ON GROEBNER BASES AND IMMERSIONS OF GRASSMANN MANIFOLDS $G_{2,n}$

ZORAN Z. PETROVIĆ AND BRANISLAV I. PRVULOVIĆ

(communicated by Donald M. Davis)

Abstract

Mod 2 cohomology of the Grassmann manifold $G_{2,n}$ is a polynomial algebra modulo a certain well-known ideal. A Groebner basis for this ideal is obtained. Using this basis, some new immersion results for Grassmannians $G_{2,n}$ are established.

1. Introduction

Mod 2 cohomology of Grassmann manifolds $G_{k,n} = O(n+k)/O(n) \times O(k)$ has a rather simple description. It is the polynomial algebra on the Stiefel-Whitney classes w_1, w_2, \ldots, w_k of the canonical vector bundle γ_k over $G_{k,n}$ modulo the ideal $I_{k,n}$ generated by the dual classes $\overline{w}_{n+1}, \overline{w}_{n+2}, \ldots, \overline{w}_{n+k}$. Alas, from this description it is not at all easy to establish whether a certain cohomology class is zero or not. In [6], Monks found Groebner bases for the ideal $I_{2,n}$ in the cases $n = 2^s - 3$ and $n = 2^s - 4$. Using these bases, some new results concerning the mod 2 cohomology of $G_{2,2^s-3}$ and $G_{2,2^s-4}$ were established in that paper. Also, the author used the method of modified Postnikov towers and gave an immersion result for the spaces $G_{2,2^s-3}$ into \mathbb{R}^d. In [9], Shimkus improved this immersion result by the same method.

Motivated by these results, we have found a reduced Groebner basis for the ideal $I_{2,n}$ for all n. This result is stated in Theorem 2.7. In Corollary 2.8 we present a convenient vector space bases for $H^*(G_{2,n}; \mathbb{Z}_2)$.

Using these bases and modified Postnikov towers, in Theorem 3.11 we generalize the immersion result established in [9] and prove that $G_{2,n}$ immerses into \mathbb{R}^{4n-5} where n is any odd integer ≥ 7. Our result improves upon the previously known best result (obtained by Cohen in [2]) whenever $\alpha(n) = \alpha(2n) < 5$ (where $\alpha(n)$ denotes the number of ones in the binary expansion of n).

The lower bounds for the immersion dimension of $G_{2,n}$ (which is defined by $\text{imm}(G_{2,n}) := \min\{d \mid G_{2,n} \text{ immerses into } \mathbb{R}^d\}$) were established by Oproiu ([8]) using the method of the Stiefel-Whitney classes. For example, he has shown that $\text{imm}(G_{2,2s-1+1}) \geq 2^{s+1} - 2$. Our result states that $\text{imm}(G_{2,2s-1+1}) \leq 2^{s+1} - 1$ for $s \geq 4$, so it only remains to check whether $G_{2,2s-1+1}$ can be immersed into $\mathbb{R}^{2^{s+1}-2}$. One more example where the lower bound from [8] almost reaches the upper bound obtained in Theorem 3.11 is $G_{2,7}$; $22 \leq \text{imm}(G_{2,7}) \leq 23$.

Received Jan 11, 2011, revised June 27, 2011; published on October 7, 2011.

2000 Mathematics Subject Classification: 57R42, 13P10, 55S45.

Key words and phrases: Grassmannian, Groebner basis, immersion.

Copyright © 2011, International Press. Permission to copy for private use granted.
In addition to these main results, in Theorem 3.1 we use Groebner bases to give a
simple proof of the previous result of Oproiu concerning lower bounds for $\text{imm}(G_{2,n})$.

Acknowledgements

The authors would like to thank the referee for pointing out that they had over-
looked the fact that the proof of Theorem 3.11 does not go through for $n = 5$.
The first author was partially supported by the Ministry of Science and Environ-
nmental Protection of Republic of Serbia Project #174032; the second author was par-
tially supported by the Ministry of Science and Environmental Protection of Republic
of Serbia Project #174034.

2. Groebner bases

For positive integer b and arbitrary integer a, the binomial coefficient is defined by
$(a \choose b) := \frac{a(a-1)\cdots(a-b+1)}{b!}$. Also, $(a \choose 0) := 1$. If b is a negative integer, we define $(a \choose b)$ to be
equal to zero. Then it is easy to see that the well-known formula

\begin{equation}
\frac{a}{b} = \frac{a-1}{b} + \frac{a-1}{b-1}
\end{equation}

is valid for all $a, b \in \mathbb{Z}$.

From formula (1) we deduce directly that $(a \choose b) + (a-1 \choose b-1) \equiv (a \choose b) \pmod{2}$, $a, b \in \mathbb{Z}$,
or equivalently $(a \choose b-1) \equiv (a \choose b) \pmod{2}$, $a, b \in \mathbb{Z}$.

Henceforth, all binomial coefficients are considered mod 2.

Let $G_{k,n}$ be the Grassmann manifold of unoriented k-dimensional vector subspaces
in \mathbb{R}^{n+k}. It is known that the cohomology algebra $H^*(G_{k,n}; \mathbb{Z}_2)$ is isomorphic to the
quotient $\mathbb{Z}_2[w_1, w_2, \ldots, w_k]/I_{k,n}$ of the polynomial algebra $\mathbb{Z}_2[w_1, w_2, \ldots, w_k]$ by the
ideal $I_{k,n}$ generated by polynomials $\overline{w}_{n+1}, \overline{w}_{n+2}, \ldots, \overline{w}_{n+k}$, which are obtained from the
equation

$$(1 + w_1 + w_2 + \cdots + w_k)(1 + \overline{w}_1 + \overline{w}_2 + \cdots) = 1.$$

For $k = 2$ (which is the case from now on), we have

\begin{align*}
1 + \overline{w}_1 + \overline{w}_2 + \cdots &= \frac{1}{1 + w_1 + w_2} \\
&= \sum_{t \geq 0} (w_1 + w_2)^t = \sum_{t \geq 0} \sum_{a+b=t} \binom{a+b}{a} w_1^a w_2^b \\
&= \sum_{a, b \geq 0} \binom{a+b}{a} w_1^a w_2^b.
\end{align*}

By identifying the homogeneous parts of (cohomological) degree $r \geq 0$, we obtain

$$\overline{w}_r = \sum_{a+2b=r} \binom{a+b}{a} w_1^a w_2^b.$$

It is understood that a and b are nonnegative integers.
We use the grelex ordering on the monomials in $\mathbb{Z}_2[w_1, w_2]$ with $w_1 > w_2$. That is, $w_i^a w_j^b \prec w_i^c w_j^d$ if either $a + b < c + d$ or else $a + b = c + d$ and $a \leq c$. Of course, we will write $w_i^a w_j^b \prec w_i^c w_j^d$ when $w_i^a w_j^b \not\leq w_i^c w_j^d$ and $w_i^a w_j^b \not\prec w_i^c w_j^d$.

