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1. Prologus Terræ Sanctæ

“La Géométrie, qui ne doit qu’obéir à la Physique

quand elle se réunit avec elle, lui commande quelque-

fois” (Geometry, which should only obey Physics,

when united with it sometimes commands it), so

wrote the great philosopher and mathematician Jean

d’Alembert in his Essai d’une nouvelle théorie de la ré-

sistance des fluides (1752). This coextensivity between

natural philosophy and geometry, conceived in an-

tiquity, fashioned in Early Modernity and shaped in

the Industrial Age, fully blossomed in the XXth cen-

tury.

The two corner-stones of modern physics – gen-

eral relativity which describes the large structure of

space-time and quantum field theory, the elementary

particles which constitute all matter – are well un-

derstood as geometrical in nature. The former, is the

study of how the Ricci curvature of spacetime is in-

duced by the energy-momentum tensor in an equal-

ity dictated by the Einstein-Hilbert action and the lat-

ter, how particles are realizations of connections and

representations of appropriate principal bundles gov-

erned by the Standard Model action. The brain-child

of this tradition of geometrization and unification,

dominating mathematical and theoretical physics as

we enter the XXIst century, is string theory.

It is well-known by now that string theory is a

quantum theory unifying gravity and field theory in

ten spacetime dimensions (or, equivalently, a conjec-

tural M-theory in 11 dimensions). We must therefore

account for 10−4 = 6 “missing” dimensions. Over the

years, there has emerged a plethora of scenarios in

the interplay between the physics of our four dimen-

sions and these 6 dimensions, our story here will fo-

* Department of Mathematics, City University London;
School of Physics, NanKai University, Tianjin, China; and
Merton College, University of Oxford
E-mail: hey@maths.ox.ac.uk

cus on the most traditional and the most richly de-

veloped, viz., the geometry of Calabi-Yau threefolds.

Indeed, so great is the number of possible scenarios

that it poses as one of the greatest theoretical chal-

lenges to modern physics, in what has become known

as the “vacuum degeneracy problem”, where one is

confronted with how to select our universe amidst

a landscape – a word which has become a technical

term – of solutions.

I shall not discuss the landscape here, nor its

philosophical, anthropological or statistical implica-

tions. For this purpose, I have carefully chosen the

word cartography in the title and will discuss some

of the progressive uncovering of the still mysterious

space of Calabi-Yau geometries, as if charting the ge-

ography of a vast and fertile land, and, with a histori-

cal outlook, review the explicit construction of Calabi-

Yau threefolds for the sake of physics. For this pur-

pose too I have named this introductory section after

the prologue of the famous medieval treatise on the

Holy Land [1] by Burchard, who ventured to produce

the best early maps of that alluring place.

2. Triadophilia

Our story begins with 1985, when Gross, Harvey,

Martinec, and Rhom – jocundly called the “Princeton

string quartet” – formulated1 the heterotic string. By

fusing the bosonic string (whose critical dimension is

26) with the superstring (whose critical dimension is

10) in the process of “heterosis” by assigning them

to be respectively left and right moving modes of the

string, the quartet obtained something quite revela-

tory: an interesting gauge group. Using the fact that

1 For an entertaining account of the history of string the-
ory, aimed at the public and the specialist alike, the reader
is referred to [3]. For the history of Calabi-Yau manifolds,
especially in relation to string theory, the book [4] is highly
recommended.
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26−10 = 16 and that in 16 dimensions there are only

two even self-dual integral lattices in which quantized

momenta could take value, viz., the root lattices of

E8×E8 and of D16 = so(32), two heterotic string theo-

ries were constructed.

2.1 String Phenomenology

All at once, the possibility of obtaining chiral

fermions in spacetime, crucial to the Standard Model,

is realized. Now, E8 is of particular significance, be-

cause of the following sequence of embeddings of Lie

groups

(2.1)

SU(3)×SU(2)×U(1)⊂ SU(5)⊂ SO(10)⊂ E6 ⊂ E7 ⊂ E8

The first group GSM = SU(3)×SU(2)×U(1) is, of course,
that of the Standard Model of particles where the

SU(3) factor is the gauge group of QCD governing

the dynamics of baryons and the SU(2)×U(1), that
of QED, governing the leptons. Oftentimes, we add

one more U(1) factor, denoted as U(1)B−L, to record

the difference between baryon and lepton number, in

which caseG′SM = SU(3)×SU(2)×U(1)×U(1)B−L and the

above sequence of embeddings skips SU(5).
In terms of the representation of G′SM , denoted as

(a,b)(c,d) where a is a representation of SU(3), b, that
of SU(2), and (a,b) are the charges of the two Abelian
U(1) groups, the Standard Model elementary particles

