CAUCHY PROBLEM ON NON-SOLVABLE SYSTEMS OF FIRST ORDER PARTIAL DIFFERENTIAL EQUATIONS WITH APPLICATIONS*

LINFAN MAO†

Abstract. Let L_1, L_2, \ldots, L_m be m partial differential operators of first order and h_1, h_2, \ldots, h_m continuously differentiable functions. Then is the partial differential equation system $L_i[u] = h_i, 1 \leq i \leq m$ solvable for a differential mapping $u : \mathbb{R}^n \to \mathbb{R}^n$ or not? Similarly, let φ be a continuous function $\varphi : \mathbb{R}^{n-1} \to \mathbb{R}^{n-1}$. Then is the Cauchy problem $L_i[u] = h_i, 1 \leq i \leq m$ with $u(x_1, x_2, \ldots, x_n-1, t_0) = \varphi(x_1, x_2, \ldots, x_n-1)$ solvable or not? If not, how can we characterize the behavior of such a function u? All these questions are ignored in classical mathematics only by saying not solvable! In fact, non-solvable equation systems are nothing but Smarandache systems, i.e., contradictory systems themselves, in which a ruler behaves in at least two different ways within the same system, i.e., validated and invalided, or only invalided but in multiple distinct ways. They are widely existing in the natural world and our daily life. In this paper, we discuss non-solvable partial differential equation systems of first order by a combinatorial approach, classify these systems by underlying graphs, particularly, these non-solvable linear systems, characterize their behaviors, such as those of global stability, energy integrals and their geometry, which enables one to find a differentiable manifold with preset m vector fields. Applications of such non-solvable systems to interaction fields and flows in network are also included in this paper.

Key words. Non-solvable partial-differential equation, vertex-edge labeled graph, global stability, energy integral, combinatorial manifold.

AMS subject classifications. 05C15, 34A30, 34A34, 37C75, 70F10, 92B05.

1. Introduction. A partial differential equation

$$F(x_1, x_2, \ldots, x_n, u, u_{x_1}, \ldots, u_{x_n}, u_{x_1x_2}, \ldots, u_{x_1x_n}, \ldots) = 0 \quad (PDE)$$

on functions $u(x_1, \ldots, x_n)$ is non-solvable if there are no function $u(x_1, \ldots, x_n)$ on a domain $D \subset \mathbb{R}^n$ with (PDE) holds. For example, the equation $e^{ux_1+ux_2} = 0$ is such a PDE. Similarly, a system of partial differential equations

$$\begin{align*}
F_1(x_1, x_2, \ldots, x_n, u, u_{x_1}, \ldots, u_{x_n}, u_{x_1x_2}, \ldots, u_{x_1x_n}, \ldots) &= 0 \\
F_2(x_1, x_2, \ldots, x_n, u, u_{x_1}, \ldots, u_{x_n}, u_{x_1x_2}, \ldots, u_{x_1x_n}, \ldots) &= 0 \\
&\vdots \\
F_m(x_1, x_2, \ldots, x_n, u, u_{x_1}, \ldots, u_{x_n}, u_{x_1x_2}, \ldots, u_{x_1x_n}, \ldots) &= 0
\end{align*} \quad (PDES)$$

is non-solvable if there are no function $u(x_1, \ldots, x_n)$ on a domain $D \subset \mathbb{R}^n$ with $(PDES)$ holds.

Such non-solvable systems of partial differential equations are indeed existing. For example, H.Lewy [5] proved that there exists a function $F(x_1, x_2, x_3) \in C^\infty(\mathbb{R}^3)$ such that the partial differential equation

$$-u_{x_1} - iu_{x_2} + 2i(x_1 + ix_2)u_{x_3} = 0$$

is non-solvable. R.Rubinsten [14] proved that

$$u_t + t^n u_{xx} + (i - t^m)u_x = 0, \quad n > 4m + 2, \quad m \equiv 1(mod2)$$
$$u_t - t^n u_{xx} + it^m u_x = 0, \quad n > 2m + 1, \quad n \equiv 0(mod2)$$

*Received July 4, 2013; accepted for publication October 15, 2014.
†Chinese Academy of Mathematics and System Science, Beijing 100190, P. R. China (maolinfan@163.com).
are non-solvable locally at the origin. It should be noted that these non-solvable linear algebraic or ordinary differential equation systems have been characterized recently by the author in the references [12]-[13].

The objective of this paper is to characterize those non-solvable partial differential equation systems of first order on one function \(u(x_1, x_2, \ldots, x_n) \) by a combinatorial approach, classify these systems and characterize their behaviors with some applications. For such an objective, we should know its counterpart, i.e., solvable conditions on partial differential equations (PDE). The following result is well-known from standard textbooks, such as those of [4] or [15].

Theorem 1.1. Let

\[
\begin{aligned}
&x_i = x_i(t, s_1, s_2, \ldots, s_{n-1}) \\
u = u(t, s_1, s_2, \ldots, s_{n-1}) \\
p_i = p_i(t, s_1, s_2, \ldots, s_{n-1}), \quad i = 1, 2, \ldots, n
\end{aligned}
\]

be a solution of system

\[
\begin{aligned}
&dx_1 \over F_{p_1} = dx_2 \over F_{p_2} = \cdots = dx_n \over F_{p_n} = du \over \sum_{i=1}^{n} p_i F_{p_i} \\
&= - dp_1 \over F_{x_1} + p_1 F_u = \cdots = - dp_n \over F_{x_n} + p_n F_u = dt
\end{aligned}
\]

with initial values

\[
\begin{aligned}
x_{i_0} &= x_{i_0}(s_1, s_2, \ldots, s_{n-1}) \\
u_0 &= u_0(s_1, s_2, \ldots, s_{n-1}) \\
p_{i_0} &= p_{i_0}(s_1, s_2, \ldots, s_{n-1}), \quad i = 1, 2, \ldots, n
\end{aligned}
\]

such that

\[
\begin{aligned}
F(x_{i_0}, x_{i_0}, \ldots, x_{i_0}, u, p_{i_0}, p_{i_0}, \ldots, p_{i_0}) &= 0 \\
\frac{\partial u_{i_0}}{\partial s_j} - \sum_{i=0}^{n} p_{i_0} \frac{\partial x_{i_0}}{\partial s_j} &= 0, \quad j = 1, 2, \ldots, n-1.
\end{aligned}
\]

Then (SDE) is the solution of partial differential equation

\[
F(x_1, x_2, \ldots, x_n, u, p_1, p_2, \ldots, p_n) = 0
\]

of first order with initial values (IDE), where \(p_i = \frac{\partial u}{\partial x_i} \) and \(F_{p_i} = \frac{\partial F}{\partial p_i} \) for integers \(1 \leq i \leq n \).

Particularly, if such a partial differential equation (PDE) of first order is linear or quasilinear, let

\[
L = \sum_{i=1}^{n} a_i \frac{\partial}{\partial x_i}
\]

be a partial differential operator of first order with continuously differentiable functions \(a_i, \ 1 \leq i \leq n \). Then such a linear or quasilinear partial differential equation (PDE) of first order can be denoted by

\[
L[u] \equiv \sum_{i=1}^{n} a_i \frac{\partial u}{\partial x_i} = c,
\]

(LPDE)
CAUCHY PROBLEM ON NON-SOLVABLE PDE

173

where c is a continuously differentiable function. Let L_1, L_2, \cdots, L_m be m partial differential operators of first order (linear or non-linear) and h_i, $1 \leq i \leq m$ continuously differentiable functions on \mathbb{R}^n. Then is the partial differential equation system

$$L_i[u(x_1, x_2, \cdots, x_n)] = h_i, \quad 1 \leq i \leq m$$

(*PDES*$_m$) solvable or not for a differential mapping $u : \mathbb{R}^n \to \mathbb{R}^n$? Similarly, let $\omega_i 1 \leq i \leq m$ be continuous functions on \mathbb{R}^n. Then is the Cauchy problem

$$\begin{align*}
L_i[u] &= h_i \\
u(x_1, x_2, \cdots, x_n-1, x_n^0) &= \omega_i, \quad 1 \leq i \leq m
\end{align*}$$

(*PDES*$_C^m$)

solvable or not? Denoted by S_i^0 the solution of ith equation in system (*PDES*$_m$) or (*DEPS*$_C^m$). Then the partial differential equation system (*PDES*$_m$) or (*DEPS*$_C^m$) is solvable only if $\bigcap_{i=1}^m S_i^0 \neq \emptyset$. Notice that $u : \mathbb{R}^n \to \mathbb{R}^n$ is differentiable. Thus the systems (*PDES*$_m$) or (*DEPS*$_C^m$) is solvable only if $\bigcap_{i=1}^m S_i^0$ is a non-empty functional set on a domain $D \subset \mathbb{R}^n$. Otherwise, non-solvable, i.e., $\bigcap_{i=1}^m S_i^0 = \emptyset$ for any domain $D \subset \mathbb{R}^n$.

An equation or a system of equations is said reducible if it can be reduced from another(s) with the same solutions. Now let (*PDES*$_m$) be a system of partial differential equations with

$$\begin{align*}
F_1(x_1, x_2, \cdots, x_n, u, u_{x_1}, \cdots, u_{x_n}, u_{x_1x_2}, \cdots, u_{x_1x_n}, \cdots) &= 0 \\
F_2(x_1, x_2, \cdots, x_n, u, u_{x_1}, \cdots, u_{x_n}, u_{x_1x_2}, \cdots, u_{x_1x_n}, \cdots) &= 0 \\
& \cdots \\
F_m(x_1, x_2, \cdots, x_n, u, u_{x_1}, \cdots, u_{x_n}, u_{x_1x_2}, \cdots, u_{x_1x_n}, \cdots) &= 0
\end{align*}$$
on a function $u(x_1, \cdots, x_n, t)$. Then its symbol is determined by

$$\begin{align*}
F_1(x_1, x_2, \cdots, x_n, u, p_1, \cdots, p_n, p_1p_2, \cdots, p_1p_n, \cdots) &= 0 \\
F_2(x_1, x_2, \cdots, x_n, u, p_1, \cdots, p_n, p_1p_2, \cdots, p_1p_n, \cdots) &= 0 \\
& \cdots \\
F_m(x_1, x_2, \cdots, x_n, u, p_1, \cdots, p_n, p_1p_2, \cdots, p_1p_n, \cdots) &= 0,
\end{align*}$$
i.e., substitute $p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_n^{\alpha_n}$ into (*PDES*$_m$) for the term $u_{x_1}^{\alpha_1} u_{x_2}^{\alpha_2} \cdots u_{x_n}^{\alpha_n}$, where $\alpha_i \geq 0$ for integers $1 \leq i \leq n$.

