(\hat{LM} \) with admissible map \(\alpha: M \to \hat{LM} \).

This will be proved later in Section 11. By universality, \(\hat{LM} \) is unique up to isomorphism and is natural in \(M \), so that we have a functor \(\hat{L} \) from the category of 2-adic \(\theta \Delta \)-modules to the category of special 2-adic \(\phi CR \)-algebras. We believe that the \(\phi CR \)-algebra \(\hat{LM} \) can be given canonical operations \(\theta \) satisfying all the formulae of [11, Section 3] and that this provides a strengthened version of \(\hat{L} \) that is right adjoint to \(\Delta^{-1} \tilde{()}. \) However, for simplicity, we rely on the present basic functor \(\hat{L} \).

Lemma 4.6. For a 2-adic \(\theta \Delta \)-module \(M \), the canonical map \(\hat{\Lambda} M_C \to (\hat{LM})_C \) is an algebra isomorphism.

This will be proved later in Section 11. We must impose extra conditions on \(M \) to ensure that \(\hat{LM} \) is Bott exact and hence topologically relevant.

Definition 4.7 (The robust 2-adic \(\theta \Delta \)-modules). We say that a 2-adic \(\theta \Delta \)-module \(M \) is profinite when it is the inverse limit of an inverse system of finite 2-adic \(\theta \Delta \)-modules, and we let \(M/\bar{\phi} \) denote the 2-adic \(\Delta \)-module \(\{ M_C, M_R/\bar{\phi}M_C, M_H \} \). We call \(M \) robust when:

(i) \(M \) is profinite;
(ii) \(M/\bar{\phi} \) is torsion-free and exact;
(iii) \(\ker \bar{\phi} = cM_R + c'M_H + 2M_C \).

When \(M \) is obtained from \(K_{\Delta}^{-1}(X; \hat{\mathbb{Z}}_2) \) for a space \(X \), the profiniteness condition will usually hold automatically since \(K_{\Delta}^{-1}(X; \hat{\mathbb{Z}}_2) = \lim_{\alpha,i} K_{\Delta}^{-1}(X_{\alpha}; \hat{\mathbb{Z}}_2)/2^i \) for the system of finite subcomplexes \(X_\alpha \subset X \) and \(i \geq 1 \). The following key lemma will be proved later in Section 12.

Lemma 4.8. If \(M \) is a robust 2-adic \(\theta \Delta \)-module, then the special 2-adic \(\phi CR \)-algebra \(\hat{LM} \) is Bott exact; in fact, \(\hat{LM} \) is the inverse limit of an inverse system of finitely generated free 2-adic CR-modules.

This leads to a crucial comparison theorem.
Theorem 4.9. For a connected space X and a robust 2-adic $\theta\Delta$-module M, suppose that $g: M \to \hat{K}_{\Delta}^{-1}(X; \hat{\mathbb{Z}}_2)$ is a 2-adic $\theta\Delta$-module map that induces an isomorphism $\hat{\Lambda}M_C \cong K^*(X; \hat{\mathbb{Z}}_2)$. Then g induces an isomorphism $\hat{\Lambda}M \cong K_{CR}(X; \hat{\mathbb{Z}}_2)$ of special 2-adic ϕ_{CR}-algebras.

Proof. Since g gives an admissible $M \to K_{CR}(X; \hat{\mathbb{Z}}_2)$ by Lemma 4.4, the result follows by Lemmas 2.3, 4.6, and 4.8. \qed

When M is finitely generated in this theorem, we may easily choose a simple system of odd-degree generators (see Definition 3.3) for $K_{CR}(X; \hat{\mathbb{Z}}_2)$ from M_C, M_R, and M_H. However, the present description of $K_{CR}(X; \hat{\mathbb{Z}}_2)$ as $\hat{\Lambda}M$ is more natural and includes the full multiplicative structure. To check whether such a description is possible for a given space X, we may use:

Remark 4.10 (Determination of M from $K_{CR}(X; \hat{\mathbb{Z}}_2)$). For a connected space X, we may take the indecomposables $\hat{QK}_{CR}^*(X; \hat{\mathbb{Z}}_2)$ as in Definition 2.7 with the operations θ of Definition 4.3 to produce a 2-adic $\theta\Delta$-module $\hat{QK}_{\Delta}^{-1}(X; \hat{\mathbb{Z}}_2) = \{\hat{Q}K^{-1}(X; \hat{\mathbb{Z}}_2), \hat{Q}K^{-1}(X; \hat{\mathbb{Z}}_2), \hat{Q}K^{-5}(X; \hat{\mathbb{Z}}_2)\}$ together with a natural quotient map $\hat{K}_{\Delta}^{-1}(X; \hat{\mathbb{Z}}_2) \to \hat{QK}_{\Delta}^{-1}(X; \hat{\mathbb{Z}}_2)$. Now by Lemma 4.11 below, whenever Theorem 4.9 applies to X, there is a canonical isomorphism $M \cong \hat{QK}_{\Delta}^{-1}(X; \hat{\mathbb{Z}}_2)$ and the map $g: M \to \hat{K}_{\Delta}^{-1}(X; \hat{\mathbb{Z}}_2)$ in the theorem corresponds to a splitting of $\hat{K}_{\Delta}^{-1}(X; \hat{\mathbb{Z}}_2) \to \hat{QK}_{\Delta}^{-1}(X; \hat{\mathbb{Z}}_2)$. When X is an H-space, we may often obtain the required splitting by mapping $\hat{QK}_{\Delta}^{-1}(X; \hat{\mathbb{Z}}_2)$ to the primitives in $\hat{K}_{\Delta}^{-1}(X; \hat{\mathbb{Z}}_2)$. For instance, this applies when X is a suitable infinite loop space or simply-connected compact Lie group (see Theorems 6.7 and 10.3). Finally, we note that the 2-adic $\theta\Delta$-module $\hat{QK}_{\Delta}^{-1}(X; \hat{\mathbb{Z}}_2)$ will automatically be robust by Proposition 3.4 whenever $K_{CR}(X; \hat{\mathbb{Z}}_2)$ has a simple system of odd-degree generators with no real generators of degree $\equiv 1, -3 \mod 8$. We have used:

Lemma 4.11. For a $\theta\Delta$-module M, the canonical map $M \to \Delta^{-1} \hat{Q}LM$ is an isomorphism.

This will be proved later in Section 11.

5. Stable 2-adic Adams operations and $K/2_+\text{-local spectra}$

We now bring stable Adams operations into our united 2-adic K-cohomology theory and use this theory to classify the needed $K/2_+\text{-local spectra}$. We first recall some terminology from [8, 2.6].

Definition 5.1 (The stable 2-adic Adams modules). By a finite stable 2-adic Adams module A, we mean a finite abelian 2-group with automorphisms $\psi^k: A \cong A$ for the odd $k \in \mathbb{Z}$ such that:

(i) $\psi^1 = 1$ and $\psi^j \psi^k = \psi^{jk}$ for the odd $j, k \in \mathbb{Z}$;

(ii) when n is sufficiently large, the condition $j \equiv k \mod 2^n$ implies $\psi^j = \psi^k$.

By a stable 2-adic Adams module A, we mean the topological inverse limit of an inverse system of finite stable 2-adic Adams modules. Such an A has an underlying 2-profinite abelian structure with continuous automorphisms $\psi^k : A \cong A$ for the odd $k \in \mathbb{Z}$ (and in fact for $k \in \hat{\mathbb{Z}}^\times$). We note that the operations ψ^{-1} and ψ^3 on A determine all of the other stable Adams operations ψ^k as in [5, 6.4]. Our main examples of stable 2-adic Adams modules are the cohomologies $K^n(X; \hat{\mathbb{Z}}_2)$ and $KO^n(X; \hat{\mathbb{Z}}_2)$ for a spectrum or space X and integer n with the usual stable Adams operations ψ^k. We let \hat{A} denote the abelian category of stable 2-adic Adams modules, and for $i \in \mathbb{Z}$, we let $\hat{S}^i : \hat{A} \to \hat{A}$ be the functor with $\hat{S}^i A$ equal to A as a group but with ψ^k on $\hat{S}^i A$ equal to $k^i \psi^k$ on A for the odd $k \in \mathbb{Z}$. We note that $\hat{S}^i A = A$ in \hat{A} for all i when $2A = 0$.

Definition 5.2 (The stable 2-adic Adams CR-modules). By a stable 2-adic Adams CR-module M, we mean a 2-adic CR-module consisting of stable 2-adic Adams modules $\{M^i_C, M^i_R\}$ such that the operations $B : \hat{S}M^i_C \cong M^{i-2}_C$, $t : M^i_C \cong M^i_C$, $B_R : \hat{S}^4M^i_R \cong M^i_R$, $\eta : M^i_R \to M^{i-1}_R$, $c : M^i_R \to M^i_C$, and $r : M^i_C \to M^i_R$ are all maps in \hat{A}, where $\psi^{-1} = t$ in M^i_C and $\psi^{-1} = 1$ in M^i_R. For a spectrum or space X, the united 2-adic K-cohomology

$$K^n_{CR}(X; \hat{\mathbb{Z}}_2) = \{K^n(X; \hat{\mathbb{Z}}_2), KO^n(X; \hat{\mathbb{Z}}_2)\}$$

has a natural stable 2-adic Adams CR-module structure with the usual operations.

Definition 5.3 (The stable 2-adic Adams Δ-modules). By a stable 2-adic Adams Δ-module N, we mean a 2-adic Δ-module consisting of stable 2-adic Adams modules $\{N_C, N_R, N_H\}$ such that the operations $t : N_C \cong N_C$, $c : N_R \to N_C$, $r : N_C \to N_R$, $c' : N_H \to N_C$, and $q : N_C \to N_H$ are all maps in \hat{A}, where $\psi^{-1} = t$ in N_C and $\psi^{-1} = 1$ in both N_R and N_H. For a stable 2-adic Adams CR-module M and integer n, we obtain a stable 2-adic Adams Δ-module

$$\Delta^n M = \{M^n_C, M^n_R, \hat{S}^{-2}M^n_R^{-4}\}$$

as in Definition 4.1. Thus, for a spectrum or space X and integer n, we now obtain a stable 2-adic Adams Δ-module

$$K^n_\Delta(X; \hat{\mathbb{Z}}_2) = \Delta^nK^n_{CR}(X; \hat{\mathbb{Z}}_2) = \{K^n(X; \hat{\mathbb{Z}}_2), KO^n(X; \hat{\mathbb{Z}}_2), \hat{S}^{-2}KO^n(X; \hat{\mathbb{Z}}_2)\}.$$

To give another example, we say that a 2-profinite abelian group G with involution $t : G \cong G$ is positively torsion-free when G is torsion-free with $\ker(1 + t) = \im(1 - t)$. By [5, Proposition 3.8], this is equivalent to saying that G factors as a (possibly infinite) product of $\hat{\mathbb{Z}}_2$’s with $t = 1$ and $\hat{\mathbb{Z}}_2 \oplus t\hat{\mathbb{Z}}_2$’s. For a positively torsion-free stable 2-adic Adams module A, we may use the operation $\psi^{-1} : A \cong A$ to construct a torsion-free exact stable 2-adic Adams Δ-module $\{A, A^+, A_+\}$ with $A^+ = \ker(1 - \psi^{-1})$, $A_+ = \coker(1 - \psi^{-1})$, $t = \psi^{-1}$, $c = 1$, $r = 1 + \psi^{-1}$, $c' = 1 + \psi^{-1}$, and $q = 1$.

We let $\hat{\mathcal{ACR}}$ (resp. $\hat{\mathcal{A}}\Delta$) denote the abelian category of stable 2-adic Adams CR-modules (resp. Δ-modules), and we note that the functor $\Delta^n : \hat{\mathcal{ACR}} \to \hat{\mathcal{A}}\Delta$ for $n \in \mathbb{Z}$ has a left adjoint $CR^n : \hat{\mathcal{A}}\Delta \to \hat{\mathcal{ACR}}$ with $CR^n(N)^C_C = N_C$, with $CR^n(N)^C_{C-1} = 0$.
and with

$$CR^n(N)_{R}^{n-i} = \begin{cases}
N_R & \text{for } i = 0 \\
N_R/r & \text{for } i = 1 \\
SN_C/c' & \text{for } i = 2 \\
0 & \text{for } i = 3, 7 \\
S^2N_H & \text{for } i = 4 \\
S^2N_H/q & \text{for } i = 5 \\
\tilde{S}^3NC/c & \text{for } i = 6
\end{cases}$$

as in [10, 4.10]. We easily see that $CR^n(N)$ is Bott exact whenever N is torsion-free and exact. Our next lemma will often allow us to work in the simpler category $\tilde{A}\Delta$ instead of $A\Delta$.

Lemma 5.4. For $n \in \mathbb{Z}$, the adjoint functors $CR^n: \tilde{A}\Delta \rightarrow \tilde{ACR}$ and $\Delta^n: \tilde{ACR} \rightarrow \tilde{A}\Delta$ restrict to equivalences between the full subcategories of all torsion-free exact $N \in \mathcal{A}\Delta$ and all Bott exact $M \in \tilde{ACR}$ with M^n_0 positively torsion-free and $M_0^{n-1} = 0$.

Proof. For $M \in \tilde{ACR}$ as above, we see that $\Delta^n M$ is a torsion-free exact Δ-module by [10, 4.4 and 4.7] with an adjunction isomorphism $CR^n\Delta^n M \rightarrow M$ by Lemma 2.3. The corresponding result for $N \in \tilde{A}\Delta$ is obvious. \hfill \square

When E is a spectrum with $K^n(E; \mathbb{Z}/2)$ positively torsion-free and $K^{n-1}(E; \mathbb{Z}/2) = 0$ for some n, we now have $K^n_{CR}(E; \mathbb{Z}/2) \cong CR^n(N)$ in \tilde{ACR} for the torsion-free exact module $N = \Delta^n K^n_{CR}(E; \mathbb{Z}/2)$ in $\tilde{A}\Delta$, and we have the following existence theorem for such spectra in the stable homotopy category.