(all are fermions except the scalar Higgs) are as fol-

lows

SU(3) × SU(2) ×
U(1)×U(1)B−L

Multiplicity Particle

(3,2)1,1 3 left-handed

quark

(1,1)6,3 3 left-handed

anti-lepton

(3,1)−4,−1 3 left-handed

anti-up

(3,1)2,−1 3 left-handed

anti-down

(1,2)−3,−3 3 left-handed

lepton

(1,1)0,3 3 left-handed

anti-neutrino

(1,2)3,0 1 up Higgs

(1,2)−3,0 1 down Higgs

In addition to these are vector bosons: (I) the con-

nection associated to the group SU(3), called the glu-

ons, of which there are 8, corresponding to the di-

mension of SU(3), and (II) the connection associated

to SU(2)×U(1), called W±, Z, and the photon; a to-

tal of 4 corresponding to the its dimension. We point

out that henceforth by the Standard Model – and in-

deed likewise for all ensuing gauge theories – we shall

actually mean the (minimal) supersymmetric exten-

sion thereof, dubbed the MSSM, and to each of the

fermions above there is a bosonic partner and vice

versa.

Of note in the table is the number 3, signifying

that the particles replicate themselves in three fam-

ilies, or generations, except for the recently discov-

ered Higgs boson, of which is only a single doublet

under SU(2). That there should be 3 and only 3 gener-
ations, with vastly disparate masses, is an experimen-

tal fact with confidence [5] level σ = 5.3 and has no sat-
isfactory theoretical explanation to date. The possible

symmetry amongst them, called flavour symmetry, is

independent of the gauge symmetry of GSM .

The fact that GSM is not simple has troubled many

physicists since the early days: it would be more

pleasant to place the baryons and leptons in the same

footing by allowing them to be in the same repre-

sentation of a larger simple gauge group. This is the

motivation for the sequence in (2.1): starting from

SU(5), theories whose gauge groups are simple are

called grand unified theories (GUTs), the most pop-

ular historically had been SU(5), SO(10) and E6, long

before string theory came onto the scene in theoreti-

cal physics.

That the heterotic string could produce poten-

tially realistic (supersymmetric) grand unified theo-

ries, in addition to the natural incorporation of the

graviton, gave the first glimpse of string theory as

a candidate for ToE, the Theory of Everything. To-

gether with anomaly cancellation by Green-Schwarz

[6] which showed the quantum consistency of string

theory in the previous year, and the subsequent pa-

per by Candelas-Horowitz-Strominger-Witten (CHSW)

[7] in the following year, to which we now turn, this

constituted the “First String Revolution”.

The paper of CHSW, gave the conditions for which

the heterotic string, when compactified – i.e., its

10-dimensional background is taken to be of the form

R1,3×X6 with R1,3 our familiar space-time and X6 some

small curled up 6-manifold, endowed with a vector

bundle V , at the Planck scale too small to be cur-

rently observed directly – would give a supersymmet-

ric gauge theory in R1,3 with potentially realistic par-

ticle spectrum. In short, the paradigm is simply

Geometry of X6←→ physics of R1,3.

What better realization of that noble goal of the ge-

ometrization of nature which has been exalted for so

long!

Specifically, with more generality, the set of con-

ditions, known as the Strominger System [8], for the

low energy low-dimensional theory on R1,3 to be a su-

persymmetric gauge theory are

1. X6 is complex;

2. The Hermitian metric ω on X6 and h on V satisfy
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(a) ∂∂ω = iTrF ∧F− iTrR∧R where F is the cur-

vature (field strength) 2-form for h and R the

(Hull) curvature 2-form for ω ;

(b) d†ω = i(∂ − ∂ ) ln ||Ω||, where Ω is a holomor-

phic 3-form on X6 which must exist. Re-

cently, Li-Yau [9] showed that this is equiva-

lent to ω being balanced, i.e., d
(
||Ω||ω2

)
= 0;

3. F satisfies the Hermitian Yang-Mills equations

ω
abFab = 0 , Fab = Fab = 0 .

We will not discuss the technicalities of the above

concepts in detail here but have included them for

completeness. Suffice it to say that the general so-

lutions to this system continue to inspire research

today, engendering more geometric structures that

contribute to the landscape. The simplest and most

famous solution, of course, is when X6 is a Calabi-Yau

threefold (CY3), which we now address.

2.2 Calabi-Yau Manifolds

The history of Calabi-Yau manifolds is a distin-

guished one and dates long before string theory or

even the conception of the Standard Model (Glashow-

Salam-Weinberg’s electroweak theory was finalized in

1967). This is a golden example of a magical aspect of

string theory: it consistently infringes, almost always

unexpectedly rather than forcibly, upon themost pro-

found mathematics of paramount concern, and then

quickly proceeds to contribute to and even revolu-

tionize it.