Definition 1.2. A non-solvable (*PDES*$_m$) is algebraically contradictory if its symbol is non-solvable. Otherwise, differentially contradictory.

For example, the system of partial differential equations following

$$\begin{align*}
u_x + 2u_y + 3u_z = 2 + y^2 + z^2 \\
v y u_x + x z u_y + x y u_z = x^2 - y^2 - z^2 \\
(y z + 1) u_x + (x z + 2) u_y + (x y + 3) u_z = x^2 + 1
\end{align*}$$
is algebraically contradictory because its symbol

$$\begin{align*}
p_1 + 2p_2 + 3p_3 = 2 + y^2 + z^2 \\
(y z + 1)p_1 + x z p_2 + x y p_3 = x^2 - y^2 - z^2 \\
(y z + 1)p_1 + (x z + 2)p_2 + (x y + 3)p_3 = x^2 + 1
\end{align*}$$
is non-solvable.

All terminologies and notations in this paper are standard. For those not mentioned here, we follow the [4] and [15] for partial differential equation, [8]-[10], [16] for algebra, topology and Smarandache systems, and [1]-[2] for mechanics.

2. Non-solvable systems of partial differential equations. First, we get the non-solvability of Cauchy problem of partial differential equations of first order following.

Theorem 2.1. A Cauchy problem on systems

\[
\begin{align*}
F_1(x_1, x_2, \ldots, x_n, u, p_1, p_2, \ldots, p_n) &= 0 \\
F_2(x_1, x_2, \ldots, x_n, u, p_1, p_2, \ldots, p_n) &= 0 \\
\vdots & \\
F_m(x_1, x_2, \ldots, x_n, u, p_1, p_2, \ldots, p_n) &= 0
\end{align*}
\]

of partial differential equations of first order is non-solvable with initial values

\[
\begin{align*}
x_i\big|_{x_n=x_0^n} &= x_i^0(s_1, s_2, \ldots, s_{n-1}) \\
u_i\big|_{x_n=x_0^n} &= u_0(s_1, s_2, \ldots, s_{n-1}) \\
p_i\big|_{x_n=x_0^n} &= p_i^0(s_1, s_2, \ldots, s_{n-1}), \quad i = 1, 2, \ldots, n
\end{align*}
\]

if and only if the system

\[F_k(x_1, x_2, \ldots, x_n, u, p_1, p_2, \ldots, p_n) = 0, \quad 1 \leq k \leq m\]

is algebraically contradictory, in this case, there must be an integer \(k_0, \ 1 \leq k_0 \leq m\) such that

\[F_{k_0}(x_1^0, x_2^0, \ldots, x_{n-1}^0, x_n^0, u_0, p_1^0, p_2^0, \ldots, p_n^0) \neq 0\]

or it is differentially contradictory itself, i.e., there is an integer \(j_0, \ 1 \leq j_0 \leq n-1\) such that

\[
\frac{\partial u_0}{\partial s_{j_0}} - \sum_{i=0}^{n-1} p_i^0 \frac{\partial x_i^0}{\partial s_{j_0}} \neq 0.
\]

Proof. If the Cauchy problem

\[
\begin{align*}
x_i\big|_{x_n=x_0^n} &= x_i^0, \quad u\big|_{x_n=x_0^n} = u_0, \quad p_i\big|_{x_n=x_0^n} = p_i^0, \ i = 1, 2, \ldots, n \\
F_k(x_1, x_2, \ldots, x_n, u, p_1, p_2, \ldots, p_n) &= 0
\end{align*}
\]

of partial differential equations of first order is solvable, it is clear that the symbol of system of partial differential equations

\[
\begin{align*}
F_1(x_1, x_2, \ldots, x_n, u, p_1, p_2, \ldots, p_n) &= 0 \\
F_2(x_1, x_2, \ldots, x_n, u, p_1, p_2, \ldots, p_n) &= 0 \\
\vdots & \\
F_m(x_1, x_2, \ldots, x_n, u, p_1, p_2, \ldots, p_n) &= 0
\end{align*}
\]

can not be contradictory, i.e., compatible. Furthermore, if it is algebraically contradictory, then there must be an integer \(k_0\) such that

\[F_{k_0}(x_1^0, x_2^0, \ldots, x_{n-1}^0, x_n^0, u_0, p_1^0, p_2^0, \ldots, p_n^0) \neq 0.\]
Otherwise, the \(x_i^0, u_0, p_i^0, 1 \leq i \leq n \) is a solution of the system, a contradiction.

Notice that \(u_0 = u(x_1^0, \ldots, x_n^0) = u(x_1^0(s_1, \ldots, s_{n-1}), \ldots, x_n^0(s_1, \ldots, s_{n-1})) \).

There must be
\[
\frac{\partial u_0}{\partial s_j} - \sum_{i=0}^{n-1} p_i \frac{\partial x_i^0}{\partial s_j} = 0
\]
for any integer \(j, 1 \leq j \leq n - 1 \).

Now if the system of partial differential equations
\[
\begin{cases}
F_1(x_1, x_2, \cdots, x_n, u, p_1, p_2, \cdots, p_n) = 0 \\
F_2(x_1, x_2, \cdots, x_n, u, p_1, p_2, \cdots, p_n) = 0 \\
\cdots \cdots \cdots \cdots \cdots \cdots \\
F_m(x_1, x_2, \cdots, x_n, u, p_1, p_2, \cdots, p_n) = 0
\end{cases}
\]
is not algebraically contradictory, we can find its non-trivial solutions \(x_i^0, u_0, p_i^0, 1 \leq i \leq n \). Furthermore, if
\[
\frac{\partial u_0}{\partial s_j} - \sum_{i=0}^{n-1} p_i \frac{\partial x_i^0}{\partial s_j} = 0
\]
for any integer \(j, 1 \leq j \leq n - 1 \), then the Cauchy problem
\[
\begin{cases}
F_k(x_1, x_2, \cdots, x_n, u, p_1, p_2, \cdots, p_n) = 0 \\
x_i|_{x_n=x_n^0} = x_i^0, \ u|_{x_n=x_n^0} = u_0, \ p_i|_{x_n=x_n^0} = p_i^0, \ i = 1, 2, \cdots, n
\end{cases}
\]
is solvable by Theorem 1.1. Let
\[
\begin{cases}
x_i^{[k]} = x_i^{[k]}(t, s_1, s_2, \cdots, s_{n-1}) \\
u^{[k]} = u^{[k]}(t, s_1, s_2, \cdots, s_{n-1}) \\
p_i^{[k]} = p_i^{[k]}(t, s_1, s_2, \cdots, s_{n-1}), \ i = 1, 2, \cdots, n
\end{cases}
\]
be the solution of Cauchy problem
\[
\begin{cases}
F_k(x_1, x_2, \cdots, x_n, u, p_1, p_2, \cdots, p_n) = 0 \\
x_i|_{x_n=x_n^0} = x_i^0, \ u|_{x_n=x_n^0} = u_0, \ p_i|_{x_n=x_n^0} = p_i^0, \ i = 1, 2, \cdots, n
\end{cases}
\]
of partial differential equation of first order for an integer \(1 \leq k \leq m \), i.e., the solution of its characteristic system
\[
\begin{align*}
\frac{dx_1}{F_{kp_1}} &= \frac{dx_2}{F_{kp_2}} = \cdots = \frac{dx_n}{F_{kp_n}} = \frac{du}{\sum_{i=1}^{n} p_i F_{kp_i}} \\
&= -\frac{dp_1}{F_{kx_1} + p_1 F_{ku}} = \cdots = -\frac{dp_n}{F_{kx_n} + p_n F_{ku}} = dt
\end{align*}
\]
with initial values \(x_i^0, u_0, p_i^0, 1 \leq i \leq n \).

Without loss of generality, denoted by \(S^{[k]} \) all of its solutions \(x_i^{[k]}, u^{[k]}, p_i^{[k]}, 1 \leq i \leq n \). Then
\[
\bigcap_{k=1}^{m} S^{[k]} = \{ x_i^0, u_0, p_i^0, 1 \leq i \leq n \} \neq \emptyset.
\]
Thus the Cauchy problem on partial differential equations

\[
\begin{cases}
F_1(x_1, x_2, \cdots, x_n, u, p_1, p_2, \cdots, p_n) = 0 \\
F_2(x_1, x_2, \cdots, x_n, u, p_1, p_2, \cdots, p_n) = 0 \\
\cdots \\
F_m(x_1, x_2, \cdots, x_n, u, p_1, p_2, \cdots, p_n) = 0
\end{cases}
\]

of first order with initial values

\[
\begin{cases}
x_i^0 = x_i^0(s_1, s_2, \cdots, s_{n-1}) \\
u_0 = u_0(s_1, s_2, \cdots, s_{n-1}) \\
p_i^0 = p_i^0(s_1, s_2, \cdots, s_{n-1}), \quad i = 1, 2, \cdots, n
\end{cases}
\]

is solvable. This completes the proof. □

Corollary 2.2. Let

\[
\begin{cases}
F_1(x_1, x_2, \cdots, x_n, u, p_1, p_2, \cdots, p_n) = 0 \\
F_2(x_1, x_2, \cdots, x_n, u, p_1, p_2, \cdots, p_n) = 0
\end{cases}
\]

be an algebraically contradictory system of partial differential equations of first order. Then there are no values \(x_i^0, u_0, p_i^0\), \(1 \leq i \leq n\) such that

\[
\begin{cases}
F_1(x_1^0, x_2^0, \cdots, x_{n-1}^0, x_n^0, u_0, p_1^0, p_2^0, \cdots, p_n^0) = 0, \\
F_2(x_1^0, x_2^0, \cdots, x_{n-1}^0, x_n^0, u_0, p_1^0, p_2^0, \cdots, p_n^0) = 0.
\end{cases}
\]