We shall prove that, with respect to this ordering, the reduced Groebner basis for the ideal $I_{2,n} := (\overline{w}_{n+2})$ is of the form $G = \{g_0, g_1, \ldots, g_{n+1}\}$ where $\text{LT}(g_m) = w_1^{n+1-m} w_2^m$, $0 \leq m \leq n + 1$. From this it follows immediately that a vector space basis for $H^*(G_{2,n}; \mathbb{Z}_2)$ is the set of all monomials $w_i^a w_j^b$ such that $a + b \leq n$.

Let us now define the polynomials $g_m (0 \leq m \leq n + 1)$.

Definition 2.1. For $0 \leq m \leq n + 1$, let

$$g_m := \sum_{a + 2b = n + 1 + m} \binom{a + b - m}{a} w_1^a w_2^b.$$

As before, it is understood that $a, b \geq 0$. Note that the (cohomological) degree of the polynomial g_m is $n + 1 + m$.

By comparing with the above formula for \overline{w}_r, it is obvious that $g_0 = \overline{w}_{n+1}$. Also,

$$w_2 \overline{w}_n = \sum_{a + 2b = n} \binom{a + b}{a} w_1^a w_2^{b+1} = \sum_{a + 2b = n + 2} \binom{a + b - 1}{a} w_1^a w_2^b = g_1.$$

The change of variable $b \mapsto b - 1$ does not affect the requirement that $b \geq 0$ since for $b = 0$ the binomial coefficient $\binom{a + b - 1}{a} = \binom{n + 1}{a}$ is equal to 0.

From the defining formula, one can see that b must be such that $m \leq b \leq \frac{n + 1 + m}{2}$. Namely, $a + b - m$ cannot be negative since $a + b - m < 0$ implies $a + 2b < 2(a + b) < 2m \leq n + 1 + m$, contradicting the requirement that $a + 2b = n + 1 + m$. Now, $a + b - m$ must be $\geq a$ in order for $\binom{a + b - m}{a}$ to be nonzero, and we conclude that $b \geq m$. The second inequality comes from the condition $a + 2b = n + 1 + m$. Therefore, we have

$$g_m = \sum_{b = m}^{\frac{n + 1 + m}{2}} \binom{n + 1 - b}{b - m} w_1^{n + 1 + m - 2b} w_2^b. \quad (2)$$

It is obvious that the summand obtained for $b = m$ provides the leading term $\text{LT}(g_m) = w_1^{n + 1 - m} w_2^m$.

In order to show that $G = \{g_0, g_1, \ldots, g_{n+1}\}$ is a Groebner basis for $I_{2,n}$, we define the ideal $I_G := (G) = (g_0, g_1, \ldots, g_{n+1})$ in $\mathbb{Z}_2[w_1, w_2]$. As we have already noticed, $\overline{w}_{n+1} = g_0 \in I_G$, $\overline{w}_{n+2} = w_1 \overline{w}_{n+1} + w_2 \overline{w}_n = w_1 g_0 + g_1 \in I_G$, so $I_{2,n} \subseteq I_G$.

It remains to prove that $I_G \subseteq I_{2,n}$ and that G is a Groebner basis. It turns out that the following proposition plays the crucial role in proving these facts.

Proposition 2.2. For each $m \in \{0, 1, \ldots, n - 1\}$, $w_2 g_m + w_1 g_{m+1} = g_{m+2}$. Also, we have that $w_2 g_n + w_1 g_{n+1} = 0$.

Proof. We calculate
\[w_2 g_m + w_1 g_{m+1} \]
\[= \sum_{a+2b=n+1+m} \left(\frac{a+b-m}{a} \right) w_1^a w_2^{b+1} + \sum_{a+2b=n+m+2} \left(\frac{a+b-m-1}{a} \right) w_1^{a+1} w_2^b \]
\[= \sum_{a+2b=n+m+3} \left(\frac{a+b-m-1}{a} \right) w_1^a w_2^b + \sum_{a+2b=n+m+3} \left(\frac{a+b-m-2}{a-1} \right) w_1^a w_2^b \]
\[= \sum_{a+2b=n+m+3} \left(\frac{a+b-m-2}{a} \right) w_1^a w_2^b = g_{m+2}. \]

We note that, for the similar reasons as above, the change of variable \(b \mapsto b - 1 \) (\(a \mapsto a - 1 \)) does not affect the requirement that \(b \geq 0 \) (\(a \geq 0 \)).

The second statement is a consequence of the equalities \(g_n = \text{LT}(g_n) = w_1 w_2^n \) and \(g_{n+1} = \text{LT}(g_{n+1}) = w_2^{n+1} \) which are easily seen from (2).

\[\square \]

Corollary 2.3. \(I_G \subseteq I_{2,n} \).

Proof. We already know that \(g_0 = \mathfrak{w}_{n+1} \in I_{2,n} \) and \(g_1 = w_1 \mathfrak{w}_{n+1} + \mathfrak{w}_{n+2} \in I_{2,n} \).

Proposition 2.2 applies, and by induction on \(m \) we have that \(g_m \in I_{2,n} \) (\(0 \leq m \leq n+1 \)). The corollary follows.

Therefore, \(G \) is a basis for \(I_{2,n} \), and we wish to prove that it is a Groebner basis. We recall that (for a fixed monomial ordering) the \(S \)-polynomial of polynomials \(f, g \in \mathbb{Z}_2[x_1, x_2, \ldots, x_k] \) is given by (we work with mod 2 coefficients)
\[S(f, g) = \frac{L}{\text{LT}(f)} \cdot f + \frac{L}{\text{LT}(g)} \cdot g, \]
where \(L = \text{lcm}(\text{LT}(f), \text{LT}(g)) \) denotes the least common multiple of \(\text{LT}(f) \) and \(\text{LT}(g) \).

If \(0 \leq m < m+s \leq n+1 \), we see that
\[\text{lcm}(\text{LT}(g_m), \text{LT}(g_{m+s})) = \text{lcm}(w_1^{n+1-m} w_2^m, w_1^{n+1-m-s} w_2^{m+s}) = w_1^{n+1-m} w_2^{m+s}, \]
and so we have
\[S(g_m, g_{m+s}) = w_2^5 g_m + w_1^5 g_{m+s}. \]

(3)

We are going to prove that \(G \) satisfies a sufficient condition (see [1]) for being a Groebner basis. In order to do that, we recall the following definition and theorem ([1, p. 219]). We formulate them for the field \(R = \mathbb{Z}_2 \). It is assumed that we have an ordering \(\preceq \) on the monomials in \(\mathbb{Z}_2[x_1, x_2, \ldots, x_k] \).