In 1954, Calabi conjectured [10] of the existence

of certain nicely behaved Riemannian metrics on

complex manifolds, that for X a compact Kähler man-

ifold2 with Kähler metric g and Kähler form ω , and R
a (1,1)-form representing the first Chern class of X ,
then

PROPOSITION 1. There exists a unique Kähler metric

g̃ with Kähler form ω̃ such that ω and ω̃ are cohomol-

ogous in H2(X ,R) and the Ricci form of ω̃ is R.

This conjecture was proven by S.-T. Yau in 1977-8

in his Fields-winning treatise [11]. In particular, the

case of vanishing first Chern class is also that of zero

Ricci curvature R, and such X is appropriately dubbed

Calabi-Yau and its unique Kähler metric inducing this

flat curvature is the Calabi-Yau metric. In summary,

we will take the following as equivalent definitions,

2 We briefly remind the reader that for a Hermitian (complex)
manifold X with metric h, one can extract a Riemannian met-
ric gR = 1

2 (h+h) as the real part. If, in addition the Hermitian

form ω = i
2 (h− h) written as the imaginary part, closes (i.e.,

dω = 0), then X is Kähler and gK = ω is the Kähler metric. In
such a case, there is a potential K whence the metric can be
locally derived: gK = i

2 ∂∂K. In a sense, a Kähler manifold is
one so well endowed that it has three compatible structures:
(complex) Hermitian, symplectic and Riemannian.

some more differential and some more algebraic, of

a Calabi-Yau n-fold X : that it is a compact Kähler man-

ifold of complex dimension n such that

• The canonical bundle, i.e., the higher exterior

power
∧n T ∗X of the cotangent bundle is the trivial

bundle OX ;

• X admits a nowhere vanishing holomorphic

n-form Ω;

• The first Chern class of the tangent bundle TX

vanishes: c1(TX ) = 0;
• X has a Kähler metric with vanishing Ricci curva-

ture;

• The holonomy of the Kähler metric is contained

in SU(n).

We will briefly mention the non-compact case to-

wards the end of this review but for now, and indeed

as far as the heterotic compactification is concerned,

we restrict our attention to compact, smooth Calabi-

Yau manifolds.

While Calabi-Yau manifolds are certainly of in-

terest in pure mathematics, what [7] showed is that,

remarkably, geometries of Calabi-Yau threefolds are

a concrete realization of X6 as a string compactifi-

cation scenario which could attain potentially realis-

tic physics.3 Thus is born the subject of string phe-

nomenology.

2.3 Triadophilia: Three Generations

Recall that the Strominger system also has a vec-

tor bundle V on the Calabi-Yau threefold X , luckily,
this can be chosen to be simply the tangent bundle

TX whose first Chern class we have already seen to

vanish. What is the gauge theory in R1,3? The rule

turns out to be simple: the low-energy (grand unified)

gauge group is simply the commutant of the structure

group of V in E8. The astute reader may wonder about

the “other” E8 factor. Indeed, in heterotic compactifi-

cations, only one of the E8 is declared “visible” and

the other, called “hidden”, is placed at the end of the

universe and actually has rich physics in its own right

[12–14, 16].

The structure group for V = TX is here simply the

holonomy group SU(3) and its commutant in E8 is E6.

In other words, we naturally have an E6 GUT theory

in R1,3. By taking V not being TX , but, for example,

a stable SU(4) or SU(5) bundle, one could obtain the

more interesting commutant SU(10) or SU(5) GUTs.
This has come to be known as “non-standard” em-

bedding and has with the developments in the theory

3 Heuristically, one might conceive of this as follows: one
needs X6 to be complex in order to have chiral fermions,
Kähler, for supersymmetry and Ricci-flat, to solve vacuum
Einstein’s equations.
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of stable bundles on Calabi-Yau manifolds become an

industry of realistic model building [15].

The particle content is readily determined from

group theory. More importantly, this in turn deter-

mines the vector bundle cohomology group which is

associated with the particles. In short, we have that4

generations of particles∼ H1(TX ) ,

anti-generations of particles∼ H1(T ∗X ) .

In general, the lesson is that

Particle content in R1,3←→ cohomology groups

of V,V ∗ and their exterior/tensor powers

The cubic Yukawa couplings in the Lagrangian consti-

tuted by these particles (fermion-fermion-Higgs) are

tri-linear maps5 taking the cohomology groups to C.
An immediate constraint is, of course, that there

be 3 net generations, meaning that

(2.2)
∣∣h1(X ,TX )−h1(X ,T ∗X )

∣∣= 3 .