Corollary 2.3. A Cauchy problem

\[
\begin{cases}
F_1(x_1, x_2, \cdots, x_n, u, p_1, p_2, \cdots, p_n) = 0 \\
F_2(x_1, x_2, \cdots, x_n, u, p_1, p_2, \cdots, p_n) = 0 \\
\cdots \\
F_m(x_1, x_2, \cdots, x_n, u, p_1, p_2, \cdots, p_n) = 0
\end{cases}
\]

of first order with

\[
F_k(x_1^0, x_2^0, \cdots, x_{n-1}^0, x_n^0, u_0, p_1^0, p_2^0, \cdots, p_n^0) = 0, \quad 1 \leq k \leq m
\]

for values \(x_i^0, u_0, p_i^0\), \(1 \leq i \leq n\) is non-solvable if and only if there is an integer \(j_0\), \(1 \leq j_0 \leq n - 1\) such that

\[
\frac{\partial u_0}{\partial s_{j_0}} - \sum_{i=0}^{n-1} p_i^0 \frac{\partial x_i^0}{\partial s_{j_0}} \neq 0.
\]

If the system \((PDES_m)\) is linear or quasilinear, i.e.,

\[
\sum_{i=1}^{n} a_i^{[k]} \frac{\partial u}{\partial x_i} = c^{[k]}, \quad 1 \leq k \leq m, \quad (LPDES_m)
\]

then

\[
F_k = \sum_{i=1}^{n} a_i^{[k]} \frac{\partial u}{\partial x_i} - c^{[k]} = \sum_{i=1}^{n} a_i^{[k]} p_i + b^{[k]} p_i - c^{[k]}
\]
for integers $1 \leq k \leq m$.

Calculation shows that $F_{kp_i} = a_i^{[k]}$, $1 \leq k \leq m$ and

$$
\sum_{i=1}^{n} p_i F_{kp_i} = \sum_{i=1}^{n} a_i^{[k]} p_i = c^{[k]},
$$

$$
F_{kx_i} = \sum_{i=1}^{n} a_i^{[k]} p_i - c^{[k]}, \quad F_{ku} = \sum_{i=1}^{n} a_i^{[k]} p_i - c^{[k]}
$$

and

$$
\frac{\partial}{\partial x_l} \left(\sum_{i=1}^{n} a_i^{[k]} p_i - c^{[k]} \right) = \sum_{i=1}^{n} \left(a_i^{[k]} p_i + a_i^{[k]} p_i p_i + a_i^{[k]} p_i x_i \right) - \left(c^{[k]} + c^{[k]} p_i \right) = 0.
$$

We know that

$$
F_{kx_i} + p_l F_{u} = \sum_{i=1}^{n} a_i^{[k]} p_i x_i = \sum_{i=1}^{n} a_i^{[k]} p_i x_i.
$$

Notice that on a solution surface $u(x_1, \ldots, x_n)$,

$$
\frac{dp_l}{dx_l} = \sum_{i=1}^{n} p_i x_i \frac{dx_i}{dx_l} = \sum_{i=1}^{n} p_i x_i \frac{a_i^{[k]}}{a_i^{[k]}},
$$

which implies that

$$
\frac{dx_i}{a_i^{[k]}} = \frac{dp_l}{F_{kx_i} + p_l F_{u}} = \frac{dp_l}{\sum_{i=1}^{n} a_i^{[k]} p_i x_i}
$$

is an identity. Thus, if the system $(PDES_m)$ is linear or quasilinear system $(LPDES_m)$, we only need to consider the characteristic system

$$
\frac{dx_1}{F_{kp_1}} = \frac{dx_2}{F_{kp_2}} = \cdots = \frac{dx_n}{F_{kp_n}} = \frac{du}{\sum_{i=1}^{n} p_i F_{kp_i}}
$$

for finding solutions $u(x_1, \ldots, x_n)$. Furthermore, we only need to prescribe the initial data by $u|_{x_n=x_0^n}$, then the condition

$$
\frac{\partial u_0}{\partial s_j} - \sum_{i=0}^{n} p_i^{0} \frac{\partial x_0^i}{\partial s_j} = 0
$$

is naturally hold by $p_{i_0} = \frac{\partial u}{\partial x_i} \bigg|_{x_n=x_0^n}$ in this case. Consequently, we can get simpler conditions for linear or quasilinear non-solvable $(LPDES_m)$ than that of Theorem 2.1.

Corollary 2.4. A Cauchy problem $(LPDES_m^C)$ of quasilinear partial differential equations with initial values $u|_{x_n=x_0^n} = u_0$ is non-solvable if and only if the system $(LPDES_m)$ of partial differential equations is algebraically contradictory.
Particularly, if the Cauchy problem \((LPDES_m^C)\) of partial differential equations is linear with \(c[i] = 0\), \(1 \leq i \leq m\), we know the following conclusion.

Corollary 2.5. A Cauchy problem \((LPDES_m^C)\) of linear partial differential equations with \(c[i] = 0\), \(1 \leq i \leq m\) and initial values \(u|_{x=0} = u_0\) is non-solvable if and only if the system \((LPDES_m)\) of partial differential equations is algebraically contradictory.

If a \((PDES_m)\) is not algebraic contradictory, we can find initial values \(x^0_i, u^0_i, p^0_i, 1 \leq i \leq n\) by solving the algebraic system

\[
\begin{cases}
F_1(x_1, x_2, \ldots, x_{n-1}, x^0_n, u, p_1, p_2, \ldots, p_n) = 0 \\
F_2(x_1, x_2, \ldots, x_{n-1}, x^0_n, u, p_1, p_2, \ldots, p_n) = 0 \\
\vdots \\
F_m(x_1, x_2, \ldots, x_{n-1}, x^0_n, u, p_1, p_2, \ldots, p_n) = 0.
\end{cases}
\]

Generally, all these datum \(x^0_i, u^0_i, p^0_i, 1 \leq i \leq n\) appeared in Theorem 2.1, particularly, these datum \(x^0_i, 1 \leq i \leq n\) in Corollaries 2.4 and 2.5 consist a domain, i.e., a manifold for \(u\), such as those shown in the following example.

Example 2.6. Let us consider the partial differential equation system

\[
\begin{cases}
(x - y)u_x + (x - z)u_y + (y - x)u_z = 0 \\
xz u_x + yz u_y + zu_z = 0 \\
\end{cases}
\]

\(u|_{z=0} = e^{x+y}\)

The characteristic system of its first equation is

\[
\frac{dx}{z - y} = \frac{dy}{x - z} = \frac{dz}{y - x}
\]

and we are easily to find two independent initial integrals

\(\varphi_1 = x + y + z, \quad \varphi_2 = x^2 + y^2 + z^2.\)

Consequently,

\(x + y = \varphi_1|_{z=0} = \varphi_1, \quad x^2 + y^2 = \varphi_2|_{z=0} = \varphi_2.\)

Solving this algebraic system, we know that

\[
\begin{cases}
x = \frac{\varphi_1 \pm \sqrt{\varphi_2 - \varphi_1^2}}{2}, \\
y = \frac{\varphi_1 \pm \sqrt{\varphi_2 - \varphi_1^2}}{2}.
\end{cases}
\]

Hence, the solution of

\[
\begin{cases}
(x - y)u_x + (x - z)u_y + (y - x)u_z = 0 \\
\end{cases}
\]

\(u|_{z=0} = e^{x+y}\)

is \(u = e^{x+y} = e^{\varphi_1} = e^{x+y+z}.\)

Similarly, the characteristic system of its second equation is

\[
\frac{dx}{xz} = \frac{dy}{yz} = \frac{dz}{z}.
\]
with two independent initial integrals

\[\psi_1 = \frac{x}{e^z}, \quad \psi_2 = \frac{y}{e^z}, \]

which implies that \(x = e^{\psi_1}, \ y = e^{\psi_2} \). Whence, the solution of

\[
\begin{align*}
 xu_x + yzu_y + zu_z &= 0 \\
u|_{z=0} &= e^{x+y}
\end{align*}
\]

is \(u = e^{x+y} = e^{\frac{x+y}{e^z}} \). Consequently, \(u = e^{x+y+z} = e^{\frac{x+y}{e^z}} \). Calculation shows that

\[x + y + \frac{e^z}{e^e - 1} z = 0, \]

which is the domain of solutions of the partial differential equation system.

For the non-solvability of shifted partial differential equations of first order, we know the following result.

Theorem 2.7. A Cauchy problem on systems

\[
\begin{align*}
 F_1(x_1, \ldots, x_n, x_{n+1}^{[1]}, \ldots, x_{n+1}^{[1]}, u, p_1, \ldots, p_n, p_{n+1}, \ldots, p_{n^1}) &= 0 \\
 F_2(x_1, \ldots, x_n, x_{n+1}^{[2]}, \ldots, x_{n+1}^{[2]}, u, p_1, \ldots, p_n, p_{n+1}, \ldots, p_{n^2}) &= 0 \\
 \vdots & \vdots \\
 F_m(x_1, \ldots, x_n, x_{n+1}^{[m]}, \ldots, x_{n+1}^{[m]}, u, p_1, \ldots, p_n, p_{n+1}, \ldots, p_{n^m}) &= 0
\end{align*}
\]

of partial differential equations of first order is non-solvable with initial values

\[
\begin{align*}
 u_0 &= u_0(s_1, s_2, \ldots, s_{n-1}) \\
x_i^0 &= x_i^0(s_1, s_2, \ldots, s_{n-1}), \ 1 \leq i \leq n \text{ and } x_i^0 = 0, \ i \geq n + 1 \\
p_i^0 &= p_i^0(s_1, s_2, \ldots, s_{n-1}), \ 1 \leq i \leq n \text{ and } p_i^0 = 0, \ i \geq n + 1,
\end{align*}
\]