Theorem 5.5. For each torsion-free exact $N \in \tilde{A}\Delta$ and $n \in \mathbb{Z}$, there exists a $K/2_*$-local spectrum $\mathcal{E}^n N$ with $K^n_{CR}(\mathcal{E}^n N; \mathbb{Z}/2) \cong CR^n(N)$ in \tilde{ACR}. Moreover, $\mathcal{E}^n N$ is unique up to (noncanonical) equivalence.

Proof. This follows by Lemma 5.4 and [10, Theorem 5.3]. \hfill \square

The spectrum $\mathcal{E}^n N$ in the theorem will be endowed with an isomorphism $K^n_{CR}(\mathcal{E}^n N; \mathbb{Z}/2) \cong CR^n(N)$ in \tilde{ACR}. Thus, for an arbitrary spectrum E, a map $g: E \rightarrow \mathcal{E}^n N$ induces a map $g^*: CR^n(N) \rightarrow K^n_{CR}(E; \mathbb{Z}/2)$ in \tilde{ACR}. Each algebraic map of this sort must come from a topological map by:

Theorem 5.6. For a torsion-free exact $N \in \tilde{A}\Delta$, $n \in \mathbb{Z}$, and an arbitrary spectrum E, if $\gamma: CR^n(N) \rightarrow K^n_{CR}(E; \mathbb{Z}/2)$ is a map in \tilde{ACR}, then there exists a map of spectra $g: E \rightarrow \mathcal{E}^n N$ with $g^* = \gamma$.

Proof. Let $\tau_2 E$ denote the 2-torsion part of E given by the homotopy fiber of its localization away from 2. By Pontrjagin duality [10, Theorem 3.1], the map γ corresponds to an ACR-module map $K^n_{CR}(\tau_2 E) \rightarrow K^n_{CR}(\tau_2 \mathcal{E}^n N)$ in the sense of [5], where $K^n_{CR}(\tau_2 \mathcal{E}^n N)$ is CR-exact with $K^n_{CR}(\tau_2 \mathcal{E}^n N)$ divisible. This ACR-module map prolongs canonically to an $ACRT$-module map $K^n_{CRT}(\tau_2 E) \rightarrow K^n_{CRT}(\tau_2 \mathcal{E}^n N)$ by [5, Theorem 7.14], and the results of [5, 9.8 and 7.11] now show that this prolonged
algebraic map must come from a topological map \(\tau_2 E \to \tau_2 \mathcal{E}^n N \), which gives the desired \(g: \mathcal{E} \to \mathcal{E}^n N \).

The map \(g \) in this theorem is generally not unique (see [10, 5.4]).

6. On the united 2-adic \(K \)-cohomologies of infinite loop spaces

In preparation for our work on \(K/2 \)-localizations of spaces, we functorially determine the united 2-adic \(K \)-cohomologies of the needed infinite loop spaces (see Theorem 6.7). We must first introduce:

Definition 6.1 (The 2-adic Adams \(\Delta \)-modules). By a 2-adic Adams \(\Delta \)-module \(M \), we mean a 2-adic \(\theta \Delta \)-module (see Definition 4.3) consisting of stable 2-adic Adams modules \(\{ M_C, M_R, M_H \} \) such that the operations \(t: M_C \cong M_C, \ c: M_R \to M_C, \ r: M_C \to M_R, \ e': M_H \to M_C, \ q: M_C \to M_H, \ \theta: M_C \to M_C, \ \theta: M_R \to M_R, \) and \(\theta: M_H \to M_R \) are all maps in \(\mathcal{A} \), where \(\psi^{-1} = t \) in \(M_C \) and \(\psi^{-1} = 1 \) in both \(M_R \) and \(M_H \). We let \(\mathcal{M}\Delta \) denote the abelian category of 2-adic Adams \(\Delta \)-modules. We say that \(M \) is \(\theta \)-nilpotent when it has \(\theta^i = 0 \) for sufficiently large \(i \), and we say that \(M \) is \(\theta \)-pro-nilpotent when it is the inverse limit of an inverse system of \(\theta \)-nilpotent 2-adic Adams \(\Delta \)-modules. Thus, \(M \) is \(\theta \)-pro-nilpotent if and only if \(M \cong \lim_i M/\theta^i \) where \(M/\theta^i \) is the quotient module of \(M \) in \(\mathcal{M}\Delta \) with

\[
\begin{align*}
(M/\theta^i)_C &= M_C/\theta^i M_C, \\
(M/\theta^i)_R &= M_R/(\theta^i M_R + \theta^i M_H + r \theta^i M_C), \\
(M/\theta^i)_H &= M_H/q \theta^i M_C
\end{align*}
\]

for \(i \geq 1 \). More simply, \(M \) is \(\theta \)-pro-nilpotent if and only if \(\cap_i \theta^i M_C = 0 \) and \(\cap_i \theta^i M_R = 0 \). It is not hard to show that whenever \(M \) is \(\theta \)-pro-nilpotent, \(M \) must be profinite (i.e. \(M \) must be the inverse limit of an inverse system of finite 2-adic Adams \(\Delta \)-modules). For a space \(X \), the cohomology

\[
\overline{K}^{-1}_\Delta(X; \hat{Z}_2) = \{ \overline{K}^{-1}(X; \hat{Z}_2), \overline{KO}^{-1}(X; \hat{Z}_2), S^{-2} \overline{KO}^{-5}(X; \hat{Z}_2) \}
\]

has a natural 2-adic Adams \(\Delta \)-module structure by [11, Section 3], and we find:

Lemma 6.2. If \(X \) is a connected space with \(H^1(X; \hat{Z}_2) = 0 \), then the 2-adic Adams \(\Delta \)-module \(\overline{K}^{-1}_\Delta(X; \hat{Z}_2) \) is \(\theta \)-pro-nilpotent.

Proof. The condition \(\cap_i \theta^i \overline{K}^0(\Sigma X; \hat{Z}_2) = 0 \) holds by [6, 5.4 and 5.5] since \(H^2(\Sigma X; \hat{Z}_2) = 0 \), and a similar proof shows \(\cap_i \theta^i \overline{KO}^0(\Sigma X; \hat{Z}_2) = 0 \) since \(H^1(\Sigma X; \hat{Z}_2) = 0 \). This proof uses the fact that the \(\lambda \)-ideal \(\overline{KO}^0 \) is \(\gamma \)-nilpotent for a connected finite CW complex \(Y \) by [10, Theorem 6.7] and the fact that the real line bundles over \(Y \) are classified by \(H^1(Y; \mathbb{Z}/2) \). \(\square \)

Definition 6.3 (The functor \(\tilde{F} \)). We shall construct a functor \(\tilde{F}: \hat{\mathcal{A}}\Delta \to \hat{\mathcal{M}}\Delta \) where \(\hat{\mathcal{A}} \Delta \) is the abelian category of stable 2-adic Adams \(\Delta \)-modules and \(\hat{\mathcal{M}} \Delta \)
We finally define operations $\hat{\iota}$ for $\tilde{\iota}$.

Proof.

Let ρN be the stable 2-adic Adams Δ-module with operations given by

$$
\rho N = \{N_C, N_{RH} \oplus N_{C\phi}, N_{C+}\}
$$

be the map in $\hat{\iota}$ for $\tilde{\iota}$, $c(x,w) = \bar{c}x$, and $qz = (\bar{r}z, [z])$, $c'[z] = (1+t)z$, and $qz = [z]$. We then obtain a stable 2-adic Adams Δ-module

$$
\tilde{\hat{\iota}} = N \times \rho N \times \rho N \times \cdots
$$

with components

$$
\tilde{\hat{\iota}}_N = N_C \times N_C \times N_C \times \cdots,
$$

$$
\tilde{\hat{\iota}}_R N = N_R \times N_{RH} \times N_{C\phi} \times N_{C\phi} \times \cdots,
$$

$$
\tilde{\hat{\iota}}_H N = N_H \times N_{C+} \times N_{C+} \times \cdots.
$$

We finally define operations $\theta: \tilde{\hat{\iota}}_C N \rightarrow \tilde{\hat{\iota}}_C N$, $\theta: \tilde{\hat{\iota}}_R N \rightarrow \tilde{\hat{\iota}}_R N$, and $\theta: \tilde{\hat{\iota}}_H N \rightarrow \tilde{\hat{\iota}}_R N$ respectively by the formulae

$$
\theta(z_1, z_2, z_3, \ldots) = (0, z_1, z_2, z_3, \ldots),
$$

$$
\theta(x_1, x_2, x_3, z_3, \ldots) = (0, [x_1], 0, x_2, 0, x_3, 0, \ldots),
$$

$$
\theta(y_1, z_2, z_3, \ldots) = (0, [y_1], 0, \bar{r}z_2, 0, \bar{r}z_3, 0, \ldots).
$$

This gives a natural 2-adic Adams Δ-module $\tilde{\hat{\iota}} N$ and hence a functor $\tilde{\hat{\iota}}: \hat{\Delta} \rightarrow \hat{\Delta}$. We let $\iota: N \rightarrow \tilde{\hat{\iota}} N$ be the map in $\hat{\Delta}$ with $\iota_{\theta}(z) = (z, 0, 0, \ldots)$, $\iota_{\theta}(x) = (x, 0, 0, \ldots)$, and $\iota_{\theta}(y) = (y, 0, 0, \ldots)$, and we show:

Theorem 6.4. For a stable 2-adic Adams Δ-module $N \in \hat{\Delta}$, the 2-adic Adams Δ-module $\tilde{\hat{\iota}} N \in \hat{\Delta}$ is θ-pro-nilpotent and the map $\iota: N \rightarrow \tilde{\hat{\iota}} N$ has the universal property that, for each θ-pro-nilpotent $M \in \hat{\Delta}$ and map $f: N \rightarrow M$ in $\hat{\Delta}$, there exists a unique map $f: \tilde{\hat{\iota}} N \rightarrow M$ in $\hat{\Delta}$ with $\tilde{\hat{\iota}} f = f$.

Proof.

$\tilde{\hat{\iota}} N$ is θ-pro-nilpotent since it is the inverse limit of its quotient modules

$$
\tilde{\hat{\iota}} N / \theta^{i+1} \cong N \times \rho N \times \cdots \times \rho N.
$$

For $i \geq 1$, we define a map $f^{(i)}: \rho N \rightarrow M$ in $\hat{\Delta}$ by

$$
\begin{align*}
\hat{\iota}^{(i)} C &= \theta^i \hat{\iota} C: N_C \rightarrow M_C, \\
\hat{\iota}^{(i)} R &= (\theta^i \hat{\iota} R, \theta^i \hat{\iota} H) + \theta^i \hat{\iota} C: N_{RH} \oplus N_{C\phi} \rightarrow M_R, \\
\hat{\iota}^{(i)} H &= \theta^i \hat{\iota} H: N_{C+} \rightarrow M_H.
\end{align*}
$$

We then define $f: \tilde{\hat{\iota}} N \rightarrow M$ as the inverse limit of the maps

$$
\begin{align*}
f + f^{(1)} + \cdots + f^{(i)}: N \times \rho N \times \cdots \times \rho N \rightarrow M / \theta^{i+1}
\end{align*}
$$

in $\hat{\Delta}$, and we check that $\hat{\iota} f = f$. The uniqueness condition for $\hat{\iota} f$ follows since the
2-adic Adams \(\Delta \)-modules \(\tilde{F}N/\theta^{i+1} = N \times \rho N \times \cdots \times \rho N \) are generated by \(\ell N \). \(\square \)

To show the robustness (see Definition 4.7) of \(\tilde{F}N \) for suitable \(N \), we need:

Definition 6.5 (The functor \(\bar{\rho}: \bar{\Delta} \rightarrow \bar{\Delta} \)). For \(N \in \bar{\Delta} \), we let \(\bar{\rho}N = \{ N_C, N_{RH}, N_{C^+} \} \) be the stable 2-adic Adams \(\Delta \)-module with operations given by \(tz = tz, \ cx = \bar{c}x, \ rz = \bar{r}z, \ c'[z] = (1 + t)z \), and \(qz = [z] \). Thus, \(\bar{\rho}N \) is the quotient of \(\rho N = \{ N_C, N_{RH} + N_{C^+}, N_{C^+} \} \) by \(N_{C^+} \). If \(N \) is torsion-free and exact, then \(\bar{\rho}N \) is also torsion-free and exact by Lemma 4.2 since it is isomorphic to the module \(\{ N_C, N_R + N_H, N_R \cap N_H \} \) with \(c \) and \(c' \) treated as inclusions.

Lemma 6.6. If \(N \in \bar{\Delta} \) is torsion-free and exact, then \(\tilde{F}N \in \bar{M} \Delta \) is robust.

Proof. We check that \(\bar{\phi}: \tilde{F}C N \rightarrow \tilde{F}R N \) is given by

\[
\bar{\phi}(z_1, z_2, z_3, \ldots) = (0, 0, [z_1], 0, [z_2], 0, \ldots)
\]

for \(z_i \in N_C \) and \([z_i] \in N_{C^+} \). Thus, \(\ker \bar{\phi} = c\tilde{F}R N + \tilde{c}\tilde{F}H N + 2\tilde{F}C N \) and \(\tilde{F}N/\bar{\phi} \cong N \times \tilde{\rho}N \times \tilde{\rho}N \times \cdots \). Hence, \(\tilde{F}N/\bar{\phi} \) is torsion-free and exact by Definition 6.5 as required. \(\square \)

Our main result in this section is:

Theorem 6.7. If \(E \) is a 0-connected spectrum with \(H^1(E; \tilde{\mathbb{Z}}_2) = 0 = H^2(E; \tilde{\mathbb{Z}}_2) \), with \(K^0(E; \tilde{\mathbb{Z}}_2) = 0 \), and with \(K^{-1}(E; \tilde{\mathbb{Z}}_2) \) positively torsion-free (5.3), then there is a natural isomorphism \(\tilde{L}FK_{\Delta}^{-1}(E; \tilde{\mathbb{Z}}_2) \cong K_{CR}^*(\Omega^\infty E; \tilde{\mathbb{Z}}_2) \).