Definition 2.4. Let \(F \) be a finite subset of \(\mathbb{Z}_2[x_1, x_2, \ldots, x_k] \), \(f \in \mathbb{Z}_2[x_1, x_2, \ldots, x_k] \) a nonzero polynomial and \(t \) a fixed monomial. If \(f \) can be written as a finite sum of the form \(\sum_i m_i f_i \), where \(f_i \in F \) and \(m_i \in \mathbb{Z}_2[x_1, x_2, \ldots, x_k] \) are nonzero monomials such that \(\text{LT}(m_i f_i) \preceq t \) for all \(i \), we say that \(\sum_i m_i f_i \) is a \(t \)-representation of \(f \) with respect to \(F \).
Theorem 2.5. Let \(F \) be a finite subset of \(\mathbb{Z}_2[x_1, x_2, \ldots, x_k] \), \(0 \notin F \). If for all \(f_1, f_2 \in F \), \(S(f_1, f_2) \) either equals zero or has a \(t \)-representation with respect to \(F \) for some monomial \(t < \text{lcm}(\text{LT}(f_1), \text{LT}(f_2)) \), then \(F \) is a Groebner basis.

We need the following lemma.

Lemma 2.6. For \(0 \leq m < m + s \leq n + 1 \), \(S(g_m, g_{m+s}) = \sum_{i=0}^{s-1} w_1^i w_2^{s-1-i} g_{m+2+i} \).

It is understood that for \(m + s = n + 1 \), the last summand in this sum (for \(i = s - 1 \)) is zero.

Proof. We proceed by induction on \(s \). For \(s = 1 \), we obtain

\[S(g_m, g_{m+1}) = w_2 g_m + w_1 g_{m+1} = g_{m+2} = \sum_{i=0}^{0} w_1^i w_2^{0} g_{m+2+i}, \]

using (3) and Proposition 2.2. For the inductive step, we have

\[
S(g_m, g_{m+s}) = w_2^s g_m + w_1^s g_{m+s} \\
= w_2^s g_m + w_2 w_1^{s-1} g_{m+s-1} + w_2 w_1^{s-1} g_{m+s-1} + w_2^s g_{m+s} \\
= w_2 S(g_m, g_{m+s-1}) + w_1^{s-1} g_{m+s+1} \\
= w_1^{s-1} g_{m+s+1} + \sum_{i=0}^{s-2} w_1^i w_2^{s-1-i} g_{m+2+i} \\
= \sum_{i=0}^{s-1} w_1^i w_2^{s-1-i} g_{m+2+i},
\]

again by (3), Proposition 2.2 and the induction hypothesis. It is clear that if \(m + s = n + 1 \) then the summand \(w_1^{s-1} g_{m+s+1} \) does not appear in the sum (Proposition 2.2) and so \(0 \leq i \leq s - 2 \) in this case.

Theorem 2.7. Let \(n \geq 2 \). Then \(G = \{g_0, g_1, \ldots, g_{n+1}\} \) defined above is the reduced Groebner basis for the ideal \(I_{2,n} \) in \(\mathbb{Z}_2[w_1, w_2] \) with respect to the grlex ordering \(\preceq \).

Proof. We have already shown that \(G \) is a basis for \(I_{2,n} \). We wish to apply Theorem 2.5. Let \(g_m \) and \(g_{m+s} \) \((0 \leq m < m + s \leq n + 1) \) be two arbitrary elements of \(G \). If \(m = n \), then \(m + s \) must be \(n + 1 \) and, using (3) and Proposition 2.2, one obtains \(S(g_m, g_{m+s}) = S(g_n, g_{n+1}) = w_2 g_n + w_1 g_{n+1} = 0 \). If \(m \leq n - 1 \), then according to Lemma 2.6,

\[
S(g_m, g_{m+s}) = \sum_{i=0}^{s-1} w_1^i w_2^{s-1-i} g_{m+2+i}.
\]

Define \(t = t(m, s) := w_1^{n-1-m} w_2^{m+s+1} \). First of all, observe that

\[t < w_1^{n+1-m} w_2^{m+s} = \text{lcm}(\text{LT}(g_m), \text{LT}(g_{m+s})). \]
Let normal bundle \(M^s \) we recall the theorem of Hirsch (\([g]\) and \(\gamma \) in our later calculations. As we have already noticed, by formula (2), we have proved the following corollary.

Theorem 2.5 applies, and we conclude that \(G \) is a Groebner basis for \(I_{2,n} \).

To see that it is the reduced one, we observe that \(\{\text{LT}(g) \mid g \in G\} \) is the set of all monomials \(w_1^n w_2^b \) such that \(a + b = n + 1 \). Also, by looking at formula (2), we see that all other terms appearing in \(g_m \) have the sum of the exponents < \(n + 1 \), and so they cannot be divisible by any of the leading terms in \(G \).

Since \(G \) is a Groebner basis for \(I_{2,n} \), a vector space basis for \(\mathbb{Z}_2[w_1, w_2]/I_{2,n} \) could be formed by taking all the monomials in \(\mathbb{Z}_2[w_1, w_2] \) (more precisely, their classes) which are not divisible by any of \(\text{LT}(g_0), \text{LT}(g_1), \ldots, \text{LT}(g_{n+1}) \). As we have noticed in the proof of Theorem 2.7, the set \(\{\text{LT}(g) \mid g \in G\} \) is the set of all monomials \(w_1^n w_2^b \) such that \(a + b = n + 1 \). From this it is obvious that \(w_1^n w_2^b \) is not divisible by any of the leading terms \(\text{LT}(g_m) \) if and only if \(a + b \leq n \). By collecting all these facts, we have proved the following corollary.

Corollary 2.8. Let \(n \geq 2 \). If \(w_i \) is the \(i \)-th Stiefel-Whitney class of the canonical vector bundle \(\gamma_2 \) over \(G_{2,n} \), then the set \(\{w_1^n w_2^b \mid a + b \leq n\} \) is a vector space basis for \(H^*(G_{2,n}; \mathbb{Z}_2) \).

Let us now determine a few elements of the Groebner basis \(G \) which will be used in our later calculations. As we have already noticed, by formula (2), \(g_{n+1} = w_2^{n+1} \) and \(g_n = w_1 w_2^n \). Using this and Proposition 2.2, we obtain \(w_2 g_{n-1} = w_1 g_n + g_{n+1} = w_1^n w_2^{n+1} = w_1^n w_2^{n-1} + w_2^n \), and so we deduce that \(g_{n-1} = w_1^n w_2^{n+1} + w_2^n \).