Thus, the endeavour of finding Calabi-Yau threefolds

with the property (2.2) began in 1986. This geomet-

rical “love for threeness”, much in the same spirit

as triskaidekaphobia, has been dubbed by Candelas

et al. as Triadophilia [17]. Recently, independent of

string theory or any unified theories, why there might

be geometrical reasons for three generations to be

built into the very geometry of the Standard Model

has been explored [18].

3. De Practica Geometriæ

Having extracted a mathematical problem from

physical constraints, it therefore becomes a practical

quest in geometry which has prompted some 30 years

of research. We are indeed reminded of Fibonacci’s

tome of 1220 after which I have named this section

in his honour.

First, it is well-known that the two terms in (2.2)

are topological quantities associated with X , in partic-

4 Specifically, we have that the decomposition of the ad-
joint 248 of E8 breaks into SU(3)×E6 as 248→ (1,78)⊕(3,27)⊕
(3,27)⊕ (8,1). Thus the Standard Model particles, which in an
E6 GUT all reside in its 27 representation, is associated with
the fundamental 3 of SU(3). The 10-dimensional fermions
are eigenfunctions of the Dirac operator, which then splits
into the 4-dimensional one, giving the fermions we see and
that on the Calabi-Yau threefold, the low-energy particles are
then dictated by the zero-eigenvalues of the Dirac operator
on X , and thence, via the Atiyah-Singer index theorem, by
the cohomology of appropriate bundles on V . Here, for ex-
ample, the 27 representation is thus associated to H1(TX ) and
the conjugate 27, to H1(T ∗X ). Similarly, the 1 representation of
E6 is associated with the 8 of SU(3), and thus to H1(TX ⊗T ∗X ).
5 This works out perfectly for a Calabi-Yau threefold: for ex-
ample, H1(X ,V )×H1(X ,V )×H1(X ,V )→ H3(X ,OX )' C.

ular, by Hodge decomposition we have that h1(X ,TX )'
h2,1 and h1(X ,TX ) ' h1,1 where the latter are the so-

called Hodge numbers, which is a refined (complex)

version of Betti numbers counting (holomorphic) cy-

cles in the Kähler manifold. The following diagram

will illustrate the relevant points:

h0,0

h1,0 h0,1

h2,0 h1,1 h0,2

h3,0 h2,1 h2,1 h0,3

h2,0 h1,1 h0,2

h1,0 h0,1

h0,0

=

1
0 0

0 h1,1 0
1 h2,1 h2,1 1

0 h1,1 0
0 0

1

 

b0

b1

b2

b3

b1

b2

b0

=

1
0

h1,1

2h2,1 +2
h1,1

0
1

Here it is customary to represent the matrix of Hodge

numbers in diamond form. The refinement of the

Betti numbers is in the sense that bi = ∑
j+k=i

h j,k. The

symmetry about the middle horizontal line is simply

Poincaré duality and that about the middle vertical

line is essentially complex conjugation (of the Lapla-

cian). Moreover, we assume that X is connected so

that b0 = h0,0 = 1. Furthermore, for the case of X be-

ing simply-connected, the fundamental group π1(X)

and hence its Abelianization H1(X) also vanishes. Fi-

nally, the Calabi-Yau property that there be a unique

holomorphic 3-form implies that h3,0 = h0,3 = 1. Look-
ing at the Hodge diamond, we see that topologically, a

CY3 is characterized by only two integers h1,1 and h2,1,

essentially counting the number of Kähler and com-

plex structure deformations respectively. We empha-

size that these two are not refined enough: two CY3

with the same pair of (h1,1,h2,1) need not be isomor-

phic. Importantly, we have that

(3.3) χ =
6

∑
i=0

(−1)ibi = 2(h1,1−h2,1)

is the standard topological Euler number. Our ques-

tion (2.2) thus becomes: does there exist a Calabi-Yau

threefold with χ =±6?

3.1 The Quintic

How then, does one explicitly construct a Calabi-

Yau manifold? A cursory look at low dimension will

give us not only some experience but also another

reason why Calabi-Yau manifolds are of central im-

portance to mathematics. What is a Calabi-Yau one-

DECEMBER 2015 NOTICES OF THE ICCM 23



fold? This is nothing but a Riemann surface of zero

curvature, which is classically well-known to be the

torus T 2 = S1× S1. Algebro-geometrically, this can be

realized as a cubic6 in CP2. Hence, the study of Calabi-

Yau one-folds is that of the elliptic curve! No won-

der we are in the very heart of modern mathemat-

ics.