where \(x_1, \ldots, x_n, x_{n+1}^{[1]}, \ldots, x_{n+1}^{[1]}, x_{n+1}^{[2]}, \ldots, x_{n+1}^{[2]}, \ldots, x_{n+1}^{[m]}, \ldots, x_{n+1}^{[m]} \) are independent, \(p_k^{[i]} = \partial u/\partial x_k^{[i]} \) and \(n \leq n_1 \leq n_2 \leq \cdots \leq n_m \) if and only if there are integers \(\{n_{i_1}, n_{i_2}, \ldots, n_{i_l}\} \subset \{n_1, n_2, \ldots, n_m\}, n_{i_1} = n_{i_2} = \cdots = n_{i_l} = n \) such that the system

\[
\begin{align*}
 F_{i_1}(x_1, \ldots, x_n, u, p_1, \ldots, p_n) &= 0 \\
 F_{i_2}(x_1, \ldots, x_n, u, p_1, \ldots, p_n) &= 0 \\
 \vdots & \vdots \\
 F_{i_l}(x_1, \ldots, x_n, u, p_1, \ldots, p_n) &= 0
\end{align*}
\]

is algebraically contradictory, in this case, there must be an integer \(k_0, \ 1 \leq k_0 \leq l \) such that

\[F_{i_{k_0}}(x_1^0, x_2^0, \ldots, x_{n-1}^0, x_n^0, u_0, p_1^0, p_2^0, \ldots, p_n^0) \neq 0 \]

or it is differentially contradictory itself, i.e., there is an integer \(j_0, \ 1 \leq j_0 \leq n_m - 1 \) such that

\[\frac{\partial u_0}{\partial s_{j_0}} - \sum_{i=0}^n p_i^0 \frac{\partial x_i^0}{\partial s_{j_0}} \neq 0. \]
Proof. Notice that \(x_1, \ldots, x_n, x_{n+1}^{[1]}, \ldots, x_{n+1}^{[2]}, \ldots, x_{n+m}^{[m]} \) are independent. Whence, if \(n_i \neq n_j \), the system

\[
\begin{align*}
F_k(x_1, \ldots, x_n, x_{n+1}^{[k]}, \ldots, x_{n+1}^{[k+1]}, \ldots, x_{n+1}^{[1]}, \ldots, x_{n+1}^{[1]}), \quad \ldots, \quad F_n(x_1, \ldots, x_n, u, p_1, \ldots, u, p_n, p_n^{[1]}, \ldots, p_n^{[k]}) &= 0,
\end{align*}
\]

must be algebraically compatible. Furthermore, for any integer \(1 \leq k \leq m \) we know the Cauchy problem

\[
\begin{align*}
F_k(x_1, \ldots, x_n, x_{n+1}^{[k]}, \ldots, x_{n+1}^{[k+1]}, \ldots, x_{n+1}^{[1]}, \ldots, x_{n+1}^{[1]}), \quad \ldots, \quad F_n(x_1, \ldots, x_n, u, p_1, \ldots, u, p_n, p_n^{[1]}, \ldots, p_n^{[k]}) &= 0,
\end{align*}
\]

is solvable by Theorem 1.1 if

\[
\frac{\partial u_0}{\partial s_j} - \sum_{i=0}^{n} p_0 \frac{\partial x_0^i}{\partial s_j} = 0
\]

for any integer \(1 \leq j \leq n_m - 1 \). Whence, the conclusion follows by a similar way to that of Theorem 2.1.

3. Combinatorial classification of partial differential equations. According to Theorem 2.1 and Corollary 2.2, if the system of partial differential equations

\[
\begin{align*}
F_1(x_1, x_2, \ldots, x_n, u, p_1, p_2, \ldots, p_n) &= 0,
F_2(x_1, x_2, \ldots, x_n, u, p_1, p_2, \ldots, p_n) &= 0,
\vdots
F_n(x_1, x_2, \ldots, x_n, u, p_1, p_2, \ldots, p_n) &= 0,
\end{align*}
\]

is algebraically contradictory, there are no initial values \(x_1^0, u_0, p_1^0, 1 \leq i \leq n \) such that the Cauchy problem

\[
\begin{align*}
F_k(x_1, \ldots, x_n, u, p_1, \ldots, p_n) &= 0,
\end{align*}
\]

is all solvable for any integer \(1 \leq k \leq m \). Whence, we need to prescribe different initial values \(x_1^{[k]}, u_0^{[k]}, p_1^{[k]}, 1 \leq i \leq n \) for integers \(1 \leq k \leq m \). In fact, the following two steps enable one to find these initial values with minimum numbers:

Step 1: Decompose \((PDES_m)\) into minimal compatible families \(F_1, F_2, \ldots, F_s \) such that:

1. All equations in \(F_i \) is maximal algebraically compatible for any integer \(1 \leq i \leq s \);
2. \(|F_1| + |F_2| + \cdots + |F_s| = m \).

Step 2: Solve family \(F_i \) and prescribe initial values \(x_1^{[k]}, u_0^{[k]}, p_1^{[k]}, 1 \leq j \leq n \) in the algebraic solution of \(F_i \) for integers \(1 \leq i \leq s \).

Furthermore, we assume these initial values \(x_1^{[k]}, u_0^{[k]}, p_1^{[k]}, 1 \leq i \leq n \) hold with

\[
\frac{\partial u_0^{[k]}}{\partial s_j} - \sum_{i=0}^{n} p_0^{[k]} \frac{\partial x_0^{[k]}}{\partial s_j} = 0
\]
for integers $1 \leq j \leq n-1$, $1 \leq k \leq s$ and denote the solution space of Cauchy problem

$$
\begin{cases}
F_k(x_1, \cdots, x_n, u, p_1, \cdots, p_n,) = 0, \\
x_i|_{x_n=x_n^0} = x_i^{[k^0]}, \quad u|_{x_n=x_n^0} = u_0^k, \quad p_i|_{x_n=x_n^0} = p_i^{[k^0]}
\end{cases}
$$

by $S[k]$. Then we can define a vertex-edge labeled graph $G[PDES_m^C]$ as follows:

$$
V(G[PDES_m^C]) = \{S[i]|1 \leq i \leq m\},
$$

$$
E(G[PDES_m^C]) = \{(S[i], S[j])|S^i \cap S^j \neq \emptyset, \ 1 \leq i, j \leq m\}
$$

with labels $l(S[i]) = S[i]$ and $l(S[i], S[j]) = S^i \cap S^j$ for integers $1 \leq i, j \leq m$. Its underlying graph of $G[PDES_m^C]$, i.e., without labels is denoted by $\hat{G}[PDES_m^C]$. Particularly, by replacing each label $S[i]$ with $S_0[i] = \{u_0[i]\}$ and $S^i \cap S^j$ by $S_0[i] \cap S_0[j]$ for integers $1 \leq i, j \leq m$, we get a new vertex-edge labeled graph, denoted by $G_0[PDES_m^C]$. Clearly, $\hat{G}[PDES_m^C] \simeq G_0[PDES_m^C]$.

Then the following results on $\hat{G}[PDES_m^C]$ are easily know by definition.

Theorem 3.1. If $\hat{G}[PDES_m^C] \not\cong K_m$, or $\hat{G}[PDES_m^C] \simeq K_m$ but there are integers $1 \leq i, j, k \leq m$ such that $S[i] \cap S[j] \cap S[k] = \emptyset$, where m is the number of equations in $(PDES_m^C)$, then $(PDES_m^C)$ is non-solvable.

Proof. Clearly, if the system $(PDES_m^C)$ is solvable, then any subsystem of equations in $(PDES_m^C)$ is solvable. This fact implies that $\hat{G}[PDES_m^C]$ is a complete graph and for three integers $1 \leq i, j, k \leq m$, $S[i] \cap S[j] \cap S[k] \neq \emptyset$. Thus, if $\hat{G}[PDES_m^C] \not\cong K_m$, or $S[i] \cap S[j] \cap S[k] = \emptyset$ for three integers $1 \leq i, j, k \leq m$, then the Cauchy problem $(PDES_m^C)$ is non-solvable. \[\square \]

The following result enables one to introduce the conception of G-solution of partial differential equations of first order.

Theorem 3.2. For any system $(PDES_m^C)$ of partial differential equations of first order, $\hat{G}[PDES_m^C]$ is simple. Conversely, for any simple graph G, there is a system $(PDES_m^C)$ of partial differential equations of first order such that $\hat{G}[PDES_m^C] \simeq G$.

Proof. By definition, it is clear that the graph $\hat{G}[PDES_m^C]$ is simple for any system $(PDES_m^C)$ of partial differential equations of first order. Notice that for any partial differential equation

$$
F(x_1, x_2, \cdots, x_n, u, p_1, p_2, \cdots, p_n) = 0,
$$

there are infinitely partial differential equations algebraically contradictory with it, for example, the equation

$$
F(x_1, x_2, \cdots, x_n, u, p_1, p_2, \cdots, p_n) + s = 0,
$$

and there are also infinitely partial differential equations not algebraically contradictory with it, for example, the equation

$$
F(x_1, x_2, \cdots, x_n, u, p_1 + s, p_2 + s, \cdots, p_n + s) = 0
$$

for a real number $s \neq 0$. All of these facts enables one to construct a system $(PDES_m^C)$ of partial differential equations such that $G[PDES_m^C] \simeq G$.
For \(\forall v_1 \in V(G) \), label it with \(S^{[v_1]} \), where \(S^{[v_1]} \) is the solution space of Cauchy problem

\[
\begin{align*}
\left\{ \begin{array}{l}
F_{v_1}(x_1, \cdots, x_n, u, p_1, \cdots, p_n) = 0, \\
x_i|_{x_n=x_n^0} = x_i^{v_1}, \ u|_{x_n=x_n^0} = u_0^{v_1}, \ p_i|_{x_n=x_n^0} = p_i^{v_1}.
\end{array} \right.
\end{align*}
\]