Proof. Since \(K_{\Delta}^{-1}(\Omega^\infty E; \tilde{\mathbb{Z}}_2) \) is \(\theta \)-pro-nilpotent by Lemma 6.2, the infinite suspension map \(\sigma: K_{\Delta}^{-1}(E; \tilde{\mathbb{Z}}_2) \rightarrow K_{\Delta}^{-1}(\Omega^\infty E; \tilde{\mathbb{Z}}_2) \) induces a map \(\bar{\sigma}: \tilde{F}K_{\Delta}^{-1}(E; \tilde{\mathbb{Z}}_2) \rightarrow \tilde{K}_{\Delta}^{-1}(\Omega^\infty E; \tilde{\mathbb{Z}}_2) \) in \(\bar{M} \Delta \), where \(\tilde{F}K_{\Delta}^{-1}(E; \tilde{\mathbb{Z}}_2) \) is robust by Lemmas 5.4 and 6.6. Thus \(\bar{\sigma} \) induces an isomorphism \(\tilde{L}FK_{\Delta}^{-1}(E; \tilde{\mathbb{Z}}_2) \cong K_{CR}^*(\Omega^\infty E; \tilde{\mathbb{Z}}_2) \) by Theorem 4.9, since it induces an isomorphism of the complex components by [6, Theorem 8.3]. \(\square \)

7. Strong 2-adic Adams \(\Delta \)-modules

Our main results on \(K/2 \)-localizations in Section 8 will involve a space \(X \) with \(K_{CR}^*(X; \tilde{\mathbb{Z}}_2) \cong LM \) for a 2-adic Adams \(\Delta \)-module \(M \) that is strong in the sense that it is robust, \(\psi^3 \)-splittable, and regular. In this section, we provide the required algebraic definitions and explanations of these notions. We first recall:

Definition 7.1 (The robust modules). We say that a 2-adic Adams \(\Delta \)-module \(M \) is robust when it is robust in the sense of Definition 4.7, ignoring stable Adams operations. When \(M \) is robust, the underlying 2-adic \(\Delta \)-module \(M/\bar{\phi} \) satisfies the conditions of Lemma 4.2 and may be factored as a (possibly infinite) product of
monogenic free 2-adic Δ-modules

\[
\begin{align*}
F^C(z) &= \{ \hat{z} + t\hat{z}, \hat{z}, \hat{z} \} = \{ \langle z \rangle + \langle tz \rangle, \langle rz \rangle, \langle qz \rangle \}, \\
F^R(x) &= \{ \hat{z}, \hat{z}, \hat{z} \} = \{ \langle cx \rangle, \langle x \rangle, \langle qcx \rangle \}, \\
F^H(y) &= \{ \hat{z}, \hat{z}, \hat{z} \} = \{ \langle c', y \rangle, \langle rc' \rangle, \langle y \rangle \}
\end{align*}
\]

by an argument using the factorization of positively torsion-free groups in Definition 5.3. We let $\operatorname{gen}_C M$, $\operatorname{gen}_R M$, and $\operatorname{gen}_H M$ respectively denote the number of complex, real, and quaternionic monogenic free factors of $M/\hat{\phi}$. These numbers do not depend on the factorization since they equal the dimensions of the respective $Z/2$-vector spaces $(M_{C(0)})^\#$, $(M_{R}/(\hat{\phi}M + rM))^\#$, and $(M_{H}/qM)^\#$, where $(-)^\#$ is the Pontrjagin duality functor from 2-profinite abelian groups to discrete 2-torsion abelian groups. Using the factorization of $M/\hat{\phi}$, we find that

\[
\operatorname{gen}_C M = 2 \operatorname{gen}_C M + \operatorname{gen}_R M + \operatorname{gen}_H M
\]

where gen_M denotes the number of \hat{Z}_2 factors in the 2-profinite abelian group M_C.

Definition 7.2 (The ψ^3-splittable modules). For a 2-adic Adams Δ-module $M \in \mathcal{M}\Delta$, we consider the stable 2-adic Adams Δ-module $M = M/\hat{\phi} \in \mathcal{A}\Delta$, and we say that M is ψ^3-splittable when the quotient map $M \to \hat{M}$ has a right inverse $s: \hat{M} \to M$ in $\mathcal{A}\Delta$. We call such a map s a ψ^3-splitting of M, and we note that it corresponds to a left inverse $s': \mathcal{A}_R/rM \to \hat{\phi}M$ of the canonical map $\hat{\phi}M \to \mathcal{A}_R/rM$ in the category \mathcal{A} of stable 2-adic Adams modules, or equivalently in the category of profinite $Z/2$-modules with automorphisms ψ^3. We deduce that M is automatically ψ^3-splittable in some important cases:

Lemma 7.3. If M is a robust 2-adic Adams Δ-module with $\operatorname{gen}_C M = 0$ or $\operatorname{gen}_R M = 0$, then M is ψ^3-splittable.

Proof. Since M_C is positively torsion-free, the map $cr = 1 + t: M_{C+} \to M_C$ is monic, and hence $c: rM_C \to M_C$ is also monic. Thus, $\hat{\phi}M_C \cap rM_C = 0$ and there is a short exact sequence

\[
0 \to \hat{\phi}M_C \to M_R/rM_C \to M_{R}/(\hat{\phi}M_C + rM_C) \to 0
\]

in \mathcal{A}. Since $\operatorname{gen}_C M = 0$ or $\operatorname{gen}_R M = 0$, this has $\hat{\phi}M_C = 0$ or $M_{R}/(\hat{\phi}M_C + rM_C) = 0$, and hence the map $\hat{\phi}M_C \to M_R/rM_C$ has an obvious left inverse in \mathcal{A}. \hfill \Box

We shall use the ψ^3-splitability condition to give:

Definition 7.4 (The θ-resolutions of modules). Let $M \in \mathcal{M}\Delta$ be a 2-adic Adams Δ-module that is θ-pro-nilpotent, robust, and ψ^3-splittable. These conditions will hold when M is strong (see Definition 7.11). For a ψ^3-splitting $s: \hat{M} \to M$ in $\mathcal{A}\Delta$, we shall construct an associated θ-resolution

\[
0 \to \hat{\phi}M \xrightarrow{\hat{d}} \hat{F} \hat{M} \xrightarrow{\hat{s}} M \to 0
\]

of M in $\mathcal{M}\Delta$, with $\hat{\phi}M = \{ \hat{M}_C, \hat{M}_{RH}, \hat{M}_{C+} \}$ as in Definition 6.5, where $\hat{s}: \hat{F} \hat{M} \to$
M is induced by s via Theorem 6.4. To specify d, we use the commutative square
\[
\begin{array}{ccc}
\rho \tilde{M} & \xrightarrow{\theta} & \tilde{M} \\
\downarrow & & \downarrow \\
\rho \tilde{M} & \xrightarrow{s^{(1)}} & M
\end{array}
\]
in $\tilde{\Delta}$ with $\rho \tilde{M} = \{\tilde{M}_C, M_{RH} \oplus M_{C_\phi}, \tilde{M}_{C_+}\}$ as in Definition 6.3, where $s^{(1)}$ is given by the proof of Theorem 6.4, where $\theta = \{\theta, (\theta, \theta), q\theta\}$, and where $\sigma = \{1, (1, \theta_\phi), 1\}$, using the map $\theta_\phi: M_{RH} \to \tilde{M}_{C_\phi} = M_{C_\phi}$ given by the composition of the sequence
\[
\tilde{M}_{RH} \xrightarrow{\rho} M_{RH} \xrightarrow{(\rho, \theta)} M_R \cong \tilde{M}_R \oplus M_{C_\phi} \xrightarrow{\text{proj}} M_{C_\phi}
\]
in which the isomorphism is the inverse of $(s, \tilde{\phi}): M_R \oplus M_{C_\phi} \cong M_R$. The commutative square now gives a map
\[
d = (\theta, -\sigma, 0, 0, \ldots): \rho \tilde{M} \to \tilde{F}\tilde{M}
\]
in $\tilde{\Delta}$ with $s\tilde{d} = 0$, and this induces the required map $\tilde{d}: \tilde{F}\rho \tilde{M} \to \tilde{F}\tilde{M}$ in $\tilde{\Delta}$ with $\tilde{s}\tilde{d} = 0$.

Lemma 7.5. If $M \in \tilde{\Delta}$ is θ-pro-nilpotent and robust with a ψ-splitting $s: \tilde{M} \to M$, then the θ-resolution $0 \to \tilde{F}\rho \tilde{M} \xrightarrow{\tilde{d}} \tilde{F}\tilde{M} \xrightarrow{\tilde{s}} M \to 0$ is exact in $\tilde{\Delta}$.

Proof. We easily check that $0 \to \tilde{M}(\tilde{F}\rho \tilde{M})_C \to \tilde{\phi}(\tilde{F}\tilde{M})_C \to \tilde{\phi}M_C \to 0$ is exact and that $\tilde{s}/\tilde{\phi}: \tilde{F}M/\tilde{\phi} \to M/\tilde{\phi}$ is onto. Hence, it suffices to show that the map $\tilde{F}\rho \tilde{M}/\tilde{\phi} \to \ker(\tilde{s}/\tilde{\phi})$ is an isomorphism. This follows by [10, Lemma 4.8] since the map $(\tilde{F}\rho \tilde{M}/\tilde{\phi})_C \to \ker(\tilde{s}/\tilde{\phi})_C$ is clearly an isomorphism and since the 2-adic Δ-modules $\tilde{F}\rho \tilde{M}/\tilde{\phi}$ and $\ker(\tilde{s}/\tilde{\phi})$ are exact by Lemma 6.6 and by the short exact sequence rule of [10, 4.5].

To formulate our regularity condition for M, we use:

Definition 7.6 (The 2-adic Adams modules). These are the unstable versions of the stable 2-adic Adams modules and were previously discussed in [8, 28]. By a finite 2-adic Adams module A, we mean a finite abelian 2-group with endomorphisms $\psi^k: A \to A$ for $k \in \mathbb{Z}$ such that:

(i) $\psi^1 = 1$ and $\psi^j \psi^k = \psi^{jk}$ for $j, k \in \mathbb{Z}$;

(ii) when n is sufficiently large, the condition $j \equiv k \mod 2^n$ implies $\psi^j = \psi^k$.

By a 2-adic Adams module A, we mean the topological inverse limit of an inverse system of finite 2-adic Adams modules. Such an A has an underlying 2-profinite abelian group with continuous endomorphisms $\psi^k: A \to A$ for $k \in \mathbb{Z}$ (and in fact for $k \in \hat{\mathbb{Z}}_2$). For a space X, the cohomology $K^3(X; \hat{\mathbb{Z}}_2)$ is a 2-adic Adams module with the usual Adams operations ψ^k for $k \in \hat{\mathbb{Z}}_2$ as in [6, Example 5.2]. We note that the operations ψ^2 and ψ^k, for k odd, in $K^3(X; \hat{\mathbb{Z}}_2)$ correspond via Bott periodicity to θ and to $k^{-1}\psi^k$ in $K^{-1}(X; \hat{\mathbb{Z}}_2)$. In general, for a θ-pro-nilpotent 2-adic Adams Δ-module M, we obtain a 2-adic Adams module M_C having the same group as M_C but having $\psi^0 = 0$ and having $\psi^{k^{2^i}}$ equal to $k^{-1}\psi^k\theta^i$ on M_C for k odd and $i \geq 0$.
Definition 7.7 (The linear and strictly nonlinear modules). As in [8, Section 4] and [7, Section 2], a 2-adic Adams module H is called linear when it has $\psi^k = k$ for all $k \in \mathbb{Z}$, and H is called quasilinear when $2H \subset \psi^2 H$. Each 2-adic Adams module A has a largest linear quotient module

$$\text{Lin} A = A/((\psi^2 - 2)A + (\psi^{-1} + 1)A + (\psi^3 - 3)A)$$

and also has a largest quasilinear submodule $A_{ql} \subset A$ by Lemma 13.1 below. A 2-adic Adams module A is called strictly nonlinear when $A_{ql} = 0$. This implies that A is torsion-free with $\cap_i (\psi^2)^i A = 0$, and A will be strictly nonlinear by Remark 13.2 and [7, 2.5] whenever it is torsion-free with $(\psi^2)^i A \subset 2^{i+1} A$ for some $i \geq 1$.

Definition 7.8 (The regular modules). As in [8, 4.4], we say that a 2-adic Adams module A is regular when the kernel of $A \to \text{Lin} A$ is strictly nonlinear. This implies that $\cap_i (\psi^2)^i A = 0$, and A will be regular whenever it is an extension of a strictly nonlinear submodule by a linear quotient module. We also say that a 2-adic Adams Δ-module M is regular when it is θ-pro-nilpotent with M^C regular as a 2-adic Adams module. For a connected space X with $H^1(X; \hat{\mathbb{Z}}_2) = 0$, the 2-adic Adams Δ-module $\tilde{K}^{-1}(X; \hat{\mathbb{Z}}_2)$ is always θ-pro-nilpotent by Lemma 6.2, and hence $\tilde{K}^{-1}(X; \hat{\mathbb{Z}}_2)$ is regular if and only if $\tilde{K}^{-1}(X; \hat{\mathbb{Z}}_2)$ is regular as a 2-adic Adams module. The following two lemmas will often guarantee regularity for our modules.

Lemma 7.9. Let X be a connected space with $H^1(X; \hat{\mathbb{Z}}_2) = 0$, with $H^m(X; \hat{\mathbb{Z}}_2) = 0$ for sufficiently large m, and with $\tilde{K}^{-1}(X; \hat{\mathbb{Z}}_2)$ torsion-free. Then $\tilde{K}^{-1}(X; \hat{\mathbb{Z}}_2)$ is regular with $\psi^2: \tilde{K}^{-1}(X; \hat{\mathbb{Z}}_2) \to \tilde{K}^{-1}(X; \hat{\mathbb{Z}}_2)$ monic, and hence $\tilde{K}^{-1}(X; \hat{\mathbb{Z}}_2)$ is regular with $\theta: \tilde{K}^{-1}(X; \hat{\mathbb{Z}}_2) \to \tilde{K}^{-1}(X; \hat{\mathbb{Z}}_2)$ monic.