Moving onto complex dimension 2, one could so

generalize and have a (smooth) quartic algebraic sur-

face in P3. This is called a K3 surface and is again

one of the classical objects studied at the end of the

XIXth century. It turns out that the only other Calabi-

Yau two-fold is the rather trivial case of the 4-torus

T 4 = (S1)4, which is simply the direct product of two

elliptic curves.

This construction, of having a degree n+1 hyper-
surface in CPn as an algebraic variety is indeed valid

in general. One can show that the number of projec-

tive coordinates, here n+1, equaling to the degree of

the hypersurface implies the vanishing of the first

Chern class. Thus we arrive at our first, and perhaps

most famous, example of a Calabi-Yau threefold: the

quintic hypersurface in CP4. There are many degree 5

monomials one could compose of 5 coordinates, the

most well-studied is the so-called Fermat quintic:

Q := {x5
0+x5

1+x5
2+x5

3+x5
4+ψx0x1x2x3x4 = 0}⊂CP4

[x0:x1:x2:x3:x4]

where ψ is some complex coefficient. What are the

topological numbers of Q? It turns out that h2,1(Q) =

101 and h1,1(Q) = 1 so that χ(Q) =−200 and this is quite
far from ±6.

3.2 The CICY Database

To continue to address the question raised by tri-

adophilia, an algorithmic generalization of the con-

struction for the quintic was undertaken: instead of a

single CPn, what about embedding a collection of (ho-

mogeneous) polynomials into a product A of projec-

tive spaces? For further simplification, let us consider

only complete intersections which means the optimal

case where the number of equations is 3 less than the

dimension of the ambient space A so that each poly-

nomial slices out exactly one new degree of freedom.

In other words, let A = CPn1 × . . .×CPnm , of dimension

n = n1 +n2 + . . .+nm and each having homogeneous co-

ordinates [x(r)1 : x(r)2 : . . . : x(r)nr ] with the superscript (r) in-
dexing the projective space factors. Our CY3 is then

defined as the intersection of K = n−3 homogeneous

polynomials in the coordinates x(r)j . Clearly this is a

generalization of the quintic, for which r = m, nr = 4
and K = 1. The Calabi-Yau condition of the vanishing

6 The beginning student is perhaps more familiar with the
Weierstrasß model: {x,y∈C|y2 = x3−4g2x−g6}; we simply pro-
jectivize by having homogeneous coordinates [x : y : z] of CP2.

of c1(TX ) generalizes analogously to the condition that

for each r = 1, . . . ,m, we have
K
∑
j=1

qr
j = nr +1. Succinctly,

one can write this information into an m×K configu-

ration matrix (to which we frequently adjoin the first

column, designating the ambient product of projec-

tive spaces, for clarity; this is redundant because one

can extract nr from one less than the row sum):

X =


CPn1 q1

1 q1
2 . . . q1

K
CPn2 q2

1 q2
2 . . . q2

K
...

...
...

. . .
...

CPnm qm
1 qm

2 . . . qm
K


m×K ,

K =
m
∑

r=1
nr−3 ,

K
∑
j=1

qr
j = nr +1 , ∀ r = 1, . . . ,m .

(3.4)

For example, [5], or [4|5], denotes the quintic. Two
more immediate examples are

S =

1 1
3 0
0 3

 , S̃ =

[
1 3 0
1 0 3

]
.

The first is called the Schoen Manifold and the sec-

ond, constructed by Yau et al. Specifically, the config-

uration S means that the ambient space is CP1×CP2×
CP2, of dimension 5, so that indeed the two polynomi-

als, being complete intersection, give a threefold. The

first column (1,3,0)means that the first polynomial is

linear in CP1 and cubic in the first CP2 while having no

dependence on the second CP2. The second column

is likewise defined. Another lesson, as can be induced

from S and S̃, is the rather cute fact that the transpose
gives a new valid configuration which could be com-

pletely different in topology. Importantly, the Chern

classes and thence the Euler number can be read off

the matrix configuration directly.7 We often attach

the topological numbers as Xh1,1,h2,1

χ for completeness,

so we can write, for instance, [5]1,101
−200, S19,19

0 and S̃14,23
−18 .

Such manifolds were considered and explicitly

constructed by Candelas et al. [19] in the early 1990s

and were affectionately called CICYs (complete in-

tersection Calabi-Yau manifolds). Classifying these

7 We have that c1(TX ) = 0 and moreover,

crs
2 (TX ) =

1
2

[
−δ

rs(nr +1)+
K

∑
j=1

qr
jq

s
j

]
,

crst
3 (TX ) =

1
3

[
δ

rst(nr +1)−
K

∑
j=1

qr
jq

s
jq

t
j

]
,

where we have written the coefficients of the total Chern
class c = cr

1Jr + crs
2 JrJs + crst

3 JrJsJt explicitly, with Jr being the
Kähler form in Pnr . The triple-intersection form drst =

∫
X Jr ∧

Js∧Jt is a totally symmetric tensor on X and the Euler number
is simply χ(X) = drst crst