If vertices \(v_1, v_2, \cdots, v_k \) have been labeled and \(V(G) \setminus \{v_1, v_2, \cdots, v_k\} \neq \emptyset \), let \(v_{k+1} \in V(G) \setminus \{v_1, v_2, \cdots, v_k\} \). Not loss of generality, assume \(\{v_1, v_2, \cdots, v_k\} = \{v_{i_1}, v_{i_2}, \cdots, v_{i_l}\} \cup \{v_{j_1}, v_{j_2}, \cdots, v_{j_{k-l}}\} \) such that \(v_{k+1}v_{i_s} \in E(G), 1 \leq s \leq k \) and \(v_{k+1}v_{j_t} \notin E(G), 1 \leq t \leq k-l \). Label the vertex \(v_{k+1} \) by \(S^{[v_{k+1}]} \), where \(S^{[v_{k+1}]} \) is the solution space of such a Cauchy problem

\[
\begin{align*}
\left\{ \begin{array}{l}
F_{v_{k+1}}(x_1, \cdots, x_n, u, p_1, \cdots, p_n) = 0, \\
x_i|_{x_n=x_n^0} = x_i^{v_{k+1}}, \ u|_{x_n=x_n^0} = u_0^{v_{k+1}}, \ p_i|_{x_n=x_n^0} = p_i^{v_{k+1}}
\end{array} \right.
\end{align*}
\]

that

\[
\left\{ \begin{array}{l}
F_{v_{k+1}}(x_1, \cdots, x_n, u, p_1, \cdots, p_n) = 0, \\
F_{v_{i_s}}(x_1, \cdots, x_n, u, p_1, \cdots, p_n) = 0
\end{array} \right.
\]

is algebraically compatible for integers \(1 \leq s \leq l \) but the system

\[
\left\{ \begin{array}{l}
F_{v_{k+1}}(x_1, \cdots, x_n, u, p_1, \cdots, p_n) = 0, \\
F_{v_{j_t}}(x_1, \cdots, x_n, u, p_1, \cdots, p_n) = 0
\end{array} \right.
\]

is algebraically contradictory for integers \(1 \leq t \leq k-l \). As we discussed previous, such a partial differential equation

\[
F_{v_{k+1}}(x_1, \cdots, x_n, u, p_1, \cdots, p_n) = 0
\]

can be always chosen.

Continuing this process, all vertices in \(G \) are labeled by the induction and we get a system \((PDES_m^C) \) of partial differential equations

\[
\begin{align*}
\left\{ \begin{array}{l}
F_v(x_1, \cdots, x_n, u, p_1, \cdots, p_n) = 0, \quad v \in V(G), \\
x_i|_{x_n=x_n^0} = x_i^v, \ u|_{x_n=x_n^0} = u_0^v, \ p_i|_{x_n=x_n^0} = p_i^v.
\end{array} \right.
\end{align*}
\]

Clearly, such a system \((PDES^C) \) with \(\hat{G}[PDES^C_m] \simeq G \) by construction. In fact, the bijection \(\varphi : S^{[v]} \in V(\hat{G}[PDES^C_m]) \to v \in V(G) \) is a graph isomorphism from \(\hat{G}[PDES^C_m] \) to \(G \). This completes the proof. \(\blacksquare \)

Notice that the symbol of a linear partial differential equation

\[
F(x_1, \cdots, x_n, u, p_1, \cdots, p_n) = 0
\]

of first order is a superplane in \(\mathbb{R}^{2n+1} \). Thus for an algebraically contradictory linear system

\[
\left\{ \begin{array}{l}
F_i(x_1, \cdots, x_n, u, p_1, \cdots, p_n) = 0 \\
F_j(x_1, \cdots, x_n, u, p_1, \cdots, p_n) = 0
\end{array} \right.
\]

if

\[
F_k(x_1, \cdots, x_n, u, p_1, \cdots, p_n) = 0
\]
is contradictory to one of there two partial differential equations, then it must be
contradictory to another. This fact enables one to classify equations in \((LPDES_m)\)
by contradictory property and determine its \(\hat{G}[LPDES_m^C]\) following.

Theorem 3.3. Let \((LPDES_m)\) be a system of linear partial differential
equations of first order with maximal contradictory classes \(C_1, C_2, \cdots, C_s\) on
equations in \((LPDES)\). Then \(\hat{G}[LPDES_m^C] \cong K(C_1, C_2, \cdots, C_s)\), i.e., an
\(s\)-partite complete graph.

Proof. By definition, these equations in a contradictory class \(C_i\), \(1 \leq i \leq s\) are
contradictory. Thus there are no edges between them. Similarly, these equations in
two different contradictory classes \(C_i, C_j\), \(1 \leq i \neq j \leq s\) can not be contradictory.
Thus there are edges between them. Whence, \(\hat{G}[LPDES_m^C]\) is nothing else but the
\(s\)-partite complete graph \(K(C_1, C_2, \cdots, C_s)\).

Example 3.4. Let us consider the following Cauchy problems
\[
\begin{align*}
 u_t + au_x &= 0 \\
 u_t + xu_x &= 0 \\
 u_t + au_x + e^t &= 0 \\
 u|_{t=0} &= \phi(x).
\end{align*}
\] (3 – 1)

Clearly, it is algebraically contradictory because \(e^t \neq 0\) for any value \(t\) but
\[
\begin{align*}
 u_t + au_x &= 0 \\
 u_t + xu_x &= 0 \\
 u|_{t=0} &= \phi(x)
\end{align*}
\] and
\[
\begin{align*}
 tu_t + u_x &= 0 \\
 u_t + au_x + e^t &= 0 \\
 u|_{t=0} &= \phi(x)
\end{align*}
\]
are not algebraically contradictory. The vertex-edge labeled graph \(G[(3–1)]\) of Cauchy
problem (3 – 1) is shown in Fig.1,

Fig. 1

where \(S[1]\), \(S[2]\) and \(S[3]\) are determined by solving these Cauchy problems
\[
\begin{align*}
 u_t + au_x &= 0 \\
 u|_{t=0} &= \phi(x) \\
\end{align*}
\] (1)

\[
\begin{align*}
 u_t + xu_x &= 0 \\
 u|_{t=0} &= \phi(x)
\end{align*}
\] and
\[
\begin{align*}
 u_t + au_x + e^t &= 0 \\
 u|_{t=0} &= \phi(x)
\end{align*}
\] (3)

respectively. Calculation shows that
\[
S[1] = \{\phi(x - at)\}, \quad S[2] = \{\phi\left(\frac{x}{e^t}\right)\}, \quad S[3] = \{\phi(x - at) - e^t + 1\}
\]

and
\[
S[1] \cap S[2] = \{\phi(x - at) = \phi\left(\frac{x}{e^t}\right)\}, \quad S[2] \cap S[3] = \{\phi\left(\frac{x}{e^t}\right) = \phi(x - at) - e^t + 1\}
\]

Definition 3.5. Let \((PDES_m^C)\) be the Cauchy problem of a partial differential
equation system of first order. Then the vertex-edge labeled graph \(G[PDES_m^C]\) is called
its topological graph solution and \(G_0[PDES_m^C] \) the initial topological graph solution, abbreviated to \(G \)-solution, initial \(G \)-solution, respectively.

Combining this definition with that of Theorems 3.2 and 3.3, the following conclusion is held immediately.

Theorem 3.6. A Cauchy problem on system \((PDES_m)\) of partial differential equations of first order with initial values \(x_i^{[k]}(0), u_0^{[k]}, \bar{p}_i^{[k]}, 1 \leq i \leq n \) for the \(k \)th equation in \((PDES_m)\), \(1 \leq k \leq m \) such that

\[
\frac{\partial u_0^{[k]}}{\partial s_j} - \sum_{i=0}^{n} p_i^{[k]} \frac{\partial x_i^{[k]}}{\partial s_j} = 0
\]

is uniquely \(G \)-solvable, i.e., \(G[PDES] \) is uniquely determined.

Applying the combinatorial structures of \(G \)-solutions of partial differential equations, we classify them following.

Definition 3.7. Let \((PDES)_1\) and \((PDES)_2\) be two reduced systems of partial differential equations of first order in \(\mathbb{R}^n \) with vertex-edge labeled graphs \(G_1[PDES] \), \(G_2[PDES] \). The two systems \((PDES)_1\) and \((PDES)_2\) are called to be isometric if \(\hat{G}_1[PDES] \cong \hat{G}_2[PDES] \) with \(h(l(v)) = l(\theta(v)) \) for all \(v \in \hat{G}_1[PDES] \), where \(h \) is an isometry on \(\mathbb{R}^{n+1} \), denoted by \((PDES)_1 \cong (PDES)_2 \). Particularly, if \(h = \text{identity}, \) i.e., \(l(v) = l(\theta(v)) \) for all \(v \in \hat{G}_1[PDES] \), \((PDES)_1\) and \((PDES)_2\) are called to be isotopy, denoted by \((PDES)_1 \cong (PDES)_2 \).

Let \(h \) be an isometry on \(\mathbb{R}^{n+1} \). Denoted by \((PDES)^h \) such a system replaced \(x_1, x_2, \ldots, x_n \) by \(h(x_1), h(x_2), \ldots, h(x_n) \) and \(p_i \) by \(\partial u/\partial h(x_i) \) for each equation in \((PDES)\). Then we know the following result on isometric equations.

Theorem 3.8. \((PDES)_1 \cong (PDES)_2 \) if and only if there is an isometry \(h \) on \(\mathbb{R}^{n+1} \) such that \((PDES)^h_1 \equiv (PDES)_2 \). Particularly, \((PDES)_1 \equiv (PDES)_2 \) if and only if \(G_1[PDES] \cong G_2[PDES] \), i.e., reduced partial differential equations in \((PDES)_1\) are the same as those of reduced equations in \((PDES)_2\).

Proof. Notice that \(G_1[PDES] \cong G_2[PDES] \) in \(\mathbb{R}^{n+1} \) if and only if the \(G \)-solutions of \((PDES)_1\) and \((PDES)_2\) are coincident. By definition, if \((PDES)_1 \cong (PDES)_2\), then there is an isometry \(h \) such that \(\hat{G}_1[PDES] \cong \hat{G}_2[PDES] \) with \(h(l(v)) = l(\theta(v)) \) for all \(v \in \hat{G}_1[PDES] \), i.e., \(h \) is an isometry between the \(G \)-solutions of \((PDES)_1\) and \((PDES)_2\). Without loss of generality, let \(h \) map the \(G \)-solution to \(G \)-solution. Then it implies that \(G[(PDES)^h_1] \cong G_2[PDES] \). Thus \((PDES)^h_1 \cong (PDES)_2 \).