Lemma 7.10. For a regular 2-adic Adams module A, each submodule is regular, and each torsion-free quotient module is regular when A is finitely generated over $\hat{\mathbb{Z}}_2$.

The proofs are in Section 13. Combining the preceding definitions, we finally introduce:

Definition 7.11 (The strong modules). We say that a 2-adic Adams Δ-module $M \in \mathcal{M}\Delta$ is strong when:

(i) M is robust;

(ii) M is ψ^3-splittable;

(iii) M is regular.

Such an M is automatically θ-pro-nilpotent (and hence profinite) since it is regular.

8. On the $K/2_\ast$-localizations of our spaces

We recall that the $K/2_\ast$-localizations of spaces or spectra are the same as the $K^\ast(-; \hat{\mathbb{Z}}_2)$-localizations since the $K/2_\ast$-equivalences are the same as the $K^\ast(-; \hat{\mathbb{Z}}_2)$-equivalences. In this section, we give our main result (Theorem 8.6) on the $K/2_\ast$-localization of a connected space X with $K^\ast_{CR}(X; \hat{\mathbb{Z}}_2) \cong \hat{L}M$ for a strong 2-adic Adams Δ-module M. We first consider:
Definition 8.1 (Building blocks for $K/2_\ast$-localizations). For a torsion-free exact stable 2-adic Adams Δ-module $N \in \hat{\Delta}$, we let $\mathcal{E}N$ denote the $K/2_\ast$-local spectrum $\mathcal{E}^{-1}N$ of Theorem 5.5 with an isomorphism $K_{CR}^\ast(\mathcal{E}N; \hat{\mathbb{Z}}_2) \cong CR^{-1}N$ in the category $\hat{\mathcal{ACR}}$ of stable 2-adic Adams CR-modules. As in $[8, 3.5]$, we let $\hat{\mathcal{E}}N \to \mathcal{E}N \to \hat{P}^2\mathcal{E}N$ denote the Postnikov fiber sequence of spectra with $\pi_i\mathcal{E}N \cong \pi_i\hat{\mathcal{E}}N$ for $i > 2$, with $\pi_i\mathcal{E}N = 0$ for $i < 2$, and with $\pi_2\mathcal{E}N \cong \hat{\mathcal{E}}_2\mathcal{E}N$, where $\hat{\mathcal{E}}_2\mathcal{E}N \subset \pi_2\mathcal{E}N$ denotes the Ext-2-completion of the torsion subgroup of $\pi_2\mathcal{E}N$. We now obtain a simply-connected infinite loop space $\Omega^\infty\mathcal{E}N$ which is $K/2_\ast$-local by $[8, \text{Theorem 3.8}]$. These $\Omega^\infty\mathcal{E}N$, with their companions $\Omega^\infty\hat{\mathcal{E}}\hat{\rho}\mathcal{N}$, will serve as our building blocks for $K/2_\ast$-localizations of spaces, where $\hat{\rho}\mathcal{N}$ denotes the torsion-free exact stable 2-adic Adams Δ-module $\rho\mathcal{N} = \{N_C, N_R + N_H, N_R \cap N_H\}$ of Definition 6.5.

Definition 8.2 (Strict homomorphisms and isomorphisms). For a 2-adic Adams Δ-module $M \in \hat{\mathcal{M}}\Delta$ and a connected space X, a strict homomorphism (resp. strict isomorphism) $\hat{\mathcal{L}}M \to K_{CR}(X; \hat{\mathbb{Z}}_2)$ is a homomorphism (resp. isomorphism) of special 2-adic ϕCR-algebras induced by a map $M \to K^{-1}_\Delta(X; \hat{\mathbb{Z}}_2)$ of 2-adic Adams Δ-modules. For instance, there is a strict isomorphism

$$\hat{\mathcal{L}}\mathcal{F}N \cong K_{CR}^\ast(\Omega^\infty\mathcal{E}N; \hat{\mathbb{Z}}_2)$$

for each torsion-free exact stable 2-adic Adams Δ-module $N \in \hat{\Delta}$ by Theorem 6.7, and we have:

Lemma 8.3. For a torsion-free exact module $N \in \hat{\Delta}$ and a connected space X with $H^1(X; \hat{\mathbb{Z}}_2) = 0 = H^2(X; \hat{\mathbb{Z}}_2)$, each strict homomorphism $\hat{\mathcal{L}}\mathcal{F}N \to K_{CR}^\ast(X; \hat{\mathbb{Z}}_2)$ is induced by a (possibly non-unique) map $X \to \Omega^\infty \mathcal{E}N$.

Proof. A strict homomorphism $\hat{\mathcal{L}}\mathcal{F}N \to K_{CR}^\ast(X; \hat{\mathbb{Z}}_2)$ corresponds successively to: a map $\hat{\mathcal{L}}\mathcal{F}N \to K^{-1}_\Delta(X; \hat{\mathbb{Z}}_2)$ in $\hat{\mathcal{M}}\Delta$, a map $N \to K^{-1}_\Delta(X; \hat{\mathbb{Z}}_2)$ in $\hat{\Delta}$, and a map $CR^{-1}N \to K_{CR}^\ast(\Omega^\infty X; \hat{\mathbb{Z}}_2)$ in $\hat{\mathcal{ACR}}$. By Theorem 5.6, this last map is induced by a map $\Omega^\infty X \to \mathcal{E}N$, which lifts uniquely to a map $\Sigma^\infty X \to \mathcal{E}N$, and we can easily check that the adjoint map $X \to \Omega^\infty \mathcal{E}N$ induces the original strict homomorphism.

Definition 8.4 (The key construction). For a strong 2-adic Adams Δ-module $M \in \hat{\mathcal{M}}\Delta$, we may take a θ-resolution (see Definition 7.4)

$$0 \to \hat{\mathcal{F}}\hat{\rho}\hat{M} \xrightarrow{d} \hat{\mathcal{F}}\hat{M} \xrightarrow{\hat{s}} M \to 0$$

using the torsion-free exact module $\hat{M} = M/\hat{\phi} \in \hat{\Delta}$. We may then apply Lemma 8.3 to give a map $f : \Omega^\infty \hat{\mathcal{F}}\hat{M} \to \Omega^\infty \hat{\mathcal{E}}\hat{\rho}\hat{M}$ inducing the $K_{CR}^\ast(-; \hat{\mathbb{Z}}_2)$-homomorphism $f^* = Ld : \hat{\mathcal{L}}\hat{F}\hat{\rho}\hat{M} \to \hat{L}\hat{F}\hat{M}$. Any such f will be called a companion map of M, and its homotopy fiber $\text{Fib} f$ will be $K/2_\ast$-local since $\Omega^\infty \hat{\mathcal{E}}\hat{M}$ and $\Omega^\infty \hat{\mathcal{E}}\hat{\rho}\hat{M}$ are. As in $[8, 4.6]$ and Definition 8.1, we let

$$\hat{\text{Fib}} f \to \text{Fib} f \to \hat{P}^2 \text{Fib} f$$

denote the Postnikov fiber sequence with $\pi_i\hat{\text{Fib}} f \cong \pi_i\text{Fib} f$ for $i > 2$, with $\pi_i\hat{\text{Fib}} f = 0$ for $i < 2$, and with $\pi_i\hat{\text{Fib}} f \cong \hat{\mathcal{E}}_2\pi_2\text{Fib} f$. We note that $\hat{P}^2 \text{Fib} f$ is an infinite loop
space which is $K/2_*$-local by [8, Theorem 3.8], and we conclude that $\overline{\text{Fib}}f$ is also $K/2_*$-local. Moreover, we have $K^*_{CR}(\overline{\text{Fib}}f; \overline{\mathbb{Z}_2}) \cong \hat{LM}$ by:

Theorem 8.5. For a strong 2-adic Adams Δ-module $M \in \hat{M} \Delta$ and any companion map $f: \Omega^{\infty}\tilde{E}M \to \Omega^{\infty}\tilde{E}\rho M$, there is a strict isomorphism $\hat{LM} \cong K^*_{CR}(\overline{\text{Fib}}f; \overline{\mathbb{Z}_2})$.

Thus, \hat{LM} is topologically realizable for each strong $M \in \hat{M} \Delta$. This theorem will be proved in Section 14 and leads immediately to our main result on $K/2_*$-localizations of spaces.

Theorem 8.6. If X is a connected space with a strict isomorphism $\hat{LM} \cong K^*_{CR}(X; \overline{\mathbb{Z}_2})$ for a strong 2-adic Adams Δ-module $M \in \hat{M} \Delta$, then there is an equivalence $X_{K/2} \simeq \overline{\text{Fib}}f$ for some companion map $f: \Omega^{\infty}\tilde{E}M \to \Omega^{\infty}\tilde{E}\rho M$ of M, where the equivalence induces the canonical isomorphism $K^*_{CR}(\overline{\text{Fib}}f; \overline{\mathbb{Z}_2}) \cong \hat{LM} \cong K^*_{CR}(X; \overline{\mathbb{Z}_2})$. Moreover, $H^1(X; \overline{\mathbb{Z}_2}) = 0 = H^2(X; \overline{\mathbb{Z}_2})$.

Proof. The last statement follows by [6, 5.4]. For the first, we take a θ-resolution $0 \to \tilde{E}\rho M \to \tilde{E}M \to M \to 0$ of M and apply Lemma 8.3 to give a map $h: X \to \Omega^{\infty}\tilde{E}M$ with $h^* = \tilde{L}s: \tilde{L}\hat{E}M \to \hat{LM}$. We then apply Lemma 8.3 again to give a map $k^*: \text{Cof} h \to \Omega^{\infty}\tilde{E}\rho M$ with

$$k^* = \tilde{L}d: \tilde{L}\hat{E}M \to K^*_{CR}(\text{Cof} h; \overline{\mathbb{Z}_2}) \subset \tilde{L}\hat{E}M.$$

Composing k with the cofiber map, we obtain a companion map $f: \Omega^{\infty}\tilde{E}M \to \Omega^{\infty}\tilde{E}\rho M$ of M such that h lifts to a map $u: X \to \overline{\text{Fib}}f$ which is a $K/2_*$-equivalence by Theorem 8.5. Since $\overline{\text{Fib}}f$ is $K/2_*$-local, this gives the desired equivalence $X_{K/2} \simeq \overline{\text{Fib}}f$.

In this theorem, M is uniquely determined by the space X since there is a canonical isomorphism $M \cong \check{Q}K^{-1}_{\Delta}X(\overline{\mathbb{Z}_2})$ in $\hat{M} \Delta$ by Remark 4.10 and [11, Section 3].

9. **On the v_1-periodic homotopy groups of our spaces**

The p-primary v_1-periodic homotopy groups $v_1^{-1}\pi_* X$ of a space X at a prime p were defined by Davis and Mahowald [15] and have been studied extensively (see [13]). In this section, we apply the preceding result (Theorem 8.6) on the $K/2_*$-localizations of our spaces to approach v_1-periodic homotopy groups at $p = 2$ using:

Definition 9.1 (The functor Φ_1). As in [4], [9], [16], and [18], there is a v_1-stabilization functor Φ_1 from the homotopy category of spaces to that of spectra such that:

(i) for a space X, there is a natural isomorphism $v_1^{-1}\pi_* X \cong \pi_* \tau_2 \Phi_1 X$ where $\tau_2 \Phi_1 X$ is the 2-torsion part of $\Phi_1 X$ (given by the fiber of its localization away from 2);

(ii) $\Phi_1 X$ is $K/2_*$-local for each space X;
(iii) for a spectrum E, there is a natural equivalence $\Phi_1(\Omega^\infty E) \simeq E_{K/2}$;
(iv) Φ_1 preserves fiber squares.

Various other properties of Φ_1 are described in \cite{10, Section 2}, and the isomorphism $v_1^{-1}\pi_*X \cong \pi_*\tau_2\Phi_1X$ may be applied as in \cite[Theorem 3.2]{10} to show:

Theorem 9.2. For a space X, there is a natural long exact sequence

\[\cdots \to KO^{n-3}(\Phi_1X; \hat{Z}_2) \xrightarrow{\psi^3-9} KO^{n-3}(\Phi_1X; \hat{Z}_2) \to (v_1^{-1}\pi_nX)^# \]
\[\to KO^{n-2}(\Phi_1X; \hat{Z}_2) \xrightarrow{\psi^3-9} KO^{n-2}(\Phi_1X; \hat{Z}_2) \to \cdots \]

where $(-)^#$ is the Pontrjagin duality functor from discrete 2-torsion abelian groups to 2-profinite abelian groups.

This may be used to calculate $v_1^{-1}\pi_*X$ from $KO^*(\Phi_1X; \hat{Z}_2)$ up to extension. To approach $KO^*(\Phi_1X; \hat{Z}_2)$ or $K^*(\Phi_1X; \hat{Z}_2)$, we require:

Definition 9.3 (The $K/2_+$-durable spaces). Following \cite[7.8]{8}, we say that a space X is $K/2_+$-durable when the $K/2_+$-localization $X \to X_{K/2}$ induces an equivalence $\Phi_1X \simeq \Phi_1X_{K/2}$ (or equivalently induces an isomorphism $v_1^{-1}\pi_*X \cong v_1^{-1}\pi_*X_{K/2}$), and we recall that each connected H-space is $K/2_+$-durable. For such X, we may apply our key result on $K/2_+$-localizations (Theorem 8.6) to deduce:

Theorem 9.4. If X is a connected $K/2_+$-durable space (e.g. H-space) with a strict isomorphism $\hat{LM} \cong K^*_{CR}(X; \hat{Z}_2)$ for a strong module $M \in \hat{M}\Delta$, then there is a (co)fiber sequence of spectra $\Phi_1X \to E\hat{M} \xrightarrow{\pi} E\hat{p}M$ such that $\epsilon^*: K^*_{CR}(E\hat{p}M; \hat{Z}_2) \to K^*_{CR}(E\hat{M}; \hat{Z}_2)$ is given by $CR^{-1}\epsilon: CR^{-1}\hat{p}M \to CR^{-1}\hat{M}$.