Continuing in the same manner, one gets

\[
\begin{align*}
g_{n-2} &= w_1^n w_2^{n-2}; \\
g_{n-3} &= w_1^n w_2^{n-3} + w_2^n w_2^{n-2} + w_2^{n-1}; \\
g_{n-4} &= w_1^n w_2^{n-4} + w_1 w_2^{n-2}; \\
g_{n-5} &= w_1^n w_2^{n-5} + w_1^n w_2^{n-4} + w_2^{n-2}.
\end{align*}
\]

3. Immersions

In order to construct the immersions of Grassmannians \(G_{2,n} \) into Euclidean spaces, we recall the theorem of Hirsch ([4]) which states that a smooth compact \(m \)-manifold \(M^m \) immerses in \(\mathbb{R}^{m+l} \) if and only if the classifying map \(f_\nu : M^m \rightarrow BO \) of the stable normal bundle \(\nu \) of \(M^m \) lifts up to \(BO(l) \).

\[
\begin{array}{c}
\text{BO}(l) \\
\downarrow p \\
\text{M}^m \\
\downarrow f_\nu \\
\text{BO}
\end{array}
\]
Let \(\text{imm}(M^m) \) denote the least integer \(d \) such that \(M^m \) immerses into \(\mathbb{R}^d \). By Hirsch’s theorem, if \(w_k(\nu) \neq 0 \) then \(\text{imm}(M^m) \geq m + k \).

As in Corollary 2.8, let \(w_i \) be the \(i \)-th Stiefel-Whitney class of the canonical vector bundle \(\gamma_2 \) over \(G_{2,n} (n \geq 2) \). It is well known (see [8, p. 179]) that, if \(2^s \) is the least power of 2 exceeding \(n \), i.e., \(2^{s-1} \leq n < 2^s \), then for the total Stiefel-Whitney class \(w(\nu) \) of the stable normal bundle \(\nu \) of \(G_{2,n} \), one has

\[
 w(\nu) = (1 + w_1^2)(1 + w_1 + w_2)^{2^{s+1} - 2 - n}.
\]

(4)

For \(n = 2^s - 2 \), from formula (2) we have that

\[
 g_0 = \sum_{b=0}^{2^{s-1}-1} \left(\begin{array}{l} 2^s - 1 - b \\ b \end{array} \right) w_1^{2^s - 1 - 2b} w_2^b = w_1^{2^s-1}
\]

since the binomial coefficient \(\left(\begin{array}{l} 2^s - 1 - b \\ b \end{array} \right) \) is odd only for \(b = 0 \) (by Lucas formula). This means that \(w_1^{2^s-1} = 0 \) in \(H^*(G_{2,2^s-2}; \mathbb{Z}_2) \). But then \(w_1^{2^s-1} = 0 \) in \(H^*(G_{2,n}; \mathbb{Z}_2) \) for all \(n \leq 2^s - 2 \) since the inclusion \(i: G_{2,n} \rightarrow G_{2,2^s-2} \) is obviously covered by a map of canonical bundles \(\gamma_2 \).

If \(2^s-1 \leq n \leq 2^s - 2 \), then by formula (4) we have

\[
 w(\nu) = (1 + w_1^2)(1 + w_1 + w_2)^{2^{s-2} - n} = (1 + w_1^2)(1 + w_1^2 + w_2^2)(1 + w_1 + w_2)^{2^{s-2} - n}.
\]

Now, \(w_2^2 = 0 \) because it is a class of degree \(2^{s+1} > 2^{s+1} - 4 \geq 2n = \dim(G_{2,n}) \). Also, by the previous discussion \(w_1^2 = 0 \) and (4) simplifies to

\[
 w(\nu) = (1 + w_1^2)(1 + w_1 + w_2)^{2^{s-2} - n}.
\]

(5)

If \(n = 2^s - 1 \), then from (4) we obtain

\[
 w(\nu) = (1 + w_1^2)(1 + w_1 + w_2)^{2^{s-1}}
\]

\[
 = (1 + w_1^2)^2 \sum_{i=0}^{2^s-1} \left(\begin{array}{l} 2^s - 1 \\ i \end{array} \right) (1 + w_1)^i w_2^{2^s-1-i}
\]

\[
 = \sum_{i=0}^{2^s-1} (1 + w_1)^{i+2} w_2^{2^s-1-i}
\]

\[
 = \sum_{i=0}^{2^s-1} \sum_{j=0}^{i+2} \left(\begin{array}{l} i + 2 \\ j \end{array} \right) w_1^i w_2^{2^s-1-i}.
\]

(6)

We now recall a theorem of Oproiu ([8]), and we prove it using the Groebner basis from Theorem 2.7.

Theorem 3.1 (Oproiu [8]). For \(2 \leq 2^{s-1} \leq n < 2^s \), we have:

(a) \(\text{imm}(G_{2,n}) \geq 2^{s+1} - 2 \).

(b) \(\text{imm}(G_{2,2^s-1}) \geq 3 \cdot 2^s - 2 \).

Proof. (a) The top class in the expression (5) is \(w_{2^{s+1}-2-n} = w_1^2 w_2^{2^s-2-n} \), and since the sum of the exponents \(2 + 2^s - 2 - n = 2^s - n \leq 2^{s-1} \leq n \), by Corollary 2.8
we have that $w_{2s+1-2-2n}(\nu) \neq 0$ and we conclude that
\[\text{imm}(G_{2,n}) \geq \dim(G_{2,n}) + 2^{s+1} - 2 - 2n = 2^{s+1} - 2. \]

(b) From the equality (6) we calculate
\[w_{2^s}(\nu) = \sum_{i=2^{s-1}-1}^{2^s-1} \left(\frac{i+2}{2^s-2s} \right) w_1^{2i+2-2^s} w_2^{2^s-i} \]
\[= \sum_{l=0}^{2^s-1} \left(\frac{2^s + 1 - l}{2^s - 2l} \right) w_1^{2^s-2l} w_2^l = \sum_{l=0}^{2^s-1} \left(\frac{2^s + 1 - l}{l + 1} \right) w_1^{2^s-2l} w_2^l \]
\[= \left(\frac{2^s + 1}{1} \right) w_1^{2^s} + \left(\frac{2^s}{2} \right) w_1^{2^s-2} w_2 + \left(\frac{2^s - 1}{3} \right) w_1^{2^s-4} w_2^2 + \cdots \]
\[= w_1^{2^s} + w_1^{2^s-4} w_2^2 + \cdots, \]
where the unwritten monomials (if there are any) have the sum of the exponents \(\leq 2^s - 3 = n - 2 \). Note that, since $2^{s-1} \geq 2$, three written summands must appear in the sum.

On the other hand, from the equality (2) we see that the first element of the Groebner basis in this case is
\[g_0 = \sum_{b=0}^{2^s-1} \left(\frac{2^s - b}{b} \right) w_1^{2s-2b} w_2^b = w_1^{2^s} + (2^s - 1) w_1^{2^s-2} w_2 + \left(\frac{2^s - 2}{2} \right) w_1^{2^s-4} w_2^2 + \cdots \]
\[= w_1^{2^s} + w_1^{2^s-2} w_2 + w_1^{2^s-4} w_2^2 + \cdots. \]
Again, the unwritten monomials have the sum of the exponents \(\leq n - 2 \), and three written ones must be here.