Similarly, if \((PDES)_1 \equiv (PDES)_2\), there must be \(\hat{G}_1[PDES] \cong \hat{G}_2[PDES] \) and \(l(v) = l(\theta(v)) \) for all \(v \in \hat{G}_1[PDES] \). Thus \(G_1[PDES] \cong G_2[PDES] \), i.e., the \(G \)-solutions of \((PDES)_1\) are coincident with that of \((PDES)_2\). This fact implies that all reduced partial differential equations in \((PDES)_1\) are the same as those of reduced equations in \((PDES)_2\). \(\square \)

Corollary 3.9. Let \((PDES) \) be a system of partial differential equations of first order in \(\mathbb{R}^n \), \([A]_{n\times n} \) an orthogonal matrix and \(h = [A]_{n\times n}(x_1, x_2, \ldots, x_n)^T \). Then \((PDES)^h \cong (PDES)\).
For example, let h be a linear transformation on \mathbb{R}^2 determined by
\[
\begin{align*}
x_1 &= ax + by \\
y_1 &= -bx + ay
\end{align*}
\]
with $a^2 + b^2 = 1$, $a, b \in \mathbb{R}$. Then
\[
\begin{align*}
\frac{\partial u}{\partial x} &= a \frac{\partial u}{\partial x_1} - b \frac{\partial u}{\partial y} \\
\frac{\partial u}{\partial y} &= b \frac{\partial u}{\partial x_1} + a \frac{\partial u}{\partial y_1}.
\end{align*}
\]
Thus, the equation
\[
\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} = 0
\]
is isometric to
\[
(a + b) \frac{\partial u}{\partial x} + (a - b) \frac{\partial u}{\partial y} = 0
\]
since G-solution of them is K_2 with labels transformed by h each other.

4.1. Global stability of G-solutions. Denoted a solution $u(x_1, x_2, \ldots, x_n)$ by $u(x_1, x_2, \ldots, x_{n-1}, t)$ and G-solution, G_0-solution by $G[t]$-solution, $G[0]$-solution in this section. We discuss the global stability of $G(t)$-solutions of partial differential equation systems of first order, i.e., sum-stability and prod-stability following.

Definition 4.1. Let $(PDES_m^C)$ be a Cauchy problem on a system of partial differential equations of first order in \mathbb{R}^n, and $u^{[v]}$ the solution of the vth equation with initial value $u_0^{[v]}$. Then

(1) The system $(PDES_m^C)$ is sum-stable if for any number $\varepsilon > 0$ there exists $\delta_v > 0$, $v \in V(\hat{G}[0])$ such that each $G(t)$-solution with

\[
|u_0^{[v]} - u_0^{[v]}| < \delta_v, \quad \forall v \in V(\hat{G}[0])
\]
exists for all $t \geq 0$ and with the inequality

\[
\left|\sum_{v \in V(\hat{G}[t])} u^{[v]} - \sum_{v \in V(\hat{G}[t])} u^{[v]}\right| < \varepsilon
\]
holds, denoted by $G[t] \cong G[0]$. Furthermore, if there exists a number $\beta_v > 0$, $v \in V(\hat{G}[0])$ such that every $G'[t]$-solution with

\[
|u_0^{[v]} - u_0^{[v]}| < \beta_v, \quad \forall v \in V(\hat{G}[0])
\]
satisfies

\[
\lim_{t \to \infty} \left|\sum_{v \in V(\hat{G}[t])} u^{[v]} - \sum_{v \in V(\hat{G}[t])} u^{[v]}\right| = 0,
\]
then the $G[t]$-solution is called asymptotically stable, denoted by $G[t] \xrightarrow{\Sigma} G[0]$.

(2) The system $(PDES_m^C)$ is prod-stable if for any number $\varepsilon > 0$ there exists $\delta_\varepsilon > 0$, $v \in V(\hat{G}[0])$ such that each $G(t)$-solution with

$$|u'_0^{[v]} - u_0^{[v]}| < \delta_\varepsilon, \quad \forall v \in V(\hat{G}[0])$$

exists for all $t \geq 0$ and with the inequality

$$\left| \prod_{v \in V(G[t])} u'_v^{[v]} - \prod_{v \in V(G[t])} u_v^{[v]} \right| < \varepsilon$$

holds, denoted by $G[t] \xrightarrow{\Pi} G[0]$. Furthermore, if there exists a number $\varepsilon > 0$, $v \in V(\hat{G}[0])$ such that every $G'[t]$-solution with

$$|u'_0^{[v]} - u_0^{[v]}| < \beta_\varepsilon, \quad \forall v \in V(\hat{G}[0])$$

satisfies

$$\lim_{t \to \infty} \left| \prod_{v \in V(\hat{G}[t])} u'_v^{[v]} - \prod_{v \in V(\hat{G}[t])} u_v^{[v]} \right| = 0,$$

Then the $G[t]$-solution is called asymptotically prod-stable, denoted by $G[t] \xrightarrow{\Pi} G[0]$.

Denote by $\ln G[t]$ such a $G[t]$-solution replaced $u_v^{[v]}$ by $\ln u_v^{[v]}$ for $\forall v \in V(G[t])$. The following result follows immediately from the definition of sum and prod-stability of $G[t]$-solution.

THEOREM 4.2. Let $(PDES_m^C)$ be a Cauchy problem of partial differential equations of first order in \mathbb{R}^n. Then

1. $G[t] \xrightarrow{\Pi} G[0]$ if and only if $\ln G[t] \xrightarrow{\Sigma} \ln G[0]$, and $G[t] \xrightarrow{\Pi} G[0]$ if and only if $\ln G[t] \xrightarrow{\Sigma} \ln G[0]$.

2. If there is a permutation π action on $V(G[t])$ such that

$$|u'_0^{[v]} - u_0^{[v]}| < \delta_\varepsilon, \quad \forall v \in V(\hat{G}[0])$$

exists with the inequality

$$|u'_v^{[v]} - u_v^{[\pi \, v]}| < \varepsilon$$

holds for $\forall v \in V(G[t])$, then $G[t] \xrightarrow{\Sigma} G[0]$. Furthermore, if there exists a number $\beta_\varepsilon > 0$, $v \in V(\hat{G}[0])$ such that every $G'[t]$-solution with

$$|u'_0^{[v]} - u_0^{[v]}| < \beta_\varepsilon, \quad \forall v \in V(\hat{G}[0])$$

satisfies

$$\lim_{t \to \infty} \left| u'_0^{[v]} - u_0^{[\pi \, v]} \right| = 0,$$
then \(G[t] \xrightarrow{\Sigma} G[0]\). Particularly, if \(u^{[v]} \) is stable or asymptotically stable for \(\forall v \in V(G[t]) \), then \(G[t] \xrightarrow{\Sigma} G[0] \) or \(G[t] \xrightarrow{\Sigma} G[0] \).

Proof. Notice that

\[
\ln \left| \prod_{v \in V(G[0])} u^{[v]} \right| = \sum_{v \in V(G[0])} \ln |u^{[v]}|
\]

and if a \(G[t] \)-solution is prod-stable or asymptotically prod-stable, its \(G'[t] \)-solution replacing some \(u^{[v]} \) by \(-u^{[v]}\) is also prod-stable or asymptotically prod-stable, we get the conclusion (1).

For any permutation \(\pi \) on \(V(G[t]) \), it is clear that

\[
\sum_{v \in V(G[t])} u^{[v^\pi]} = \sum_{v \in V(G[t])} u^{[v]},
\]

which implies the conclusion (2) by definition. \(\square \)

Notice that the characteristic system of the \(i \)th equation in (PDES\(_m\)) is

\[
\frac{dx_1}{F_{k_1}} = \frac{dx_2}{F_{k_2}} = \cdots = \frac{dx_n}{F_{k_n}} = \frac{du}{\sum_{i=1}^n p_i F_{k_i}} = -\frac{dp_1}{F_{k_1} + p_1 F_{k_u}} = \cdots = -\frac{dp_n}{F_{k_n} + p_n F_{k_u}} = dt.
\]

Whence, the sum and prod-stability of Cauchy problem (PDES\(_m^C\)) are equivalent to that of the ordinary differential equations consisting of all characteristic systems of partial differential equations in (PDES\(_m^C\)) with the same initial values. Particularly, let the system (PDES\(_m^C\)) be

\[
\begin{align*}
\frac{\partial u}{\partial t} &= H_i(t, x_1, \ldots, x_{n-1}, p_1, \ldots, p_{n-1}) \\
u|_{t=t_0} &= u^{[i]}_0(x_1, x_2, \ldots, x_{n-1})
\end{align*}
\]

\((APDES_m^C)\)

A point \(X^{[i]}_0 = (t_0, x^{[i]}_{10}, \ldots, x^{[i]}_{(n-1)0}) \) with \(H_i(t_0, x^{[i]}_{10}, \ldots, x^{[i]}_{(n-1)0}) = 0 \) for an integer \(1 \leq i \leq m \) is called an equilibrium point of the \(i \)th equation in (APDES\(_m\)). Then a result on the global stability of (APDES\(_m\)) is found in the following.

Theorem 4.3. Let \(X^{[i]}_0 \) be an equilibrium point of the \(i \)th equation in (APDES\(_m^C\)),

\[
X^\Sigma_0 = \sum_{i=1}^m X^{[i]}_0, \quad X^\Sigma(G[t]) = \sum_{v \in V(G[0])} X_v(t),
\]

\[
X^\Pi_0 = \prod_{i=1}^m X^{[i]}_0, \quad X^\Pi(G[t]) = \prod_{v \in V(G[0])} X_v(t)
\]

and \(L : \Theta \subset \mathbb{R}^n \rightarrow \mathbb{R} \) a differentiable function on an open set \(\Theta \subset \mathbb{R}^n \) containing \(X^\Sigma_0 \) and \(X^\Pi_0 \). If

\[
L(X^\Sigma(G[t])) > 0 \text{ and } \dot{L}(X^\Sigma(G[t])) \leq 0
\]
for $X \in \theta - X_0^\Sigma$, the system $(APDES_m^C)$ is sum-stability, i.e., $G[t] \overset{\Sigma}{\sim} G[0]$. Furthermore, if

$$L (X^\Sigma(G[t])) > 0$$

for $X \in \theta - X_0^\Sigma$, then $G[t] \overset{\Sigma}{\Rightarrow} G[0]$.