Here, the map $\theta: \hat{p}M \to \hat{M}$ is given by

\[\theta = (\theta, \theta, \theta): \{\hat{M}_C, \hat{M}_R + \hat{M}_H, \hat{M}_R \cap \hat{M}_H\} \to \{\hat{M}_C, \hat{M}_R, \hat{M}_H\} \]

in $\hat{M}\Delta$. This theorem will be proved below and may be used to calculate $K^*(\Phi_1X; \hat{Z}_2)$ and $KO^*(\Phi_1X; \hat{Z}_2)$ since it immediately implies:

Theorem 9.5. For X as in Theorem 9.4, there is a $K^*(-; \hat{Z}_2)$ cohomology exact sequence

\[0 \to K^{-2}(\Phi_1X; \hat{Z}_2) \to \hat{M}_C \xrightarrow{\theta} \hat{M}_C \to K^{-1}(\Phi_1X; \hat{Z}_2) \to 0, \]

and there is a $KO^*(-; \hat{Z}_2)$ cohomology exact sequence

\[0 \to KO^{-8}(\Phi_1X; \hat{Z}_2) \to \hat{M}_C/(\hat{M}_R + \hat{M}_H) \xrightarrow{\theta} \hat{M}_C/\hat{M}_R \to KO^{-7}(\Phi_1X; \hat{Z}_2) \to 0 \to \hat{M}_H/(\hat{M}_R \cap \hat{M}_H) \to KO^{-6}(\Phi_1X; \hat{Z}_2) \to \hat{M}_R \cap \hat{M}_H \xrightarrow{\theta} \hat{M}_H \to KO^{-5}(\Phi_1X; \hat{Z}_2) \to 0 \to 0 \to KO^{-4}(\Phi_1X; \hat{Z}_2) \to \hat{M}_C/(\hat{M}_R \cap \hat{M}_H) \xrightarrow{\theta} \hat{M}_C/\hat{M}_H \to KO^{-3}(\Phi_1X; \hat{Z}_2) \to (\hat{M}_R + \hat{M}_H)/(\hat{M}_R \cap \hat{M}_H) \xrightarrow{\theta} \hat{M}_R/(\hat{M}_R \cap \hat{M}_H) \to KO^{-2}(\Phi_1X; \hat{Z}_2) \to \hat{M}_R + \hat{M}_H \xrightarrow{\theta} \hat{M}_R \to KO^{-1}(\Phi_1X; \hat{Z}_2) \to 0. \]
In these sequences, θ may be replaced by $\chi^2 = -\theta$. Also, for $i, k \in \mathbb{Z}$ with k odd, the Adams operation ψ^k in $K^{2i-1}(\Phi X; \hat{Z}_2)$, $K^{2i-2}(\Phi X; \hat{Z}_2)$, or $K\Omega^{2i-2}(\Phi X; \hat{Z}_2)$ agrees with $k^{-1}\psi^k$ in the adjacent \hat{M} terms.

Thus, for X as in Theorem 9.4, we may essentially calculate $v_1^{-1} \pi_* X$ from \hat{M} (up to extension problems) using Theorems 9.2 and 9.5. By [10, 7.6], this approach to $v_1^{-1} \pi_* X$ may be extended to various other important spaces X using:

Definition 9.6 (The $\hat{K}\Phi_1$-goodness condition). For a space X, we let $\Phi_1 : \hat{K}^{CR}_0(X; \hat{Z}_2) \to \hat{K}^{CR}_0(\Phi X; \hat{Z}_2)$ denote the v_1-stabilization homomorphism of [10, 7.1], and we recall that it induces a homomorphism $\Phi_1 : \hat{Q}K^0_\Delta(X; \hat{Z}_2)/\theta \to \hat{K}_\Delta(\Phi X; \hat{Z}_2)$ in $\hat{A}\hat{\Delta}$ for $n = -1, 0$ by [10, 7.4], where $\hat{Q}K^0_\Delta(X; \hat{Z}_2)/\theta$ is as in Remark 4.10 and Definition 6.1. Following [10, 7.5], we say that a space X is $\hat{K}\Phi_1$-good when the complex v_1-stabilization homomorphism $\Phi_1 : \hat{Q}K^n(X; \hat{Z}_2)/\theta \to K^n(\Phi X; \hat{Z}_2)$ is an isomorphism for $n = -1, 0$. Our next theorem will provide initial examples of $\hat{K}\Phi_1$-good spaces from which other examples may be built.

Theorem 9.7. If X is a connected $K/2_*$-durable space (e.g. H-space) with a strict isomorphism $\hat{L}M \cong \hat{K}^{CR}_0(X; \hat{Z}_2)$ for a strong module $M \in \hat{M}\Delta$ such that $\theta : \hat{M}_C \to \hat{M}_C$ is monic, then X is $\hat{K}\Phi_1$-good with $K^0(\Phi X; \hat{Z}_2) = 0$, with $K^{-1}(\Phi X; \hat{Z}_2) = \hat{M}_C/\theta$, and with $K^{-1}(\Phi X; \hat{Z}_2) \cong \hat{M}/\theta$.

To prove Theorems 9.4 and 9.7, we first consider the spectrum $\hat{E}N$ for a torsion-free exact module $N \in \hat{A}\hat{\Delta}$ and note that $\Phi_1 \hat{\Omega}^\infty \hat{E}N \cong (\hat{E}N)_{K/2} \cong \hat{E}N$.

Lemma 9.8. The space $\hat{\Omega}^\infty \hat{E}N$ is $\hat{K}\Phi_1$-good, and the v_1-stabilization gives a natural isomorphism

$$\Phi_1 : \hat{Q}K^1_\Delta(\hat{\Omega}^\infty \hat{E}N; \hat{Z}_2)/\theta \cong \hat{K}^1_\Delta(\hat{E}N; \hat{Z}_2).$$

Proof. By [10, 7.1], the homomorphism $\Phi_1 : \hat{K}^{-1}_\Delta(\hat{\Omega}^\infty \hat{E}N; \hat{Z}_2) \to \hat{K}^{-1}_\Delta(\hat{E}N; \hat{Z}_2)$ is left inverse to the infinite suspension homomorphism, and the lemma now follows by Theorem 6.7 together with Lemma 4.11, and Definition 6.3.

Proof of Theorem 9.4. Applying the functor Φ_1 to the fiber sequence of Theorem 8.6, we obtain a (co)fiber sequence of spectra

$$\Phi_1 X_{K/2} \longrightarrow \Phi_1 \hat{\Omega}^\infty \hat{E}\hat{M} \xrightarrow{\Phi_1f} \Phi_1 \hat{\Omega}^\infty \hat{E}\hat{p}\hat{M}$$

for some companion map f of M. We then deduce that Φ_1f corresponds to a map $\hat{E}M \to \hat{E}\hat{p}\hat{M}$ having the desired properties by Lemmas 9.8 and 5.4.

Proof of Theorem 9.7. The results on $K^*(\Phi X; \hat{Z}_2)$ and $K_\Delta^{-1}(\Phi X; \hat{Z}_2)$ follow from Theorem 9.5. Since $K^*(\Phi X; \hat{Z}_2) \cong \hat{A}\hat{M}_C$ by Lemma 4.6, we obtain isomorphisms $\hat{Q}K^0(X; \hat{Z}_2)/\theta = 0$ and $\hat{Q}K^{-1}(X; \hat{Z}_2)/\theta \cong \hat{M}_C/\theta$, and we deduce that $\Phi_1 : \hat{Q}K^n(X; \hat{Z}_2)/\theta \cong K^n(\Phi X; \hat{Z}_2)$ for $n = -1, 0$ by Lemma 9.8 and naturality.
10. Applications to simply-connected compact Lie groups

We now apply the preceding results to a simply-connected compact Lie group G. We first use the representation theory of G to functorially determine the united 2-adic K-cohomology ring $K^*_{CR}(G; \mathbb{Z}_2) = \{K^*(G; \mathbb{Z}_2), KO^*(G; \mathbb{Z}_2)\}$ in Theorem 10.3. Then, with slight restrictions on the group, we use the representation theory of G to give expressions for the $K/2$-localization $G_{K/2}$, for the v_1-stabilization $\Phi_1 G$, and for the cohomology $KO^*(\Phi_1 G; \mathbb{Z}_2)$, and we also show that G is $\hat{K}\Phi_1$-good. Our results are summarized in Theorem 10.6 and permit calculations of the 2-primary v_1-periodic homotopy groups $\pi_{1,1} G$ using Theorem 9.2, as accomplished very successfully by Davis [14]. In this section, we assume some general familiarity with the representation rings of our Lie groups as described in [12, Sections II.6 and VI.4] and [14, Theorem 2.3].

Definition 10.1 (The representation ring $R_\Delta G$). For a simply-connected compact Lie group G, we let RG be the complex representation ring and let $R_H G, R_H G \subset RG$ be the real and quaternionic parts of RG with the usual λ-ring structures on RG and $R_H G \oplus R_H G$. We also let $t = \psi^{-1}: RG \cong RG$, $c: R_H G \subset RG$, $r: RG \rightarrow R_H G$, $c': R_H G \subset RG$, and $q: RG \rightarrow R_H G$ be the usual operations satisfying the Δ-module relations of Definition 4.1. These structures are compatible in the expected ways and combine to give a $\Delta\lambda$-ring $R_\Delta G = \{RG, R_H G, R_H G\}$ in the sense of [10, 6.2]. We let $\hat{R}_\Delta G = \{\hat{R} G, \hat{R} H G, \hat{R} H G\}$ be the augmentation ideal of $R_\Delta G$ given by the kernel RG of the complex augmentation $dim: RG \rightarrow \mathbb{Z}$, where $\hat{R} G = R_H G \cap \hat{R} G$ and $\hat{R} H G = R_H G \cap \hat{R} G$. We also let $QR_\Delta G = \{QR G, QR H G, QR H G\}$ be the indecomposables of $R_\Delta G$ given by

$$QR G = \hat{R} G/\hat{R} G^2,$$

$$QR H G = \hat{R} H G/((\hat{R} G)^2 + r(\hat{R} G)^2),$$

$$QR H G = \hat{R} H G/((\hat{R} G)^2 + q(\hat{R} G)^2).$$

It is straightforward to show that $\hat{R}_\Delta G$ and $QR_\Delta G$ inherit $\Delta\lambda$-ring structures (without identities) from $R_\Delta G$. Since $QR_\Delta G$ is a $\Delta\lambda$-ring with trivial multiplication, it is equipped with additive operations $t: QR G \cong QR G$, $c: QR H G \rightarrow QR G$, $r: QR G \rightarrow QR H G$, $c': QR H G \rightarrow QR G$, $q: QR G \rightarrow QR H G$, $\theta = -\lambda^2: QR G \rightarrow QR G$, $\theta = -\lambda^2: QR H G \rightarrow QR H G$, $\psi: QR G \rightarrow QR G$, $\psi^k: QR H G \rightarrow QR H G$, and $\psi^k: QR H G \rightarrow QR H G$ for the odd $k \in \mathbb{Z}$. We now let $QR H G = \{QR G, QR H G, QR H G\}$ be the 2-adic completion of $QR_\Delta G$ with the induced additive operations on the components $QR G = \hat{Z}_2 \otimes QR G$, $QR H G = \hat{Z}_2 \otimes QR H G$, and $QR H G = \hat{Z}_2 \otimes QR H G$.

Lemma 10.2. For a simply-connected compact Lie group G, $QR_\Delta G$ is a robust 2-adic Adams Δ-module.

This will be proved below. To determine the cohomology ring $K^*_{CR}(G; \mathbb{Z}_2) = \{K^*(G; \mathbb{Z}_2), KO^*(G; \mathbb{Z}_2)\}$ from the representation theory of G, we now let $\beta: QR_\Delta G \rightarrow K_{\Delta}^{-1}(G; \mathbb{Z}_2)$ be the 2-adic Adams Δ-module homomorphism induced by the composition of the canonical homomorphisms $\hat{R} G \rightarrow \bar{K}_{\Delta}^\alpha(BG; \mathbb{Z}_2) \rightarrow \bar{K}_{\Delta}^{-1}(G; \mathbb{Z}_2)$.

Theorem 10.3. For a simply-connected compact Lie group G, there is a natural strict isomorphism \(\hat{\beta}: \hat{L}(QR\Delta G) \cong K^*_{CR}(G; \hat{\mathbb{Z}}_2) \).

Proof. This follows by Lemma 10.2 and Theorem 4.9 since $\hat{\beta}: \hat{QR}G \to K^{-1}(G; \hat{\mathbb{Z}}_2)$ induces an isomorphism $\hat{\Lambda}(\hat{QR}G) \cong K^*(G; \hat{\mathbb{Z}}_2)$ by [17].

We note that $K^*_{CR}(G; \hat{\mathbb{Z}}_2)$ has a simple system of generators (see Definition 3.3) consisting of the $\beta \hat{z}_i \in K^{-1}(G; \hat{\mathbb{Z}}_2)$, the $\beta \hat{x}_a \in KO^{-1}(G; \hat{\mathbb{Z}}_2)$, and the $\beta y_\beta \in KO^{-5}(G; \hat{\mathbb{Z}}_2)$ obtained from the analysis of $\hat{QR}\Delta G$ below in Remark 10.7. Thus, by Proposition 3.4, $K^*_{CR}(G; \hat{\mathbb{Z}}_2)$ is a free 2-adic CR-module on the associated products. However, our description of $K^*_{CR}(G; \hat{\mathbb{Z}}_2)$ as $\hat{L}(\hat{QR}\Delta G)$ is more natural and includes the full multiplicative structure. Moreover, it will let us apply our main results to G.

Lemma 10.4. For a simply-connected compact Lie group G, the 2-adic Adams Δ-module $\hat{QR}\Delta G$ is regular with $\theta: \hat{QR}G \to \hat{QR}G$ monic.