By adding these two equalities together, using the fact that $g_0 = 0$ in $H^*(G_{2,n}; \mathbb{Z}_2)$ we obtain
\[w_{2^s}(\nu) = w_1^{2^s-2} w_2 + \cdots. \]

The sum of the exponents in the monomial $w_1^{2^s-2} w_2$ is $2^s - 1 = n$, and in the remaining monomials (if there are any) this sum is \(\leq n - 2 \), so none of these monomials is divisible by any of the leading terms $\text{LT}(g_m)$. This means that we have obtained the remainder of dividing $w_{2^s}(\nu)$ by G. Since $w_1^{2^s-2} w_2$ must appear in this remainder, we conclude that $w_{2^s}(\nu) \neq 0$. Finally, this implies that
\[\text{imm}(G_{2,2^s-1}) \geq \dim(G_{2,2^s-1}) + 2^s = 3 \cdot 2^s - 2 \]
and we are done. \(\square \)

Example 3.2. If $n = 2^{s-1} > 2$, then $\text{imm}(G_{2,2^{s-1}}) \geq 2^{s+1} - 2 = 2 \cdot \dim(G_{2,2^{s-1}}) - 2$. By the result of Massey [5, Theorem V], if M^m is orientable, $m > 4$ and $w_2(\nu) \cdot w_{m-2}(\nu) = 0$, then M^m immerses into \mathbb{R}^{2m-2}. Now, $G_{2,2^{s-1}}$ is orientable (Grassmannian $G_{k,n}$ is orientable if and only if $n + k$ is even; see [8, p. 179]), and from formula (5) we have
\[w(\nu) = (1 + w_1^2)(1 + w_1 + w_2)^{2^{s-1}-2}, \]
so
\[w_2(\nu) = \left(1 + \binom{2^{s-1} - 2}{2} \right) w_1^2 + (2^{s-1} - 2)w_2 = 0 \]
since \(2^{s-1} > 2\). This implies that \(G_{2,2^{s-1}}\) immerses into \(\mathbb{R}^{2^{s+1} - 2}\), i.e., \(\text{imm}(G_{2,2^{s-1}}) \leq 2^{s+1} - 2\), so for \(2^{s-1} > 2\), we actually have the equality
\[\text{imm}(G_{2,2^{s-1}}) = 2^{s+1} - 2. \]

Also, we note that for \(G_{2,3}\), Oproiu’s Theorem 3.1(b) gives \(\text{imm}(G_{2,3}) \geq 10\), and by Cohen’s theorem ([2]), \(\text{imm}(G_{2,3}) \leq 10\), so \(\text{imm}(G_{2,3}) = 10\). For \(G_{2,5}\), the results of Oproiu ([8]) and Monks ([6]) provide inequalities \(14 \leq \text{imm}(G_{2,5}) \leq 17\).

We now turn to the proof of the immersion result.

Lemma 3.3. Let \(n\) be an odd integer \(\geq 5\). For the stable normal bundle \(\nu\) of \(G_{2,n}\) we have:

(a) \(w_i(\nu) = 0\) for \(i \geq 2n - 5\);

(b) \(w_1(\nu) = w_1\);

(c) \(w_2(\nu) = w_2\) if \(n \equiv 3 \pmod{4}\); \(w_2(\nu) = w_1^2 + w_2\) if \(n \equiv 1 \pmod{4}\).

Proof. As above, let \(s\) be the integer such that \(2^{s-1} \leq n < 2^s\). Since \(n\) is odd, we have that \(n \geq 2^{s+1} + 1\). This implies \(4n \geq 2^{s+1} + 4\), i.e., \(2^{s+1} - 2 - 2n < 2n - 5\).

If \(n \neq 2^s - 1\), then from formula (5) we see that the top class in the expression for \(w(\nu)\), namely \(w_1^2w_2^{2^s - 2 - n}\), is of degree \(2^{s+1} - 2 - 2n\), and by the previous inequality, we deduce that \(w_i(\nu) = 0\) for \(i \geq 2n - 5\).

For \(n = 2^s - 1\), Oproiu shows [8, p. 182] that the top nonzero class in the expression (4) is of degree \(2^s\) and, since \(n \geq 7\) in this case, we conclude that \(2^s = n + 1 < 2n - 5\) obtaining (a).

From formula (4) we read off
\[w_1(\nu) = (2^{s+1} - 2 - n)w_1; \]
\[w_2(\nu) = \left(1 + \binom{2^{s+1} - 2 - n}{2} \right) w_1^2 + (2^{s+1} - 2 - n)w_2 \]
and obtain (b) and (c).

A few more lemmas will be useful.

Lemma 3.4. In \(H^*(G_{2,n}; \mathbb{Z}_2)\), for all nonnegative integers \(a\) and \(b\), the following relations hold:

(a) \(Sq^1(w_1^aw_2^b) = (a + b)w_1^{a+1}w_2^b\);

(b) \(Sq^2(w_1^aw_2^b) = bw_1^{a+1}w_2^b + (a + b)w_1^{a+2}w_2^b\).

Proof. Since \(Sq^2(w_1^a) = \binom{a}{2}w_1^{a+1}\), the formulas are true for \(b = 0\). We proceed by induction on \(b\).

(a) By the Wu formula, \(Sq^1w_2 = w_1w_2\). Using the Cartan formula and the induction hypothesis, we have...
By Corollary 2.8, the set \(H \) is an odd integer

Proof. >

(b) For the induction step we use again formulas of Cartan and Wu, the statement (a) and the fact that \(Sq^2 w_2 = w_2^2 \). We calculate

\[
Sq^2(w_1^a w_2^b) = Sq^2(w_2 w_1^a w_2^{b-1}) \\
= w_1 w_2^a w_2^{b-1} + (a + b - 1) w_2^a w_2^{b-1} \\
= (a + b) w_1^a w_2^b.
\]

and the proof is complete.

\[\square \]

Lemma 3.5. The map \((Sq^2 + w_2(\nu)) : H^{2n-5}(G_{2n};\mathbb{Z}_2) \to H^{2n-3}(G_{2n};\mathbb{Z}_2) \), where \(n \) is an odd integer \(\geq 5 \), is determined by the equalities

\[
(Sq^2 + w_2(\nu))(w_1^5 w_2^{n-5}) = (Sq^2 + w_2(\nu))(w_1^3 w_2^{n-4}) = (Sq^2 + w_2(\nu))(w_1 w_2^{n-3}) \\
= w_1 w_2^{n-2}.
\]

Proof. By Corollary 2.8, the set \(\{w_1^5 w_2^{n-5}, w_1^3 w_2^{n-4}, w_1 w_2^{n-3}\} \) is a vector space basis for \(H^{2n-3}(G_{2n};\mathbb{Z}_2) \).