Similarly, if

$$L (X^\Pi(G[t])) > 0 \text{ and } \dot{L} (X^\Pi(G[t])) \leq 0$$

for $X \in \theta - X_0^\Pi$, the system $(APDES_m^C)$ is prod-stability, i.e., $G[t] \overset{\Pi}{\sim} G[0]$. Furthermore, if

$$\dot{L} (X^\Pi(G[t])) < 0$$

for $X \in \theta - X_0^\Pi$, then $G[t] \overset{\Pi}{\Rightarrow} G[0]$.

Proof. Let $\epsilon > 0$ be a so small number that the closed ball $B_\epsilon(X_0^\Sigma)$ centered at X_0^Σ with radius ϵ entirely lies in θ and let Λ_0 be the minimum value of $L (X^\Sigma(G[t]))$ on the boundary of $B_\epsilon(X_0^\Sigma)$, i.e., the sphere $S_\epsilon(X_0^\Sigma)$. Clearly, $\Lambda_0 > 0$ by assumption. Define $U = \{X \in B_\epsilon(X_0^\Sigma) | L(X) < \Lambda_0 \}$. Notice that $X_0^\Sigma \in U$ and L is non-increasing on $(X^\Sigma(G[t]))$ by definition in $\theta - X_0^\Sigma$. There are no solutions $X_v(t), v \in V(G[0])$ starting in U such that $L (X^\Sigma(G[t]))$ meet the sphere $S_\epsilon(X_0^\Sigma)$ because of the decrease of $L (X^\Sigma(G[t]))$. Thus all solutions $X_v(t), v \in V(G[0])$ starting in U enable $L (X^\Sigma(G[t]))$ included in ball $B_\epsilon(X_0^\Sigma)$. Consequently, $G[t] \overset{\Sigma}{\sim} G[0]$ by definition.

Now assume that $\dot{L} (X^\Sigma(G[t])) < 0$ for $X^\Sigma(G[t]) \neq X_0^\Sigma$. Thus L is strictly decreasing on $X^\Sigma(G[t])$ in $\theta - X_0^\Sigma$. If $X_v(t_n), v \in V(G[0])$ are all solutions of $(APDES_m^C)$ starting in $U - X_0^\Sigma$ such that $X^\Sigma(G[t_n]) \rightarrow Y_0$ for $n \rightarrow \infty$ with $Y_0 \in B_\epsilon(X_0^\Sigma)$, then it must be $Y_0 = X_0^\Sigma$. Otherwise, since $L (X^\Sigma(G[t_n])) > L(Y_0)$ by the assumption $\dot{L} (X^\Sigma(G[t])) < 0$ for $X^\Sigma(G[t]) \in \theta - X_0^\Sigma$ and $L (X^\Sigma(G[t])) \rightarrow L(Y_0)$ for $n \rightarrow \infty$ by the continuity of L, if $Y_0 \neq X_0^\Sigma$, let $Y_v(t), v \in V(G[0])$ be the solutions starting at Y_0. Then for any $\eta > 0$,

$$L \left(\sum_{v \in V(G[0])} Y_v(\eta) \right) < L(Y_0).$$

But then a contradiction

$$L \left(\sum_{v \in V(G[0])} X_v(t_n + \eta) \right) < L(Y_0)$$

yields by letting $Y_0 = X^\Sigma(G[t_n])$ for sufficiently large n. So there must be $Y_0 = X_0^\Sigma$. Thus $G[t] \overset{\Sigma}{\sim} G[0]$.

It should be noted that replacing X_0^Σ, $X^\Sigma(G[t])$ by X_0^Π, $X^\Pi(G[t])$ and $B_\epsilon(X_0^\Sigma)$ by $B_\epsilon(X_0^\Pi)$ in the previous discussion, the conclusion is also hold, which enables one to know that $G[t] \overset{\Pi}{\sim} G[0]$ or $G[t] \overset{\Pi}{\Rightarrow} G[0]$. This completes the proof. \qed
According to Theorem 4.3, if we find a differential function $L : \mathcal{O} \subset \mathbb{R}^n \to \mathbb{R}$, then we are easily known the sum or prod-stability of $(APDES_m^C)$. Calculation shows that the characteristic system of the ith equation in $(APDES_m^C)$ is

$$\frac{dt}{dx_i} = -\frac{dp_i}{\partial x_i} = \cdots = -\frac{dp_{n-1}}{\partial x_{n-1}} = \sum_{l=0}^{n-1} \frac{\partial H_i}{\partial p_l} \frac{du}{\partial t}$$

and

$$\frac{dx_l}{dt} = \frac{\partial H_i}{\partial p_l}, \quad \frac{dp_l}{dt} = -\frac{\partial H_i}{\partial x_l},$$

for integers $1 \leq i \leq m$, $1 \leq l \leq n-1$. Whence,

$$\frac{dH_i}{dt} = \frac{\partial H_i}{\partial t} + \sum_{l=1}^{n-1} \frac{\partial H_i}{\partial x_l} \frac{dx_l}{dt} + \sum_{l=1}^{n-1} \frac{\partial H_i}{\partial p_l} \frac{dp_l}{dt}$$

$$= \frac{\partial H_i}{\partial t} + \sum_{l=1}^{n-1} \frac{\partial H_i}{\partial x_l} \frac{\partial H_i}{\partial x_l} - \sum_{l=1}^{n-1} \frac{\partial H_i}{\partial p_l} \frac{\partial H_i}{\partial x_l} \equiv \frac{\partial H_i}{\partial t}$$

for integers $1 \leq i \leq m$. This fact enables us to find conditions for the global stability of partial differential systems $(APDES_m^C)$.

Theorem 4.4. Let $X_0^{[i]}$ be an equilibrium point of the ith equation in $(APDES_m^C)$ for each integer $1 \leq i \leq m$. If

$$\sum_{i=1}^{m} H_i(X) > 0 \quad \text{and} \quad \sum_{i=1}^{m} \frac{\partial H_i}{\partial t} \leq 0$$

for $X \neq \sum_{i=1}^{m} X_0^{[i]}$, then the system $(APDES_m^C)$ is sum-stability, i.e., $G[t] \Sigma \approx G[0]$. Furthermore, if

$$\sum_{i=1}^{m} \frac{\partial H_i}{\partial t} < 0$$

for $X \neq \sum_{i=1}^{m} X_0^{[i]}$, then $G[t] \Sigma \rightarrow G[0]$.

Similarly, if

$$\prod_{i=1}^{m} H_i(X) > 0 \quad \text{and} \quad \sum_{i=1}^{m} \frac{1}{H_i(X)} \frac{\partial H_i}{\partial t} \leq 0$$

for $X \neq \prod_{i=1}^{m} X_0^{[i]}$, then $G[t] \Pi \approx G[0]$. Furthermore, if

$$\sum_{i=1}^{m} \frac{1}{H_i(X)} \frac{\partial H_i}{\partial t} < 0$$

for $X \neq \prod_{i=1}^{m} X_0^{[i]}$, then $G[t] \Pi \rightarrow G[0]$.
Proof. Define \(L(X) = \sum_{i=1}^{m} H_i(X) \). Then \(\dot{L}(X) = \sum_{i=1}^{m} \dot{H}_i(X) \). By assumption, if
\[
\sum_{i=1}^{m} H_i(X) > 0, \quad \sum_{i=1}^{m} \frac{\partial H_i}{\partial t} \leq 0 \quad \text{or} \quad \sum_{i=1}^{m} \frac{\partial H_i}{\partial t} < 0,
\]
we know that
\[
L(X) > 0, \quad \dot{L}(X) \leq 0 \quad \text{or} \quad \dot{L}(X) < 0
\]
for \(X \neq \sum_{i=1}^{m} X_0^{[i]} \). Applying Theorem 4.3, we get that \(G[t] \sim G[0] \), or furthermore, \(G[t] \rightarrow G[0] \) if \(\sum_{i=1}^{m} \frac{\partial H_i}{\partial t} < 0 \). Thus we get the sum-stability of \(G[t] \)-solution of \((APDES^C_m)\).

For the prod-stability of \(G[t] \)-solution of \((APDES^C_m)\), let \(L(X) = \prod_{i=1}^{m} H_i(X) \). Then
\[
\dot{L}(X) = \sum_{j=1}^{m} \frac{\dot{H}_j(X) \prod_{i=1}^{m} H_i(X)}{H_j(X)} = \prod_{i=1}^{m} H_i(X) \left(\sum_{j=1}^{m} \frac{\dot{H}_j(X)}{H_j(X)} \right).
\]

Whence, if
\[
\prod_{i=1}^{m} H_i(X) > 0, \quad \sum_{i=1}^{m} \frac{1}{H_i(X)} \frac{\partial H_i}{\partial t} \leq 0 \quad \text{or} \quad \sum_{i=1}^{m} \frac{1}{H_i(X)} \frac{\partial H_i}{\partial t} < 0
\]
for integers \(1 \leq i \leq m \), then
\[
L(X) > 0, \quad \dot{L}(X) \leq 0 \quad \text{or} \quad \dot{L}(X) < 0
\]
for \(X \neq \prod_{i=1}^{m} X_0^{[i]} \). Applying Theorem 4.3, we know that \(G[t] \prod \rightarrow G[0] \), or furthermore, \(G[t] \rightarrow G[0] \) if
\[
\sum_{i=1}^{m} \frac{1}{H_i(X)} \frac{\partial H_i}{\partial t} < 0.
\]
for \(X \neq \prod_{i=1}^{m} X_0^{[i]} \). \(\square \)

Corollary 4.5. An equilibrium point \(X^* \) of the Cauchy problem
\[
\begin{cases}
\frac{\partial u}{\partial t} = H(t, x_1, \cdots, x_{n-1}, p_1, \cdots, p_{n-1}) \\
u|_{t=t_0} = u_0(x_1, x_2, \cdots, x_{n-1})
\end{cases}
\]
is stable if \(H(X) > 0 \), \(\frac{\partial H}{\partial t} \leq 0 \), and is asymptotically stable if \(\frac{\partial H}{\partial t} \leq 0 \) for \(X \neq X^* \).