Proof. This follows by Lemmas 7.9 and 7.10 since $\beta: \hat{QR}G \to \hat{K}^{-1}(G; \hat{\mathbb{Z}}_2)$ is monic by Theorem 10.3.

Thus, $\hat{QR}\Delta G$ is strong (robust, ψ^3-splittable, and regular) if and only if it is ψ^3-splittable, and this is usually the case by:

Lemma 10.5. For a simply-connected compact simple Lie group G, the 2-adic Adams Δ-module $\hat{QR}\Delta G$ is ψ^3-splittable (and hence strong) if and only if G is not E_6 or $\text{Spin}(4k + 2)$ with k not a 2-power.

This will be proved below using work of Davis [14]. For a simply-connected compact Lie group G, we now let $\hat{Q}_\Delta = \{\hat{Q}, \hat{Q}_R, \hat{Q}_H\}$ briefly denote the associated stable 2-adic Adams Δ-module $\hat{Q}_\Delta RG = (\hat{Q}_\Delta RG)/\hat{\phi}$. This agrees with the notation of [10, 9.2] and [14], since our $\hat{Q}_\Delta = \{\hat{Q}, \hat{Q}_H, \hat{Q}_H\}$ is the 2-adic completion of their $\hat{Q}_\Delta = \{\hat{Q}, \hat{Q}_R, \hat{Q}_H\}$. Our main results now give the following omnibus theorem, whose four parts may be expanded in the obvious ways to match the cited theorems.

Theorem 10.6. Let G be a simply-connected compact Lie group such that the 2-adic Adams Δ-module $\hat{Q}_\Delta RG$ is ψ^3-splittable (see Lemma 10.5), and let $\hat{Q}_\Delta = \{\hat{Q}, \hat{Q}_R, \hat{Q}_H\}$ be the associated stable 2-adic Adams Δ-module. Then:

(i) the $K/2$-localization $G_{K/2}$ is the homotopy fiber of a map $\Omega^\infty \hat{E}Q_\Delta \to \Omega^\infty \hat{E} \hat{Q}_\Delta$ with low dimensional modifications as in Theorem 8.6;

(ii) the 2-adic v_1-stabilization Φ_1G is the homotopy fiber of a map of spectra $\hat{E}Q_\Delta \to \hat{E} \hat{Q}_\Delta$ as in Theorem 9.4;

(iii) there is an exact sequence

$$0 \to KO^{-8}(\Phi_1G; \hat{\mathbb{Z}}_2) \to \hat{Q}/(\hat{Q}_R + \hat{Q}_H) \xrightarrow{\theta} \hat{Q}/\hat{Q}_R \to \cdots$$

continuing as in Theorem 9.5;

(iv) G is $K\Phi_1$-good at the prime 2 as in Theorem 9.7.
The exact sequence in (iii) permits calculations of the 2-primary \(v_1 \)-periodic homotopy groups \(\pi_* G \) using Theorem 9.2 as accomplished by Davis [14]. This exact sequence was previously obtained in [10, Theorem 9.3] using indirect algebraic methods under the hard-to-verify condition that \(G \) was \(\hat{\Phi}_1 \)-good. It is now obtained using the \(KO^*(\cdot; \mathbb{Z}_2) \) cohomology exact sequence of the (co)fiber sequence in (ii) under an accessible algebraic condition that implies the \(\hat{\Phi}_1 \)-goodness of \(G \) by (iv).

We devote the rest of the section to proving Lemmas 10.2 and 10.5 using:

Remark 10.7 (Generators for representation rings). For a simply-connected compact Lie group \(G \), standard results summarized in [14, Theorem 2.3] show that \(RG \) is a finitely generated polynomial ring \(\mathbb{Z}[z_\gamma, z_\gamma^*, x_\alpha, y_\beta]_{\gamma, \alpha, \beta} \) on certain basic complex representations \(z_\gamma \) together with their conjugates \(z_\gamma^* = t z_\gamma \), certain basic real representations \(x_\alpha \), and certain basic quaternionic representations \(y_\beta \). Moreover, in terms of these generators, the \(\mathbb{Z}/2 \)-graded ring \(\{ RG, RH/G \} \) is characterized by the fact that its quotient \(\{ R_R G/rRG, R_H G/qRG \} \) is a \(\mathbb{Z}/2 \)-graded polynomial algebra \(\mathbb{Z}/2[x_\alpha, \phi z_\gamma, y_\beta]_{\alpha, \gamma, \beta} \) on the real generators \(x_\alpha \) and \(\phi z_\gamma \) (with \(c \phi z_\gamma = z_\gamma^* z_\gamma \)) and the quaternionic generators \(y_\beta \). Consequently, the indecomposables \(QR_\Delta G = \{ QRG, QR_R G, QR_H G \} \) may be expressed as

\[
\begin{align*}
QRG &= \mathbb{Z}\{z_\gamma, z_\gamma^*, c_\alpha x_\alpha, c' \gamma y_\beta\}_{\gamma, \alpha, \beta}, \\
QR_R G &= \mathbb{Z}\{r z_\gamma, \bar{x}_\alpha, r' c' \gamma y_\beta\}_{\gamma, \alpha, \beta} \oplus \mathbb{Z}/2\{\bar{\phi} z_\gamma\}_{\gamma}, \\
QR_H G &= \mathbb{Z}\{q z_\gamma, qc x_\alpha, \bar{y}_\beta\}_{\gamma, \alpha, \beta}
\end{align*}
\]

where \(\bar{w} \) denotes \(w - \dim w \) for \(w \in RG \). Thus, the 2-adic indecomposables \(\hat{QR} \Delta G = \{ \hat{QRG}, \hat{QR_R G}, \hat{QR_H G} \} \) may be expressed similarly using \(\hat{\mathbb{Z}}_2 \) in place of \(\mathbb{Z} \), and the stable 2-adic indecomposables \(\hat{Q} = \{ \hat{QR}, \hat{QR_R}, \hat{QR_H} \} \) may be expressed as

\[
\begin{align*}
\hat{Q} &= \hat{\mathbb{Z}}_2\{\hat{z}_\gamma, \hat{z}_\gamma^*, c_\alpha x_\alpha, c' \gamma y_\beta\}_{\gamma, \alpha, \beta}, \\
\hat{Q}_R &= \hat{\mathbb{Z}}_2\{r z_\gamma, \bar{x}_\alpha, r' c' \gamma y_\beta\}_{\gamma, \alpha, \beta}, \\
\hat{Q}_H &= \hat{\mathbb{Z}}_2\{q z_\gamma, qc x_\alpha, \bar{y}_\beta\}_{\gamma, \alpha, \beta}
\end{align*}
\]

Proof of Lemma 10.2. Since \(QR_\Delta G \) is a \(\Delta \lambda \)-ring with trivial multiplication, it is straightforward to check all of the required relations for operations (see Definitions 4.3 and 6.1) in particular, we deduce \(\theta \theta r = \theta r \theta \) from the relations \(\lambda^4 r = \lambda^4 + \phi \lambda^2, \lambda^4 - \lambda^2 \lambda^2, \phi = \lambda^2 r - r \lambda^2, 2 \phi = 0, \) and \(\theta = -\lambda^2 \), which hold generally in \(\Delta \lambda \)-rings with trivial multiplication [10, 6.2]. We next observe that \(QRG, \hat{QR}_R G, \) and \(QR_H G \) are stable 2-adic Adams modules by [6, 6.2], since \(QR_G \) and \(QR_R G \oplus QR_H G \) are \(\gamma \)-nilpotent and finitely generated abelian (because they have trivial multiplications and have finite generating sets of elements \(\bar{w} \) for representations \(w \)). Thus, \(QR_\Delta G \) is a 2-adic Adams \(\Delta \)-module, and it must be robust by the analysis of Remark 10.7. \(\square \)

To check the \(\psi^3 \)-splittability of \(\hat{QR} \Delta G \), we let \(hG = \text{ker}(1 - t)/\text{im}(1 + t) \) be the augmented algebra over \(\mathbb{Z}/2 \) obtained from \(RG \) using the involution \(t = \psi^{-1} : RG \cong \)
This is a polynomial algebra $hG \cong \mathbb{Z}/2[\tilde{x}_\alpha, \tilde{z}_\gamma \tilde{z}_\gamma, c'y_{\beta}]_{\alpha, \gamma, \beta}$ which is $\mathbb{Z}/2$-graded, since there is an isomorphism
\[
c + c' : R|G/rRG \oplus R|H/G/qRG \cong hG,
\]
and we let $QhG \cong \mathbb{Z}/2[\tilde{x}_\alpha, \tilde{z}_\gamma \tilde{z}_\gamma]_{\alpha, \gamma}$ denote the real (degree 0) indecomposables.

We define a homomorphism $s : QRG \to QhG$ by $s[u] = [u^* u]$ for $u \in \hat{R}G$ and note that $sQRG = \mathbb{Z}/2[\tilde{z}_\gamma \tilde{z}_\gamma]_{\gamma}$. We view s as a homomorphism of ψ^3-modules (abelian groups with endomorphisms ψ^3) as in [14, 2.4].

Lemma 10.8. For a simply-connected compact Lie group G, QRG is ψ^3-splittable if and only if the ψ^3-submodule $sQRG \subset QhG$ is a direct summand.

Proof. By Definition 7.2 and the proof of Lemma 7.3, QRG is ψ^3-splittable if and only if the ψ^3-submodule $\phi QRG \subset QRG$ (or equivalently $\phi QRG \subset QRG/rQRG$) is a direct summand. The lemma now follows since ϕQRG corresponds to $sQRG$ under the isomorphism $c : QRG/rQRG \cong QhG$. \hfill \Box

Proof of Lemma 10.5. By Lemma 10.8 and Davis [14, Theorem 1.3], the following conditions are successively equivalent: QRG is ψ^3-splittable; the ψ^3-submodule $sQRG \subset QhG$ is a direct summand; G satisfies the Technical Condition of [14, Definition 2.4]; G is not E_6 or $Spin(4k + 2)$ with k not a 2-power. \hfill \Box

11. Proofs of basic lemmas for \hat{L}

We shall prove Lemmas 4.5, 4.6, and 4.11 showing the basic properties of the functor $\hat{L} : \theta \Delta \text{Mod} \to \phi CR\hat{\Delta}\text{Alg}$, where $\theta \Delta \text{Mod}$ is the category of 2-adic $\theta \Delta$-modules and $\phi CR\hat{\Delta}\text{Alg}$ is that of special 2-adic ϕCR-algebras (see Definitions 4.3 and 3.2). We first introduce an intermediate category of modules.

Definition 11.1 (The 2-adic η-modules). By a 2-adic η-module $N = \{N_C, N_R, N_H, N_S\}$, we mean a 2-adic Δ-module $\{N_C, N_R, N_H\}$, with operations t, c, r, c', and q as in Definition 4.1, together with a 2-profinite abelian group N_S and continuous additive operations $\phi : N_C \to N_R$, $\eta : N_R \to N_S$, λ and λ' such that $\eta x = [x]$ for $x \in N_R$, and $y \in N_H$:

\[
\begin{align*}
\phi c x &= 0, & \phi c' y &= 0, & \phi t z &= \phi z, & 2\tilde{\phi} z &= 0, & c\phi z &= 0, \\
(\tilde{\phi} z)^{[2]} &= 0, & 2q x &= 0, & \eta r z &= 0, & (qz)^{[2]} &= (rz)^{[2]} = \eta\tilde{z}.
\end{align*}
\]

We let $\eta \Delta \hat{\text{Mod}}$ denote the category of 2-adic η-modules.

Remark 11.2 (A functorial interpretation of admissible maps). Let $J : \theta \Delta \text{Mod} \to \eta \Delta \text{Mod}$ be the functor carrying a 2-adic $\theta \Delta$-module M to the 2-adic η-module $JM = \{M_C, M_R, M_H, M_R/rM_C\}$ having the original operations t, c, r, c', and q together with operations $\eta : M_R \to M_R/rM_C$, λ and λ' such that $\eta x = [x]$, $x^{[2]} = [\theta x]$, and $y^{[2]} = [\theta y]$ for $x \in M_R$ and $y \in M_H$. Let $I : \phi CR\hat{\Delta}\text{Alg} \to \eta \Delta \text{Mod}$ be the functor carrying a special 2-adic ϕCR-algebra A to the 2-adic η-module $IA = \{A_C, A_R, A_H, A_R^2\}$ having the
operations t, c, r, c', and q of $\Delta^{-1} \tilde{A}$ (see Definition 4.1) together with operations $\tilde{\phi}: \tilde{A}^1_C \to \tilde{A}^{-1}_R$, $\eta: \tilde{A}_R^{-1} \to \tilde{A}_R^{-2}$, $(\eta^2): \tilde{A}_R^{-1} \to \tilde{A}_R^{-2}$, and $(\eta^2): \tilde{A}_R^{-5} \to \tilde{A}_R^{-2}$ given by $\tilde{\phi}z = \eta \phi z$, $\eta x = \eta x$, $x^{[2]} = x^2$, and $y^{[2]} = B_R^{-1} y^2$ for $z \in \tilde{A}_C^{-1}$, $x \in \tilde{A}_R^{-1}$, and $y \in \tilde{A}_R^{-5}$. We now easily see:

Lemma 11.3. For $M \in \theta \Delta \hat{\text{Mod}}$ and $A \in \phi \text{CR} \hat{\text{Alg}}$, an admissible map $f: M \to A$ is equivalent to a map $f: JM \to IA$ in $\eta \Delta \text{Mod}$.

To construct the functor \hat{L}, we need:

Lemma 11.4. The functor $I: \phi \text{CR} \hat{\text{Alg}} \to \eta \Delta \text{Mod}$ has a left adjoint $\hat{V}: \eta \Delta \text{Mod} \to \phi \text{CR} \hat{\text{Alg}}$.

Proof. This follows by the Special Adjoint Functor Theorem (see [19]) since I preserves small limits and since $\phi \text{CR} \hat{\text{Alg}}$ has a small cogenerating set by Lemma 11.5 below.