Now, if \(n \equiv 3 \pmod{4} \), using Lemma 3.3, Lemma 3.4 and Groebner basis from Theorem 2.7, we calculate

\[
(Sq^2 + w_2(\nu))(w_1^5 w_2^{n-5}) = Sq^2(w_1^5 w_2^{n-5}) + w_2 w_1^5 w_2^{n-5} \\
= (n - 5) w_1^5 w_2^{n-5} + \binom{n}{2} w_1^7 w_2^{n-5} + w_1^5 w_2^{n-4} \\
= w_1^7 w_2^{n-5} + w_1^5 w_2^{n-4} \\
= w_1(g_{n-5} + w_1^4 w_2^{n-4} + w_2^{n-2}) + w_1^5 w_2^{n-4} = w_1 w_2^{n-2};
\]

\[
(Sq^2 + w_2(\nu))(w_1^3 w_2^{n-4}) = Sq^2(w_1^3 w_2^{n-4}) + w_2 w_1^3 w_2^{n-4} \\
= (n - 4) w_1^3 w_2^{n-4} + \binom{n-1}{2} w_1^5 w_2^{n-4} + w_1^3 w_2^{n-3} \\
= w_1^5 w_2^{n-4} = g_{n-4} + w_1 w_2^{n-2} = w_1 w_2^{n-2};
\]

\[
(Sq^2 + w_2(\nu))(w_1 w_2^{n-3}) = Sq^2(w_1 w_2^{n-3}) + w_2 w_1 w_2^{n-3} \\
= (n - 3) w_1 w_2^{n-2} + \binom{n-2}{2} w_1^3 w_2^{n-3} + w_1 w_2^{n-2} \\
= w_1 w_2^{n-2}.
\]
Similarly, if \(n \equiv 1 \pmod{4} \), we have
\[
(Sq^2 + w_2(\nu))(w_1^5w_2^{n-5}) = Sq^2(w_1^5w_2^{n-5}) + w_1^2w_1^5w_2^{n-5} + w_2w_1^5w_2^{n-5}
\]
\[
= (n - 5)w_1^5w_2^{n-5} + \binom{n}{2}w_1^7w_2^{n-5} + w_1^7w_2^{n-5} + w_1^5w_2^{n-4}
\]
\[
= w_1^5w_2^{n-5} + w_1^5w_2^{n-4}
\]
\[
= w_1(g_{n-5} + w_4w_2^{n-4} + w_2^{n-2}) + w_1^5w_2^{n-4} = w_1w_2^{n-2};
\]
\[
(Sq^2 + w_2(\nu))(w_1^3w_2^{n-4}) = Sq^2(w_1^3w_2^{n-4}) + w_1^2w_1^3w_2^{n-4} + w_2w_1^3w_2^{n-4}
\]
\[
= (n - 4)w_1^3w_2^{n-3} + \binom{n-1}{2}w_1^5w_2^{n-4} + w_1^5w_2^{n-4} + w_1^3w_2^{n-3}
\]
\[
= w_1^5w_2^{n-4} = g_{n-4} + w_1w_2^{n-2} = w_1w_2^{n-2};
\]
\[
(Sq^2 + w_2(\nu))(w_1^w_2^{n-3}) = Sq^2(w_1^w_2^{n-3}) + w_1^2w_1^w_2^{n-3} + w_2w_1^w_2^{n-3}
\]
\[
= (n - 3)w_1w_2^{n-2} + \binom{n-2}{2}w_1^3w_2^{n-3} + w_1^3w_2^{n-3} + w_1w_2^{n-2}
\]
\[
= w_1w_2^{n-2},
\]
and the proof of the lemma is complete. \(\square\)

Lemma 3.6. The map \(Sq^1 : H^{2n-2}(G_{2,n};\mathbb{Z}_2) \to H^{2n-1}(G_{2,n};\mathbb{Z}_2) \), where \(n \) is an odd integer \(\geq 5 \), is trivial.

Proof. The set \(\{w_1^2w_2^{n-2}, w_2^{n-1}\} \) is a vector space basis for \(H^{2n-2}(G_{2,n};\mathbb{Z}_2) \) (Corollary 2.8). Using Lemma 3.4, we obtain
\[
Sq^1(w_1^2w_2^{n-2}) = nw_1^2w_2^{n-2} = w_1^3w_2^{n-2} = g_{n-2} = 0;
\]
\[
Sq^1(w_2^{n-1}) = (n - 1)w_1w_2^{n-1} = 0,
\]
which proves the lemma. \(\square\)

Lemma 3.7. The map \((Sq^2 + w_3(\nu)) : H^{2n-3}(G_{2,n};\mathbb{Z}_2) \to H^{2n-1}(G_{2,n};\mathbb{Z}_2) \), where \(n \) is an odd integer \(\geq 5 \), is determined by the equalities:
\[
(Sq^2 + w_2(\nu))(w_1^w_2^{n-3}) = w_1w_2^{n-1} \neq 0;
\]
\[
(Sq^2 + w_2(\nu))(w_1^w_2^{n-2}) = 0.
\]

Proof. Again by Corollary 2.8, the classes \(w_1^3w_2^{n-3} \) and \(w_1w_2^{n-2} \) form a vector space basis for \(H^{2n-3}(G_{2,n};\mathbb{Z}_2) \), and the class \(w_1w_2^{n-1} \) is nontrivial in \(H^{2n-1}(G_{2,n};\mathbb{Z}_2) \cong \mathbb{Z}_2 \).

By Lemma 3.3 and Lemma 3.4, for \(n = 3 \pmod{4} \) we have
\[
(Sq^2 + w_2(\nu))(w_1^w_2^{n-3}) = Sq^2(w_1^w_2^{n-3}) + w_2w_1^w_2^{n-3}
\]
\[
= (n - 3)w_1^w_2^{n-3} + \binom{n}{2}w_1^w_2^{n-3} + w_1^w_2^{n-2}
\]
\[
= w_1^w_2^{n-3} + w_1^w_2^{n-2}
\]
\[
= w_1(g_{n-3} + w_2^{n-2} + w_2^{n-1}) + w_1^w_2^{n-2}
\]
\[
= w_1w_2^{n-1};
\]
If H is a vector space basis for $H^{n-2}(G_2;\mathbb{Z}_2)$, which was to be proved.