3 .
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above matrices, up to topological equivalence, would

then classify the CICYs. One could then read off the

Euler number to see whether any of them had mag-

nitude of 6. The combinatorial problem for these in-

teger matrices turned out to be rather non-trivial and

one of themost powerful super-computers then avail-

able was recruited. Philip Candelas often recounts to

me his fond memories of running the code on the

computer at CERN and the print-out still sits in a com-

pile in his office. This was perhaps the first time when

heavy machine computation was done for the sake of

algebraic geometry. In all, CICYs were shown to be fi-

nite in number, a total of 7890 inequivalent configu-

rations. Recently, CICY4, the four-fold version of this

was completed in the nice work [20] and 921,497 were

found.

Unfortunately, none of the 7890 had χ =±6. While

this was initially disappointing, it was soon realized

that circumventing this problem gave rise to the res-

olution of another important physical question. A

freely acting order 3 symmetry was found on S̃; the
freely acting is important, because it means that the

quotient S′ = S̃/Z3 is also a smooth CY3, albeit not

a CICY. For such smooth quotients, the Euler di-

vides8 and S′ became the first three-generation man-

ifold!

Now, the quotienting is crucial for another rea-

son. In the sequence (2.1), we have focused on GUTs.

What about the Standard Model itself? It so happens

that one standard way of obtaining GSM = SU(3)×
SU(2)×U(1) from any of the GUT groups is precisely

by quotienting. Group theoretically, this amounts to

finding a discrete group whose generators can be em-

bedded into the GUT group, so that the commutant is

the the desired GSM . Geometrically, this is the action

of the Wilson Line, where a CY3 with non-trivial fun-

damental group admits a non-trivial loop which, cou-

pled with the discrete group action, decomposes the

E8 further from the structure group V . In our example

above, S̃ has trivial π1 but the quotient S′ has, by con-
struction π1(S′) ' Z3, whereby admitting a Z3 Wilson

line. This, for the early models, can be used to break

the E6 GUT down to the Standard Model.

Not surprisingly, the manifold S′ became cen-

tral to string phenomenology in the period after

String Revolution [21]. Some even believed that they

have found the geometry of the universe. More re-

cently, using non-standard embedding, and by study-

ing stable SU(5) and SO(10) bundles on non-simply-

connected CY3, the first heterotic compactification

with exact MSSM particle content were constructed,

whereby realizing a 20-year old dream [24, 25]. Thus,

once again mathematics and physics conspire to a

parallel and co-extensive development.

8 The individual Hodge numbers do not and it turns out that
we have (h1,1,h2,1) = (6,9) for S′.

3.3 A Plethora of CY3

Of the 7890, one could proceed to find various

freely acting discrete symmetries and this was only

lately accomplished [22], using today’s desktop com-

puter which is already far more powerful than the

best super-computer back in the day. Many more can-

didates have been found.

Indeed, this brings us to the heart of a question,

in nature both mathematical and physical: how many

CY3s are there? In a way, we have an interesting se-

quence: in complex dimension 1, there is only the el-

liptic curve which is CY1, in dimension 2, as men-

tioned, there are 2. Starting in dimension 3, we till

this day still have no idea how many distinct smooth

manifolds are there, even though we have found lit-

erally billions. It was conjectured by Yau in the early

days, that the number might be finite for CY3 (or in-

deed for Calabi-Yau manifolds of any dimension) [23]

and it was moreover a fantasy of Miles Reid that they

are all connected via topology-changing processes ex-

emplified by conifold transitions. Sometimes, one is

tempted to speculate how much more convenient if

our spacetime were 8 or even 6 dimensional, in which

case the compactification of superstrings would be

quite facile.

3.3.1 Weighted Hypersurfaces

After the success story of CICYs, the search con-

tinued. Another natural ambient space to have, in

view of the quintic, is to take weighted projective

space CP4
[d0:...:d4]

where we recall this to be the quotient

C5\{~0}/
(
(z0,z1, . . . ,z5)∼ (λ d0 z0, . . . ,λ

d5 z5)
)
for some non-

zero complex λ . Of course, taking all weights di = 1 is
the ordinary CP4. We then embed a hypersurface of

degree d0 + d1 + . . .+ d4 therein, which defines a CY3.

One caviat is that unlike ordinary projective space,

weighted projective spaces are generically singular,

and caremust be taken tomake sure the hypersurface

avoids these singularities. The classification of such

manifolds was performed in [26] and a total of 7555 is

found, of which 28 have Euler number ±6. Of course,
with the importance of Wilson Lines, we should no

longer be limited |χ| = 6, but rather those with non-

trivial fundamental group and those with freely act-

ing discrete groups of order k which divides χ .