A special 2-adic ϕCR-algebra A will be called **finite** when the groups \tilde{A}_m^n and \tilde{A}_R^n are finite for all m.

Lemma 11.5. Each special 2-adic ϕCR-algebra A is the inverse limit of its finite quotients in $\phi \text{CR} \hat{\text{Alg}}$.

Proof. This is similar to the corresponding result for topological rings in [22, 5.1.2]. For a 2-adic CR-submodule $G \subset A$ with A/G finite, we must obtain a special 2-adic ϕCR-ideal H of A with $H \subset G$ and A/H finite. We first obtain an ideal M of A_R (closed under B_R, B_R^{-1}, η, and ξ) with $M \subset G_R$ and A_R/M finite as in [22]. We next obtain an ideal N of A_C (closed under B, B^{-1}, and t) with $N \subset G_C \cap t^{-1}N \cap \phi^{-1}M_0$ and A_C/N finite as in [22]. The desired ideal H is now given by $H_C = N$ and $H_R = M \cap c^{-1}N$.

Proof of Lemma 4.5. Using Lemmas 11.3 and 11.4, we obtain the desired universal algebra LM from the functor $\hat{L} = \hat{V}J: \theta \Delta \text{Mod} \to \phi \text{CR} \text{Mod}$.

A 2-adic $\eta \Delta$-module N is called **sharp** when $\eta: N_R/rN_C \to N_S$ is an isomorphism, and we may now derive the properties of \hat{L} from the corresponding properties of V on such sharp modules.

Lemma 11.6. For a sharp 2-adic $\eta \Delta$-module N, the canonical map $\hat{A}N_C \to (\hat{V}N)_C$ is an algebra isomorphism.

Proof. Let $W: \phi \text{CR} \hat{\text{Alg}} \to C \hat{\text{Alg}}$ be the forgetful functor carrying each $A \in \phi \text{CR} \hat{\text{Alg}}$ to its complex part $A_C \subset C \hat{\text{Alg}}$ where $C \hat{\text{Alg}}$ is the category of special 2-adic C-algebras, which are defined similarly to special 2-adic ϕCR-algebras (see Definition 3.2) but using only complex terms and their operations. The functor W has a right adjoint $H: C \hat{\text{Alg}} \to \phi \text{CR} \hat{\text{Alg}}$ where $(HX)_C = X$ and $(HX)_R = \{ x \in X | t x = x \}$ with $c = 1$, $r = 1 + t$, $\eta = 0$, $\phi z = z^*z$ for $z \in X_0$, and $\phi w = B^{-1}w*w$ for $w \in X^{-1}$. For each $N \in \eta \Delta \text{Mod}$ and each $X \in C \hat{\text{Alg}}$, a map $N \to IHX$ in $\eta \Delta \text{Mod}$ corresponds to a map $N_C \to X^{-1}$ respecting t, which in turn corresponds to a map $\hat{A}N_C \to X$ in $C \hat{\text{Alg}}$. Hence, since $W\hat{V}$ is left adjoint to IH, the canonical map $\hat{A}N_C \to W\hat{V}N$ is an isomorphism.
Proof of Lemma 4.6. For a 2-adic $\theta\Delta$-module M, the canonical map $\hat{\Lambda}M_C \to (\hat{L}M)_C$ is an isomorphism by Lemma 11.6 and by the above proof of Lemma 4.5.

Let $\hat{Q} : \phi\mathcal{CR}\hat{A}\text{alg} \to \phi\mathcal{CR}\mathcal{M}\text{od}$ be the functor carrying each $A \in \phi\mathcal{CR}\hat{A}\text{alg}$ to its indecomposables $\hat{Q}A \in \phi\mathcal{CR}\mathcal{M}\text{od}$ where $\phi\mathcal{CR}\mathcal{M}\text{od}$ is the category of special 2-adic $\phi\mathcal{CR}$-modules, which may be defined as the augmentation ideals of the special 2-adic $\phi\mathcal{CR}$-algebras having trivial multiplication.

Lemma 11.7. For a sharp 2-adic $\eta\Delta$-module N, the canonical map $\{N_C, N_R, N_H\} \to \Delta^{-1}QVN$ is an isomorphism.

Proof. The functor \hat{Q} has a right adjoint $E : \phi\mathcal{CR}\mathcal{M}\text{od} \to \phi\mathcal{CR}\hat{A}\text{alg}$ where $EX = \mathcal{E} \oplus X$. Since $\hat{Q}V : \eta\Delta\text{Mod} \to \phi\mathcal{CR}\mathcal{M}\text{od}$ is left adjoint to IE, a detailed analysis shows that $\hat{Q}VN$ is a special 2-adic $\phi\mathcal{CR}$-module with $(\hat{Q}VN)^{-1}_C = N_C$, $(\hat{Q}VN)^{1}_R = N_R$, and $(\hat{Q}VN)^{0}_R = N_H$.

Proof of Lemma 4.11. For a 2-adic $\theta\Delta$-module M, the canonical map $M \to \Delta^{-1}QLM$ is an isomorphism by Lemma 11.7 and the above proof of Lemma 4.5.

12. Proof of the Bott exactness lemma for \hat{L}

We must now prove Lemma 4.8 showing the Bott exactness of $\hat{L}M$ for a robust 2-adic $\theta\Delta$-module M. This lemma will follow easily from the corresponding result for $\eta\Delta$-modules (Lemma 12.1), whose proof will extend through most of this section. We say that a 2-adic $\eta\Delta$-module N is profinitely sharp when it is the inverse limit of an inverse system of finite sharp 2-adic $\eta\Delta$-modules. This obviously implies that N is sharp. We call N robust when:

(i) N is profinitely sharp;

(ii) the 2-adic Δ-module $\{N_C, N_R/\phi N_C, N_H\}$ is torsion-free and exact;

(iii) $\text{ker}\phi = cN_R + c'N_H + 2N_C$.

Lemma 12.1. If N is a robust 2-adic $\eta\Delta$-module, then the special 2-adic $\phi\mathcal{CR}$-algebra VN is Bott exact; in fact, VN is the inverse limit of an inverse system of finitely generated free 2-adic \mathcal{CR}-modules.

This will be proved at the end of the section.

Proof of Lemma 4.8. For a robust 2-adic $\theta\Delta$-module M, the 2-adic $\eta\Delta$-module JM is also robust, and hence $\hat{L}M$ has the required properties by Lemma 12.1 and the proof of Lemma 4.5 in Section 11.

Before proving Lemma 12.1, we must analyze the robust 2-adic $\eta\Delta$-modules, and we start with:

Definition 12.2 (The complex 2-adic $\eta\Delta$-modules). The functor $(-)_C : \eta\Delta\text{Mod} \to \hat{A}\text{b}$ from the 2-adic $\eta\Delta$-modules to the profinite abelian groups has a left adjoint $C : \hat{A}\text{b} \to \eta\Delta\text{Mod}$ with $C(G)_C = G \oplus G = G \oplus tG$, $C(G)_R = G \oplus G/2 = rG \oplus \hat{G}$, $C(G)_H = G = qG$, and $C(G)_S = G/2 = (\hat{G})^{[2]}$ for $G \in \hat{A}\text{b}$. A 2-adic $\eta\Delta$-module
Lemma 12.3. If $\tilde{N} \subset N$ is an inclusion of robust 2-adic $\eta\Delta$-modules such that N_C/\tilde{N}_C is torsion-free and $\tilde{N}_C^- = N_C^-$, then each map $\tilde{N} \to C(G)$ for $G \in \tilde{Ab}$ may be extended to a map $N \to C(G)$ of 2-adic $\eta\Delta$-modules.

Proof. For a given map $F(\tilde{f}, \tilde{g}) : N \to C(G)$, we first extend $\tilde{g} : \tilde{N}_S \to G/2$ to a map $g : N_S \to G/2$. Since $\tilde{N}_C/\tilde{N}_C^+ \cong N_C^+$, $N_C/\tilde{N}_C^+ \cong N_C^-$, and $\tilde{N}_C^- = N_C^-$, we see that N_C is a pushout of the inclusions $N_C^+ \to \tilde{N}_C^+ \to \tilde{N}_C$. Thus, the maps $\tilde{g} : N_C^+ \to G/2$ and $[\tilde{f}] : N_C \to G/2$ induce a map $f' : N_C \to G/2$, and we obtain a commutative diagram

\[
\begin{array}{ccc}
N_C^+ & \xrightarrow{f} & G \\
\downarrow \pi & & \downarrow 1 \\
N_C & \xrightarrow{g} & G/2
\end{array}
\]

where $N_C^+ = \{z \in N_C | tz = z\}$ and π is the composition of $(c, c') : N_R/\bar{\delta}N_C \coprod_{N_C} N_H \cong N_C^+$ and $()^2 : N_R/\bar{\delta}N_C \coprod_{N_C} N_H \to N_S$. Letting $N_C^- = \{z \in N_C | tz = -z\}$, we now have:

Lemma 12.4. For a robust 2-adic $\eta\Delta$-module N, there exists a decomposition $N \cong C(G) \oplus P$ where G is torsion-free and P is robust with $t = 1$ on P_C.

Proof. By the factorization of positively torsion-free groups in Definition 5.3, there exists a decomposition $N_C \cong (G \oplus tG) \oplus H$ with $t = 1$ on H, and we let $i : C(G) \to$
Proof of Lemma 12.1

Definition 12.5 (The t-trivial 2-adic $\eta\Delta$-modules). A 2-adic $\eta\Delta$-module N will be called t-trivial when $t = 1$ on N_C. When N is t-trivial and robust, it must have $\delta = 0$: $N_C \to N_R$ since $N_C = cN_R + c'N_H$ by the exactness of $\{N_C, N_R/\delta N_C, N_H\}$. Moreover, it must also have $(rN_C)^{[2]} = 0$, $(qN_C)^{[2]} = 0$, and $c + c': N_R/rN_C \oplus N_H/qN_C \cong N_C/2$ by [10, Lemma 4.7]. Hence, the operations $(\cdot)^{[2]}: N_R \to N_S$ and $(\cdot)^{[2]}: N_H \to N_S$ induce operations $\bar{\alpha}: N_R/rN_C \to N_R/rN_C$ and $\tilde{\alpha}: N_H/rN_C \to N_R/rN_C$, where the $\bar{\alpha}$-module N_R/rN_C is profinite since N is profinitely sharp. In this way, a t-trivial robust 2-adic $\eta\Delta$-module N corresponds to a torsion-free group $G \in \hat{A}b$ together with a decomposition $(G/2)_R \oplus (G/2)_H = G/2$ equipped with operations $\theta: (G/2)_R \to (G/2)_R$ and $\tilde{\theta}: (G/2)_H \to (G/2)_R$ such that the $\bar{\alpha}$-module $(G/2)_R$ is profinite. We say that a 2-adic $\eta\Delta$-module N is of finite type when N_C, N_R, N_H, and N_S are finitely generated over \mathbb{Z}_2, and we now easily deduce:

Lemma 12.6. A t-trivial robust 2-adic $\eta\Delta$-module may be expressed as the inverse limit of an inverse system of t-trivial robust quotient modules of finite type.

A similar result obviously holds for the robust 2-adic $\eta\Delta$-modules $C(G)$ with G torsion-free, and the following lemma will now let us restrict our study of \hat{V} to the robust modules of finite type.

Lemma 12.7. If a 2-adic $\eta\Delta$-module N is the inverse limit of an inverse system $\{N_\alpha\}_\alpha$ of quotient modules, then $\hat{V}N \cong \text{lim}_\alpha \hat{V}N_\alpha$.

Proof. For a finite special 2-adic ϕCR-algebra F, there is a canonical isomorphism $\text{Hom}(\text{lim}_\alpha \hat{V}N_\alpha, F) \cong \text{Hom}(\hat{V}N, F)$. Hence the map $\hat{V}N \to \text{lim}_\alpha \hat{V}N_\alpha$ is an isomorphism by Lemma 11.5.

Proof of Lemma 12.1. It now suffices to show that $\hat{V}N$ is a free 2-adic CR-module when $N = C(G) \oplus P$ for a finitely generated free \mathbb{Z}_2-module G and a t-trivial robust 2-adic $\eta\Delta$-module P of finite type. By Definition 7.1, we may choose finite ordered sets of elements $\{z_k\}_k$ in G, $\{x_i\}_i$ in P_R, and $\{y_j\}_j$ in P_H such that G is a free \mathbb{Z}_2-module on $\{z_k\}_k$ and $\{P_R, P_H\}$ is a free 2-adic Δ-module on $\{x_i\}_i$ and $\{y_j\}_j$. Since P_R is a free $\mathbb{Z}/2$-module on the generators $\{x_i\}_i$, there are expressions $x_i^{[2]} = r_i$ and $y_j^{[2]} = s_j$ for each i and j where the r_i and s_j are $\mathbb{Z}/2$-linear combinations of these generators. We may now obtain $\hat{V}N$ as the free augmented 2-adic CR-algebra on the generators $x_i \in (\hat{V}N)_R^{-1}$, $y_j \in (\hat{V}N)_R^{-5}$, $z_k \in (\hat{V}N)_C^{-1}$, and $\phi z_k \in (\hat{V}N)_H^{-1}$ subject to the relations $x_i^2 = r_i$, $y_j^2 = B_R s_j$, $z_k^2 = 0$, $z_k^2 z_k = B c \phi z_k$, and $(\phi z_k)^2 = 0$ for each i, j, and k. It follows by a straightforward analysis that $\hat{V}N$ is a free 2-adic CR-module on the associated products (see Definition 3.3) of $\{x_i\}_i$, $\{y_j\}_j$, and $\{z_k\}_k$.

\[\square\]
13. Proofs for regular modules

We first show that our strict nonlinearity condition (see Definition 7.7) for 2-adic Adams modules agrees with that of [7, 2.4], and we then prove Lemmas 7.9 and 7.10 for regular modules. For a 2-adic Adams module A, we let $T \subset A$ be given by the pullback square

$$
\begin{array}{c}
\begin{array}{c}
T \subset A \\
\downarrow \subset \\
A \\
\downarrow \\
A / \psi^2 A
\end{array}
\end{array}
\end{array}$$

where $(A / \psi^2 A) \setminus 2$ is the kernel of 2: $A / \psi^2 A \to A / \psi^2 A$. Since the square is also a pushout, A is quasilinear if and only if $TA = A$. Now let $T^\infty A$ be the intersection of the submodules $T^i A \subset A$ for $i > 0$.