Likewise, for $n \equiv 1 \pmod{4}$, we obtain

\[
(Sq^2 + w_2(\nu))(w_1^{n-2}) = Sq^2(w_1^{n-2}) + w_2 w_1^{n-2} = (n-2)w_1 w_2^{n-1} + \left(\frac{n-1}{2}\right)w_1^3 w_2^{n-2} + w_1 w_2^{n-1}
\]

which was to be proved. \hfill \Box

Lemma 3.8. The map $Sq^1 : H^{2n-3}(G_2;\mathbb{Z}_2) \to H^{2n-2}(G_2;\mathbb{Z}_2)$, where n is an odd integer ≥ 5, is given by the equalities:

\[
Sq^1(w_1^{n-3}) = w_1^2 w_2^{n-2} + w_2^{n-1};
\]

\[
Sq^1(w_1 w_2^{n-2}) = 0.
\]

Proof. As we have noticed in the proof of the previous lemma, the set

\[
\{w_1^3 w_2^{n-3}, w_1 w_2^{n-2}\}
\]

is a vector space basis for $H^{2n-3}(G_2;\mathbb{Z}_2)$. So, we calculate

\[
Sq^1(w_1^{n-3}) = nw_1^4 w_2^{n-3} = w_1^4 w_2^{n-3} = g_{n-3} + w_1^2 w_2^{n-2} + w_2^{n-1} = w_1^2 w_2^{n-2} + w_2^{n-1},
\]

\[
Sq^1(w_1 w_2^{n-2}) = (n-1)w_1^2 w_2^{n-2} = 0
\]

by Lemma 3.4.

Lemma 3.9. If n is an odd integer ≥ 5, then in $H^*(G_2;\mathbb{Z}_2)$ we have

\[
(Sq^2 + w_1(\nu)^2 + w_2(\nu)) Sq^1(w_1^{n-4} + w_1 w_2^{n-3}) = w_1^2 w_2^{n-2}.
\]

Proof. By Lemma 3.4(a),

\[
Sq^1(w_1^{n-4} + w_1 w_2^{n-3}) = (n-1)w_1^4 w_2^{n-4} + (n-2)w_1^2 w_2^{n-3} = w_1^2 w_2^{n-3}.
\]

If $n \equiv 3 \pmod{4}$, by Lemma 3.3 and Lemma 3.4(b), one obtains

\[
(Sq^2 + w_1(\nu)^2 + w_2(\nu))(w_1^{n-3}) = Sq^2(w_1^{n-3}) + w_1^2 w_1^2 w_2^{n-3} + 2w_1 w_2^{n-3}
\]

\[
= (n-3)w_1^2 w_2^{n-2} + \left(\frac{n-1}{2}\right)w_1^4 w_2^{n-3} + w_1^2 w_2^{n-3}
\]

\[+ w_1^2 w_2^{n-2} = w_1^2 w_2^{n-3}.\]
If \(n \equiv 1 \pmod{4} \), again by Lemma 3.3 and Lemma 3.4(b), we have
\[
(Sq^2 + w_1(\nu)^2 + w_2(\nu))(w_1^2 w_2^{n-3}) = Sq^2(w_1^2 w_2^{n-3}) + w_2 w_1^2 w_2^{n-3} = (n - 3)w_1^2 w_2^{n-2} + \binom{n - 1}{2} w_1^4 w_2^{n-3} + w_1^2 w_2^{n-2} = w_1^2 w_2^{n-2},
\]
and we are done.

Lemma 3.10. If \(n \) is an odd integer \(\geq 5 \), then in \(H^*(G_{2,n};\mathbb{Z}_2) \) the following equality holds:
\[
(Sq^2 + w_2(\nu))(w_1^2 w_2^{n-3}) = w_2^{n-1}.
\]

Proof. As before, we use Lemma 3.3, Lemma 3.4 and Groebner basis from Theorem 2.7.

If \(n \equiv 3 \pmod{4} \),
\[
(Sq^2 + w_2(\nu))(w_1^2 w_2^{n-3}) = Sq^2(w_1^2 w_2^{n-3}) + w_2 w_1^2 w_2^{n-3} = (n - 3)w_1^2 w_2^{n-2} + \binom{n - 1}{2} w_1^4 w_2^{n-3} + w_1^2 w_2^{n-2} = w_1^4 w_2^{n-3} + w_1^2 w_2^{n-2} = g_{n-3} + w_2^{n-1} = w_2^{n-1}.
\]

If \(n \equiv 1 \pmod{4} \),
\[
(Sq^2 + w_2(\nu))(w_1^2 w_2^{n-3}) = Sq^2(w_1^2 w_2^{n-3}) + w_2 w_1^2 w_2^{n-3} = (n - 3)w_1^2 w_2^{n-2} + \binom{n - 1}{2} w_1^4 w_2^{n-3} + w_1^2 w_2^{n-2} = w_1^4 w_2^{n-3} + w_1^2 w_2^{n-2} = g_{n-3} + w_2^{n-1} = w_2^{n-1},
\]
completing the proof.

We are now ready to prove our immersion result.

Theorem 3.11. If \(n \) is an odd integer \(\geq 7 \), then \(G_{2,n} \) immerses into \(\mathbb{R}^{4n-5} \).

Proof. Let \(f_\nu : G_{2,n} \to BO \) be the classifying map for the stable normal bundle \(\nu \) of \(G_{2,n} \). We want to show that \(f_\nu \) can be lifted up to \(BO(2n-5) \). We will use the 2n-MPT for the fibration \(p : BO(2n-5) \to BO \) which can be constructed by the method of Gitler and Mahowald ([3]) using the result of Nussbaum ([7]) who proved that their method is applicable to the fibrations \(p : BO(l) \to BO \) when \(l \) is odd. The tower is presented in Figure 1 (\(K_m \) stands for the Eilenberg-MacLane space \(K(\mathbb{Z}_2, m) \)).

The relations that produce the \(k \)-invariants are
\[
k_1^2 : (Sq^2 + w_2)w_{2n-4} = 0,
\]
\[
k_2^2 : (Sq^2 + w_1^2 + w_2)S_1^1 w_{2n-4} + S_1^1 w_{2n-2} = 0,
\]
\[
k_3^2 : \begin{cases} (Sq^4 + w_4)w_{2n-4} + w_2 w_{2n-2} = 0, & n \equiv 3 \pmod{4} \\ (Sq^4 + w_4)w_{2n-4} + S_1^2 w_{2n-2} = 0, & n \equiv 1 \pmod{4} \end{cases},
\]
\[
k_1^3 : (Sq^2 + w_2)k_1^2 + Sq^4 k_2^2 = 0.
\]
Figure 1: $2n$-MPT for $p : BO(2n - 5) \to BO$

Since $\dim(G_{2,n}) = 2n$, f_ν lifts up to $BO(2n - 5)$ if and only if it lifts up to E_3.

By Lemma 3.3(a), $f^*_\nu(w_{2n-4}) = w_{2n-4}(\nu) = 0$, $f^*_\nu(w_{2n-2}) = w_{2n-2}(\nu) = 0$, so f_ν can be lifted up to E_1, i.e., there is a map $g_1 : G_{2,n} \to E_1$ such that $g_1 \circ g_1 = f_\nu$.