3.3.2 Elliptic Fibrations

The mid 1990s saw the “Second String Revolu-

tion” and with the advent of dualities and branes

which linked the various string theories, the tra-

ditional heterotic compactification scenario subse-

quently experienced a period of relative cool com-

pared to its incipience a decade earlier. Nevertheless,

Calabi-Yau manifolds continued to occupy the center

stage. String dualities rely on the equivalence of effec-

tive field theories after compactification on different
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Calabi-Yau spaces. A true gem which emerged from

this paradigm is clearlymirror symmetry which, due

to such equivalences, predicted that to each CY3 with

Hodge number (h1,1,h2,1), there should be amirror pair

with these exchanged. The geometrical implications

are immense and the limitations of space cannot al-

low me to expound upon what clearly deserves a sep-

arate account.

Another highlight of this revolution on duali-

ties and perhaps should be categorized as a Third

String Revolution by itself, is the celebrated AdS/CFT

Correspondence of Maldacena. This bring us to

the closely neighbouring geography of non-compact

Calabi-Yau manifolds, which are affine cones over

Sasaki-Einstein 5-folds and which complement the

AdS factor in the 10-dimensional metric. This is again

a vast land which I do not have space here to describe

and I shall, as mentioned in the introduction confine

myself to smooth, compact CY3 and their construc-

tions.

Due to the web of dualities, in particular that

between the heterotic string and F-theory, there

emerged another family of CY3 studied in the 1990s

which has recently been investigated with renewed

zest, this is the class of elliptically fibred CY3 [27, 28].

This is a generalization of CY1, by allowing the elliptic

curve to fibre over a complex base surface, by allow-

ing the coefficients in the Weierstraß to take values in

dual of the canonical bundle of the base, we would ar-

rive at an overall trivial first class of the CY3 as total

space.

What are the possible bases? Once again, this

turned out to be a finite set: (I) Hirzebruch surfaces

Fr for r = 0,1, . . . ,12; (II) P1-blowups of Hirzebruch sur-

faces F̂r for r = 0,1,2,3; (III) Del Pezzo surfaces dPr for

r = 0,1, . . . ,9; and (IV) Enriques surface E. These are

classical surfaces with whose precise definition we

need not presently concern ourselves. Even though

the list of possible bases seems limited, by tuning the

possible elliptic curve, a diverse range of CY3 can be

reached. This was much explored in the 1990s [31],

uncovering a wealth of beautiful structure. With the

help of modern computing, of the known CY3, many

tens of thousands have been identified as elliptic fi-

brations [29, 30]; the full classification of this rich

dataset is still in progress.

3.3.3 Toric Hypersurfaces: The KS Database

The most impressive indentation into the un-

charted land of CY3 so far is undoubtedly the so

called Toric Hypersurfaces. Founded on the theo-

retic development of [32], Kreuzer and Skarke spent

almost a decade compiling this database [33, 34]. Due

to the untimely death of Max Kreuzer – who very

touchingly was dedicated to the Calabi-Yau cause

even in his last hours and continued, on his deathbed,

to email us who were collaborating with him at the

time – it became a pressing issue to attempt to sal-

vage the data for posterity, a recent version of this

legacy project is presented in [35].

In a nutshell, these manifolds extend the

weighted projective case. Indeed, a toric variety is a

very powerful generalization of weighted projective

space in that, instead of having a single list of weights,

we have a matrix of weights acting on a higher dimen-

sional Cm. We shall not delve into the elegant combi-

natorics of the theory of toric varieties but only sum-

marize the key points of the construction here, much

as we did for the CICY case above.

The ambient space is a toric 4-fold A, which is

specified by an integer polytope ∆ ∈ R4 containing

in particular the origin (0,0,0,0) which can be repre-

sented by the list of its vertices, which are integer, or

equivalently as a k× 4 matrix of k linear inequalities

with integer coefficients. From this, one can define9

the dual polytope ∆◦ :=
{
~v ∈ R4|~m ·~v≥−1 ∀~m ∈ ∆

}
. For

our familiar example of CP4, an archetypal example

of a toric 4-fold, we have that ∆ =

[
−1 4 −1 −1 −1
−1 −1 4 −1 −1
−1 −1 −1 4 −1
−1 −1 −1 −1 4

]
and

∆◦ =

[
1 0 0 0 −1
0 1 0 0 −1
0 0 1 0 −1
0 0 0 1 −1

]
. The idea is that if ∆ is reflexive, i.e., if

∆◦ has also integer vertices, such as the CP4 example,

then the hypersurface

X =

{
∑
~m∈∆

c~m
k

∏
j=1

x
~m·~v j+1
j = 0

}
⊂ A ,

with x j coordinates of the ambient toric 4-fold, c~m
complex coefficients, and ~v j the (integer) vertices of

∆◦, defines a CY3. For CP4, this is precisely the quintic

hypersurface.