Lemma 13.1. $T^\infty A$ is the largest quasilinear submodule of A, and hence $A_{ql} = T^\infty A$.

Proof. Using the inverse limit of the pullback squares for $T^i A$ with $i > 0$, we find that $T^\infty A$ contains each quasilinear submodule of A and that $T(T^\infty A) = T^\infty A$.

Remark 13.2 (Strict nonlinearity conditions). Our definition of strict nonlinearity in Section 7 is equivalent to our earlier definition in [7, 2.3 and 2.4]. In fact, for a 2-adic Adams module A, the largest quasilinear submodule A_{ql} remains unchanged in the earlier category of 2-adic ψ^2-modules, since it is still given by $T^\infty A$. To prove Lemma 7.10, we need:

Lemma 13.3. For a strictly nonlinear 2-adic Adams module A, each submodule is strictly nonlinear. Moreover, when A is finitely generated over $\hat{\mathbb{Z}}_2$, each torsion-free quotient module is strictly nonlinear.

Proof. The first statement is clear, and we shall prove the second by working in the earlier category \mathcal{N} of 2-adic ψ^2-modules that are ψ^2-pro-nilpotent. Let $0 \to \hat{A} \to A \to A \to 0$ be a short exact sequence in \mathcal{N} with A strictly nonlinear and finitely generated over $\hat{\mathbb{Z}}_2$ and with \hat{A} torsion-free. To show that \hat{A} is strictly nonlinear, it suffices to show that $\text{Hom}_{\mathcal{N}}(H, \hat{A}) = 0$ for each torsion-free quasilinear $H \in \mathcal{N}$ that is finitely generated over $\hat{\mathbb{Z}}_2$. Since \hat{A} is torsion-free, it now suffices to show that $\text{Hom}_{\mathcal{N}}(H, \hat{A})$ is finite for such H. Hence, since $\text{Hom}_{\mathcal{N}}(H, A) = 0$ by strict nonlinearity, it suffices to show that $\text{Ext}_{\mathcal{N}}^1(H, \hat{A})$ is finite for such H. This finiteness follows using the exact sequence

$$
0 \to \text{Hom}_{\mathcal{N}}(H, \hat{A}) \to \text{Hom}_{\hat{\mathcal{A}}_\text{pro}}(H, \hat{A}) \to \text{Hom}_{\hat{\mathcal{A}}_\text{pro}}(H, \hat{A}) \to \text{Ext}_{\mathcal{N}}^1(H, \hat{A}) \to 0
$$

with $\text{Hom}_{\mathcal{N}}(H, \hat{A}) = 0$ by strict nonlinearity, where $\hat{\mathcal{A}}_\text{pro}$ is the category of 2-profinite abelian groups.

Proof of Lemma 7.10. This result follows easily from Definition 7.8 and Lemma 13.3.
14. Proof of the realizability theorem for $\hat{\mathcal{M}}$

We shall prove Theorem 8.5, giving a strict isomorphism $\hat{\mathcal{M}} \cong K^*(C_\mathcal{M}(\text{Fib} \hat{f}; \mathbb{Z}_2))$ for a companion map $f: \Omega^\infty\mathcal{M} \to \Omega^\infty\mathcal{M} \hat{f}$ of a strong 2-adic Adams Δ-module M. For this, it will suffice by Theorem 4.9 to obtain an isomorphism $\hat{\mathcal{M}} \cong K^*(\text{Fib} f; \mathbb{Z}_2)$ of the complex components. We do this by adapting our proof of the corresponding odd primary result (Theorem 4.7) in [8]. First, to determine the 2-adic K-cohomology of the loops on $\Omega^\infty\mathcal{M}$ or $\Omega^\infty\mathcal{M} \hat{f}$, we may replace Theorem 11.2 of [8] by the following two theorems.

Theorem 14.1. If $X = \Omega^\infty E$ for a 1-connected spectrum E with $H^2(E; \mathbb{Z}_2) = 0$, with $K^0(E; \mathbb{Z}_2) = 0$, and with $K^1(E; \mathbb{Z}_2)$ torsion-free, then $K^1(\Omega X; \mathbb{Z}_2) = 0$ and $K^0(\Omega X; \mathbb{Z}_2)$ is torsion-free.

Proof. This follows from [6, Theorem 8.3].

Using notation and terminology of [7] for a 1-connected space X, we obtain an augmented 2-adic ψ^2-module $QK^1(X; \mathbb{Z}_2) \to H^3(X; \mathbb{Z}_2)$ representing the Atiyah-Hirzebruch map $K^1(X; \mathbb{Z}_2) \to H^3(X; \mathbb{Z}_2)$, and we have:

Theorem 14.2. If X is a 1-connected \mathcal{H}-space with $K^1(\Omega X; \mathbb{Z}_2) = 0$ and $K^0(\Omega X; \mathbb{Z}_2)$ torsion-free, then $\sigma: U(QK^1(X; \mathbb{Z}_2) \to H^3(X; \mathbb{Z}_2)) \cong K^0(\Omega X; \mathbb{Z}_2)$.

Proof. This follows from [7, Theorem 10.2].

When X is $\Omega^\infty\mathcal{M}$ or $\Omega^\infty\mathcal{M} \hat{f}$, we shall determine $H^3(X; \mathbb{Z}_2)$ from the united 2-adic K-cohomology of X. For any 1-connected space X, we let $\alpha_R: KO^{-1}(X; \mathbb{Z}_2) \to H^3(X; \mathbb{Z}_2)$ be the homomorphism induced by the Postnikov section $KO\mathbb{Z}_2 \to$...
Lemma 14.3. If \(X \) is a 1-connected space with \(H^2(X; \mathbb{Z}_2) = 0 \), then \(\alpha_R: \tilde{QKO}^{-1}(X; \mathbb{Z}_2) \to H^3(X; \mathbb{Z}_2)\) factors through \(\tilde{QKO}^{-1}(X; \mathbb{Z}_2) \) and vanishes on the following subgroups: \(\tilde{QK}^{-1}(X; \mathbb{Z}_2) \), \((\theta - 2)\tilde{KO}^{-1}(X; \mathbb{Z}_2) \), \((\theta - rB^{-2}c)\tilde{KO}^{-5}(X; \mathbb{Z}_2) \), and \((\psi^3 - 9)\tilde{KO}^{-1}(X; \mathbb{Z}_2) \).

Proof. The map \(\alpha_R \) factors through \(\tilde{QKO}^{-1}(X; \mathbb{Z}_2) \) by a suspension argument using the isomorphism \(H^3(X; \mathbb{Z}_2) \cong H^2(\Omega X; \mathbb{Z}_2) \). Since \(X \) is 1-connected with \(H^2(X; \mathbb{Z}_2) = 0 \), there is a natural isomorphism \(H^3(X; \mathbb{Z}_2) \cong (\pi_2(\tau_2 X))^\# \) by [8, Lemma 11.4]. Thus, it suffices by naturality to prove the desired vanishing results when \(X \) is \(S^2 \cup_{2k} e^3 \) for \(k \geq 1 \), and these results now follow from the elementary case \(X = S^3 \) since the collapsing map \(S^2 \cup_{2k} e^3 \to S^3 \) induces epimorphisms of the cohomologies \(\tilde{K}^{-1}(-; \mathbb{Z}_2) \), \(\tilde{KO}^{-1}(-; \mathbb{Z}_2) \), and \(\tilde{KO}^{-5}(-; \mathbb{Z}_2) \).

For a 1-connected space \(X \) with \(H^2(X; \mathbb{Z}_2) = 0 \), the above \(\alpha_R \) now induces a homomorphism \(\tilde{\alpha}_R: \text{Lin}^\Delta \tilde{QK}^{-1}(X; \mathbb{Z}_2) \to H^3(X; \mathbb{Z}_2) \) where \(\tilde{QK}^{-1}(X; \mathbb{Z}_2) \) is the 2-adic Adams \(\Delta \)-module of indecomposables given by Remark 4.10 and Definition 6.1, and where \(\text{Lin}^\Delta \) carries a 2-adic Adams \(\Delta \)-module \(M \) to the group

\[
\text{Lin}^\Delta M = M_R/\langle \tilde{\phi}M_C + (\theta - 2)M_R + (\theta - rC_1)M_H + (\psi^3 - 9)M_R \rangle.
\]

To determine \(H^3(X; \mathbb{Z}_2) \) when \(X \) is \(\Omega^\infty \hat{E}M \) or \(\Omega^\infty \hat{E}pM \), we may replace Proposition 11.3 of [8] by:

Proposition 14.4. If \(N \) is a torsion-free exact stable 2-adic Adams \(\Delta \)-module, then

\[
\tilde{\alpha}_R: \text{Lin}^\Delta \tilde{QK}^{-1}(\Omega^\infty \hat{E}N; \mathbb{Z}_2) \cong H^3(\Omega^\infty \hat{E}N; \mathbb{Z}_2).
\]

Proof. Since there is a stable isomorphism \(\tilde{\alpha}_R: KO^{-1}(\hat{E}N; \mathbb{Z}_2)/(\psi^3 - 9) \cong H^3(\hat{E}N; \mathbb{Z}_2) \) by [10, Theorem 3.2] and [8, Lemma 11.4], the proposition follows using Theorem 6.7 and Lemma 4.11.

For any \(\theta \)-pro-nilpotent 2-adic Adams \(\Delta \)-module \(M \), we obtain a homomorphism \(r: M^C \to \text{Lin}^\Delta M \) of 2-adic Adams modules with \(M^C \) as in Definition 7.6 and \(\text{Lin}^\Delta M \) linear. Such a homomorphism is called properly torsion-free [7, 4.5] when its source is torsion-free and its kernel is strictly nonlinear (see Definition 7.7). We shall need:

Lemma 14.5. If \(M \) is a strong 2-adic Adams \(\Delta \)-module, then \(r: M^C \to \text{Lin}^\Delta M \) is properly torsion-free.

Proof. Since \(M \) is strong, \(M^C \) is torsion-free and \(\ker(M^C \to \text{Lin}^\Delta M) \) is strictly nonlinear. Using the maps \(r: \text{Lin} M^C \to \text{Lin}^\Delta M \) and \(c: \text{Lin}^\Delta M \to \text{Lin} M^C \) with \(cr = 2 \), we see that \(2\ker(M^C \to \text{Lin}^\Delta M) \) is contained in \(\ker(M^C \to \text{Lin} M) \). Thus \(\ker(M^C \to \text{Lin}^\Delta M) \) is strictly nonlinear by Lemma 13.3.
As in [8, Section 11], for a strong 2-adic Adams Δ-module M and a companion map f, we obtain a ladder of p-complete fiber sequences

$$
\text{Fib} f \longrightarrow X \overset{f}{\longrightarrow} Y
$$

such that:

(i) X and Y satisfy the hypotheses of Theorems 14.1 and 14.2;
(ii) the vertical maps from X and Y are $K^*(\cdot; \hat{\mathbb{Z}}_2)$-equivalences;
(iii) $H^3(Y; \hat{\mathbb{Z}}_2) = 0$ and the sequence $H^3(\Omega^\infty \hat{\mathcal{F}}M; \hat{\mathbb{Z}}_2) \rightarrow H^3(\Omega^\infty \hat{\mathcal{E}}\hat{\rho}M; \hat{\mathbb{Z}}_2) \rightarrow H^3(X; \hat{\mathbb{Z}}_2) \rightarrow 0$ is exact.

Lemma 14.6. There is a canonical isomorphism $H^3(X; \hat{\mathbb{Z}}_2) \cong \text{Lin}^\Delta M$.

Proof. Since $f^*: K^*_{CR}(\Omega^\infty \hat{\mathcal{E}}\hat{\rho}M; \hat{\mathbb{Z}}_2) \rightarrow K^*_{CR}(\Omega^\infty \hat{\mathcal{E}}M; \hat{\mathbb{Z}}_2)$ is equivalent to $\hat{d}: \hat{L}\hat{F}\hat{\rho}M \rightarrow \hat{L}\hat{F}M$ for the θ-resolution map \hat{d}, the homomorphism $f^*: H^3(\Omega^\infty \hat{\mathcal{E}}\hat{\rho}M; \hat{\mathbb{Z}}_2) \rightarrow H^3(\Omega^\infty \hat{\mathcal{E}}M; \hat{\mathbb{Z}}_2)$ is equivalent to $\text{Lin}^\Delta \hat{d}: \text{Lin}^\Delta \hat{F}\hat{\rho}M \rightarrow \text{Lin}^\Delta \hat{F}M$ by Proposition 14.4. Hence, there is an isomorphism of cokernels $H^3(X; \hat{\mathbb{Z}}_2) \cong \text{Lin}^\Delta M$. \qed

Proof of Theorem 8.5. The proof of Theorem 4.7 in [8] is now easily adapted to give Theorem 8.5. In more detail, Propositions 11.5 and 11.6 of [8] remain valid in our setting using Lemmas 14.5 and 14.6 together with the short exact sequence

$$0 \longrightarrow (\hat{F}M_C \downarrow 0) \longrightarrow (\hat{F}M_C \downarrow \text{Lin}^\Delta M) \longrightarrow (M_C \downarrow \text{Lin}^\Delta M) \longrightarrow 0$$
induced by the θ-resolution. Propositions 11.7 and 11.8 likewise remain valid, and thus $\Lambda M_C \cong K^*(\text{Fib} f; \hat{\mathbb{Z}}_2)$, so that Theorem 8.5 follows by Theorem 4.9. \qed

References

A.K. Bousfield bous@uic.edu

Department of Mathematics
University of Illinois at Chicago
Chicago, Illinois 60607

This article is available at http://intlpress.com/HHA/v9/n1/a14