In order to make the next step (to lift f_ν up to E_2), we need to modify (if necessary) the lifting g_1 to a lifting g such that $g^*(k^2_1) = g^*(k^2_2) = g^*(k^2_3) = 0$. By choosing a map $\alpha \times \beta : G_{2,n} \to K_{2n-5} \times K_{2n-3} = \Omega(K_{2n-4} \times K_{2n-2})$ (i.e., classes $\alpha \in H^{2n-5}(G_{2,n}; \mathbb{Z}_2)$ and $\beta \in H^{2n-3}(G_{2,n}; \mathbb{Z}_2)$), we get another lifting $g : G_{2,n} \to E_1$ as the composition

$$G_{2,n} \xrightarrow{\Delta} G_{2,n} \times G_{2,n} \xrightarrow{(\alpha \times \beta) \times g_1} K_{2n-5} \times K_{2n-3} \times E_1 \xrightarrow{\mu} E_1,$$

where Δ is the diagonal mapping and $\mu : \Omega(K_{2n-4} \times K_{2n-2}) \times E_1 \to E_1$ is the action of the fibre in the principal fibration $q_1 : E_1 \to BO$. So, we are looking for classes α and β such that $g^*(k^2_1) = g^*(k^2_2) = g^*(k^2_3) = 0$. By looking at the relations that produce the k-invariants k^2_1, k^2_2 and k^2_3, we conclude that the following equalities hold (see [3, p. 95]):

$$g^*(k^2_1) = g^*_1(k^2_1) + (Sq^2 + w_2(\nu))(\alpha);$$
$$g^*(k^2_2) = g^*_1(k^2_2) + (Sq^2 + w_1(\nu)^2 + w_2(\nu))Sq^1\alpha + Sq^1\beta;$$
$$g^*(k^2_3) = \begin{cases} g^*_1(k^2_3) + (Sq^4 + w_4(\nu))(\alpha) + w_2 \cdot \beta, & n \equiv 3 \pmod{4} \\ g^*_1(k^2_3) + (Sq^4 + w_4(\nu))(\alpha) + Sq^2\beta, & n \equiv 1 \pmod{4}. \end{cases}$$

First, we need to prove that the class $g^*_1(k^2_3)$ is in the image of the map $(Sq^2 + w_2(\nu)) : H^{2n-3}(G_{2,n}; \mathbb{Z}_2) \to H^{2n-3}(G_{2,n}; \mathbb{Z}_2)$. The k-invariant k^3_1 is produced by the relation $(Sq^2 + w_2)k^3_1 + Sq^2 k^3_2 = 0$ which holds in $H^*(E_1; \mathbb{Z}_2)$. Applying g_1^*, we get

$$(Sq^2 + w_2(\nu))g^*_1(k^2_3) = Sq^1 g^*_1(k^2_2).$$

But, by Lemma 3.6, $Sq^1 g^*_1(k^2_2) = 0$. Hence, $g^*_1(k^2_3)$ is in the kernel of the map $(Sq^2 + w_2(\nu)) : H^{2n-3}(G_{2,n}; \mathbb{Z}_2) \to H^{2n-3}(G_{2,n}; \mathbb{Z}_2)$.
w_2(\nu)) : H^{2n-3}(G_{2,n}; \mathbb{Z}_2) \rightarrow H^{2n-1}(G_{2,n}; \mathbb{Z}_2), and according to Lemmas 3.5 and 3.7, this kernel coincides with the image of the map (Sq^2 + w_2(\nu)) : H^{2n-5}(G_{2,n}; \mathbb{Z}_2) \rightarrow H^{2n-3}(G_{2,n}; \mathbb{Z}_2). Thus, we can find a class \alpha \in H^{2n-3}(G_{2,n}; \mathbb{Z}_2) such that g^* (k_2^3) = 0.

Since H^{2n-2}(G_{2,n}; \mathbb{Z}_2) is generated by the classes w_1^2 w_2^{n-2} and w_2^{n-1} (Corollary 2.8), by Lemma 3.8 and Lemma 3.9 we see that we can choose a class \beta \in H^{2n-3}(G_{2,n}; \mathbb{Z}_2) and modify \alpha (by adding, if necessary, the class w_1^2 w_2^{n-2} + w_1 w_2^{n-3}) to obtain g such that g^* (k_2^3) = 0. Since w_1^2 w_2^{n-2} + w_1 w_2^{n-3} is in the kernel of the map (Sq^2 + w_2(\nu)) : H^{2n-5}(G_{2,n}; \mathbb{Z}_2) \rightarrow H^{2n-3}(G_{2,n}; \mathbb{Z}_2) (Lemma 3.5), adding this class to the previous \alpha will not spoil the equality g^* (k_2^3) = 0.

Finally, observe the class \beta' := w_1 w_2^{n-2} \in H^{2n-3}(G_{2,n}; \mathbb{Z}_2). According to Corollary 2.8, w_2 \cdot \beta' = w_1 w_2^{n-1} \neq 0 and if \eta \equiv 1 (\text{mod } 4), by Lemma 3.4,

\[Sq^2 \beta' = (n - 2)w_1 w_2^{n-1} + \left(\frac{n - 1}{2} \right) w_1^3 w_2^{n-2} = w_1 w_2^{n-1} \neq 0. \]

Since \beta' is in the kernel of the map Sq^1 : H^{2n-3}(G_{2,n}; \mathbb{Z}_2) \rightarrow H^{2n-2}(G_{2,n}; \mathbb{Z}_2) (Lemma 3.8), we can add this class to the previous \beta (if necessary) and obtain a lifting \eta such that g^* (k_2^3) = g^* (k_2^3) = g^* (k_2^3) = 0.

Therefore, we can lift \eta up to E_2, i.e., there is a map \eta_1 : G_{2,n} \rightarrow E_2 such that q_1 \circ q_2 \circ h_1 = q_1 \circ g = f_\nu.

We need to make one more step: to prove that the lifting \eta_1 can be modified to a lifting \eta which lifts up to E_3, i.e., such that h^* (k_2^3) = 0. Arguing as before, we see that it suffices to find classes \alpha \in H^{2n-4}(G_{2,n}; \mathbb{Z}_2) and \beta \in H^{2n-3}(G_{2,n}; \mathbb{Z}_2) such that (Sq^2 + w_2(\nu))(\alpha) + Sq^1 \beta = h^* (k_2^3) \in H^{2n-4}(G_{2,n}; \mathbb{Z}_2). But, since w_1^2 w_2^{n-2} and w_2^{n-1} generate H^{2n-3}(G_{2,n}; \mathbb{Z}_2), according to Lemma 3.8 and Lemma 3.10, such classes \alpha and \beta exist (that is, the indeterminacy of k_2^3 is all of H^{2n-2}(G_{2,n}; \mathbb{Z}_2)). This completes the proof of the theorem.

\[\square \]

References

Zoran Z. Petrović zoranp@matf.bg.ac.rs
University of Belgrade, Faculty of Mathematics, Studentski trg 16, Belgrade, Serbia

Branislav I. Prvulović bane@matf.bg.ac.rs
University of Belgrade, Faculty of Mathematics, Studentski trg 16, Belgrade, Serbia