Thus the question of toric hypersurface CY3

is the question of reflexive integer 4-polytopes. In

Rn=1,2,3, there are 1, 16 and 4319 such polytopes, with

the 16 in the plane famously giving us the toric del

Pezzo surfaces and beyond. The computational chal-

lenge of Kreuzer and Skarke was to find all reflexive

integer polytopes in R4. The actual calculation was

performed on an SGI origin 2000 machine with about

30 processors (quite the state of the art in the 1990s)

which took approximately 6 months and 473,800,776

was found. Each of these gives a hypersurface CY3

and thus from the database of tens of thousands es-

tablished by the early 1990s, the list of CY3 suddenly

grew, with this tour de force, to half a billion.

As with the weighted projective case, the ambi-

ent space A is not necessarily smooth, so long as

the hypersurface CY3 is. Interestingly, in this large

family, only 125 have smooth ambient space A and

9 In the perhaps more familiar definition of a toric variety in
terms of fans of cones, the fan Σ is simply the faces of ∆◦.
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Figure 1. (a) The space of CY3, with the 3 most studied datasets. There are also some individualized constructions

outside the three major databases, symbolically marked as crosses. Q is the quintic, S is the Schoen CY3 and the

most “typical” CY3 has Hodge numbers (27,27), totaling almost 1 million. (b) Accumulating χ = 2(h1,1−h1,2)

(horizontal) versus h1,1 +h1,2 (vertical) of all the known Calabi-Yau threefolds in a colour Log-density plot.

more remarkably, only 16 have non-trivial funda-

mental group. Though of course a classification of

discrete freely-acting symmetries has yet to be sys-

tematized from which one could potentially extract

many more non-simply-connected CY3 by quotient-

ing, these special 16 are quite interesting [36].

3.4 A Statistical Plot

While the cartography of CY3 continues with

ever-increasing collaborative effort amongst physi-

cists, mathematicians and computer scientists – for

example, the classification of complete intersections

in toric varieties, such as double hypersurfaces in

5-folds are well under way and billions have already

been found – it is expedient that we draw our short

excursion into the terra sancta of Calabi-Yau mani-

folds to a close.

There is an iconic plot: suppose we had h1,1(X)+

h2,1(X) in the ordinate versus χ = 2(h1,1(X)−h2,1(X)) in

the abscissa, drawn in part (b) of Figure 1. In part (a),

we indicate our datasets discussed so far in a Venn

diagram.

Let us pause to admire the beauty of this plot,

the standard version of which is without the colour-

density which I have added here. This standard black

and white version is framed and features prominently

in Philip Candelas’ office. Several properties are of

note. There are a total of 30,108 distinct points,

meaning the some half-billion CY3 are severely de-

generate in (h1,1,h1,2). The funnel shape delineating

the lower extremes is just due to our plotting differ-

ence versus sum of the (non-negative) Hodge num-

bers. The fact the the figure is left-right symmetric

is perhaps the best “experimental” evidence for mir-

ror symmetry: that to each point with χ there should

be one with −χ , coming from the inter-change of the

two Hodge numbers. There is a paucity of CY3 near

the corners: near the bottom tip and of funnel and the

top (note this is a log-density plot) while a huge con-

centration resides near the bottom center. In fact, the

most “typical” CY3 thus far known is one with Hodge

numbers (27,27), numbering about 1 million.

There are several observations whose explanation

remain mysterious. The largest Euler number in mag-

nitude is 960 and so far no CY3 is known to have

anything exceeding this. Is this an upper bound to

the topology in the space of smooth CY3? One might

note that 960 is twice the difference between the di-

mension and rank of E8×E8; this observation may not

be as frivolous as may appear since the very structure

of the exceptional groups seems encoded into these

toric CY3 [37]. The parabolic shapes on the top of the

shield-like funnel, are they also bounds to possible

Hodge values? Recently, these have been identified as

elliptically fibered CY3 [30].
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4. Epilogue

With our tantalizing plot of all known Calabi-Yau

threefolds let us pause here. We have taken a small

promenade in the land of CY3, mindful of the intri-

cate interplay between the mathematics and physics,

emboldened by the plenitude of data and results, and

inspired by the glimpses towards the yet inexplica-

ble. The cartography of Calabi-Yaumanifolds will cer-

tainly continue to provoke further exploration, es-

pecially with the advance of ever new mathematics,

physics and computing.
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