Let us see a simple example in the following.
Example 4.6. Let \((\text{APDES}_m^C)\) be

\[
\begin{aligned}
\frac{\partial u}{\partial t} &= H_1(t, x) = x^2 e^{-t+x} \\
u|_{t=0} &= \varphi(x),
\end{aligned}
\begin{aligned}
\frac{\partial u}{\partial t} &= H_2(t, x) = x^4 e^{-5t+x^2} \\
u|_{t=0} &= \zeta(x).
\end{aligned}
\]

Clearly, \((t, 0)\) is its an equilibrium point. Calculation shows that

\[
\begin{align*}
H_1(t, x) + H_2(t, x) &= x^2 e^{-t+x} + x^4 e^{-5t+x^2} > 0, \\
\dot{H}_1(t, x) + \dot{H}_2(t, x) &= -x^2 e^{-t+x} - 5x^4 e^{-5t+x^2} < 0
\end{align*}
\]

and

\[
\begin{align*}
H_1(t, x)H_2(t, x) &= x^6 e^{-6t+x+x^2} > 0, \\
H_1(t, x) \dot{H}_2(t, x) &= -6x^6 e^{-6t+x+x^2} < 0
\end{align*}
\]

if \(x \neq 0\). Thus the equilibrium points \((t, 0)\) of \((\text{APDES}_m^C)\) are both sum and prod-
stable by Theorem 4.4.

4.2. Energy integral of \(G\)-solution.

Definition 4.7. Let \(G[t]\) be the \(G\)-solution of Cauchy problem \((\text{APDES}_m^C)\). The \(v\)-energy \(E(v[t])\) and \(G\)-energy \(E(G[t])\) are defined respectively by

\[
E(v[t]) = \int_{\partial_v} \left(\frac{\partial u^v}{\partial t} \right)^2 dx_1 dx_2 \cdots dx_{n-1},
\]

where \(\partial_v \subset \mathbb{R}^n\) is determined by the \(v\)th equation

\[
\begin{aligned}
\frac{\partial u}{\partial t} &= H_v(t, x_1, \cdots, x_{n-1}, p_1, \cdots, p_{n-1}) \\
u|_{t=t_0} &= u^v_0(x_1, x_2, \cdots, x_{n-1})
\end{aligned}
\]

and

\[
E(G[t]) = \sum_{G \leq \hat{G}[0]} (-1)^{|G|+1} \int_{\partial_G} \left(\frac{\partial u^G}{\partial t} \right)^2 dx_1 dx_2 \cdots dx_{n-1},
\]

where \(u^G\) is the \(C^2\) solution of system

\[
\begin{aligned}
\frac{\partial u}{\partial t} &= H_v(t, x_1, \cdots, x_{n-1}, p_1, \cdots, p_{n-1}) \\
u|_{t=t_0} &= u^v_0(x_1, x_2, \cdots, x_{n-1})
\end{aligned}
\]

and \(\partial_G = \bigcap_{v \in V(G)} \partial_v\). Particularly, if \(\hat{G}[0] \simeq \mathbb{K}_n\), i.e., all equations in \((\text{APDES}_m^C)\) is non-solvable two by two, then

\[
E(G[t]) = \sum_{v \in \hat{G}[0]} E(v[t]).
\]

We determine the non-empty domain \(\partial_G \subset \mathbb{R}^n\) in the following.
THEOREM 4.8. Let the Cauchy problem be \((\text{APDES}_m^C), G \subset \widehat{G}[0]\) with \(\mathcal{O}_G \neq \emptyset\). Then
\[
\bigcap_{v \in V(G)} \mathcal{O}_v = \{ X \in \mathbb{R}^n | H_u(X) = H_v(X), \forall u, v \in V(G) \}.
\]
if \(|G| \geq 2\).

Proof. Noticing that if \(\mathcal{O}_G \neq \emptyset\), there is a solution \(u^G_t\) of the system
\[
\frac{\partial u^G}{\partial t} = H_v(t, x_1, \cdots, x_{n-1}, p_1, \cdots, p_{n-1})
\]
\[
\left. u^G \right|_{t=t_0} = u^G_0 (x_1, x_2, \cdots, x_{n-1})
\]
Whence, \(H_v = u^G_t\) for \(\forall v \in V(G)\) in \(\mathcal{O}_G\), which implies that
\[
\bigcap_{v \in V(G)} \mathcal{O}_v \subset \{ X \in \mathbb{R}^n | H_u(X) = H_v(X), \forall u, v \in V(G) \}.
\]
Conversely, for \(\forall X \in \{ X \in \mathbb{R}^n | H_v(X) = H_u(X), \forall u, v \in V(G) \}\), there are \(H_v(X) = H_u(X) = H(X)\) for \(\forall u, v \in V(G)\). Thus the system
\[
\frac{\partial u^G}{\partial t} = H_v(t, x_1, \cdots, x_{n-1}, p_1, \cdots, p_{n-1}), \quad v \in V(G)
\]
is equivalent to the partial differential equation
\[
\frac{\partial u}{\partial t} = H(t, x_1, \cdots, x_{n-1}, p_1, \cdots, p_{n-1}).
\]
Now by Theorem 1.1, this equation is always solvable with suitable initial values, which means that
\[
\{ X \in \mathbb{R}^n | H_v(X) = H_u(X), \forall u, v \in V(G) \} \subset \bigcap_{v \in V(G)} \mathcal{O}_v.
\]

Theorem 4.8 enables one to introduce the conception of energy-index for the system \((\text{APDES}_m^C)\) following.

DEFINITION 4.9. Let the Cauchy problem be \((\text{APDES}_m^C)\) with each \(H_i\) in \(C^2\) for integers \(1 \leq i \leq m\). Its energy-index \(\text{ind}^E(G)\) is defined by
\[
\text{ind}^E(G) = \sum_{G \leq \widehat{G}[0]} (-1)^{|G| + 1} \int_{\bigcap_{v \in V(G)} \mathcal{O}_v} H_G \hat{H}_G dx_1 dx_2 \cdots dx_{n-1},
\]
where \(H_G = H_v\) for \(\forall v \in V(G)\) with \(\mathcal{O}_G \neq \emptyset\).

Denoted by
\[
\overline{\text{ind}}_G(v) = \int_{\bigcap_{v \in V(G)} \mathcal{O}_v} H_v \frac{\partial H_v}{\partial t} dx_1 dx_2 \cdots dx_{n-1}
\]
for \(G \leq \widehat{G}[0]\). We know a result on the energy-index following.
Theorem 4.10. Let \((APDES^C_m)\) be a Cauchy problem with \(G\)-solution \(G[t]\) and all \(H_i\) in \(\mathbb{C}^2\) for integers \(1 \leq i \leq m\). Then

\[
\text{ind}^E(G) = \sum_{i=1}^{m} \frac{(-1)^{i+1}}{i} \sum_{v \in V(K_i), \ K_i \leq \hat{G}[0]} \text{ind}_{K_i}(v).
\]

Proof. Clearly, \(\text{ind}_{G}(v) = \text{ind}^E(v)\) if \(G = \langle v \rangle\) and \(\text{ind}_{G}(v) = 0\) if \(G \not\cong K_s\) for some integer \(1 \leq s \leq m\). By definition, we know that

\[
\text{ind}^E(G) = \sum_{G \leq \hat{G}[0]} (-1)^{|G|+1} \int_{\bigcap_{v \in V(G)} \sigma_v} H_G \hat{H}_G dx_1 dx_2 \cdots dx_{n-1}
\]

\[
= \sum_{G \leq \hat{G}[0]} (-1)^{|G|+1} \int_{\bigcap_{v \in V(G)} \sigma_v} H_G \frac{\partial H_G}{\partial t} dx_1 dx_2 \cdots dx_{n-1}
\]

\[
= \sum_{i=1}^{m} \sum_{K_i \leq \hat{G}[0]} (-1)^{i+1} \frac{1}{i} \sum_{v \in V(K_i)} \text{ind}_{K_i}(v)
\]

\[
= \sum_{i=1}^{m} \frac{(-1)^{i+1}}{i} \sum_{v \in V(K_i), \ K_i \leq \hat{G}[0]} \text{ind}_{K_i}(v).
\]

Particularly, if \(\hat{G}[0]\) is \(K_3\)-free, i.e., there are no induced subgraphs isomorphic to \(K_3\) in \(\hat{G}[0]\), then \(\bigcap_{v \in V(K_i)} \sigma_v = \emptyset\) for integers \(i \geq 3\). We get the following conclusion.

Corollary 4.11. For a Cauchy problem \((APDES^C_m)\) with \(G\)-solution \(G[t]\), if \(\hat{G}[0]\) is \(K_3\)-free, then

\[
\text{ind}^E(G) = \sum_{v \in V(\hat{G}[0])} \text{ind}^E(v) - \frac{1}{2} \sum_{e \in E(\hat{G}[0])} \int_{\sigma_u \cap \sigma_v} H_e \frac{\partial H_e}{\partial t} dx_1 dx_2 \cdots dx_{n-1},
\]

where \(H_e = H_u = H_v\) for \(e = (u, v) \in E(\hat{G}[0])\).

Applying the energy-index \(\text{ind}^E(G)\), we know a \(G\)-energy inequality following.

Theorem 4.12. Let \(G[t]\) be the \(G\)-solution of Cauchy problem \((APDES^C_m)\). If \(\text{ind}^E(G) > 0\), then \(E(G[t_1]) > E(G[t_0])\) for \(t_1 > t_0\).

Proof. By definition we know that
Therefore, if \(t \in V \) its (solvable or non-solvable), then a conclusion on \(\Gamma[0] \) for all \(\forall \). Let the Cauchy problem be \((PDES_C)\), with \(H_v \) differentiable by definition of \(\phi \) for a system \((PDES)\). Particularly let \(n \)-dimensional graph \(\Gamma[u] \) by the set of ordered pairs

\[
\Gamma[u] = \{((x_1, \ldots, x_n), u(x_1, \ldots, x_n)) | (x_1, \ldots, x_n) \in \mathbb{R}^n\}.
\]

Similarly, for a system \((PDES)\) of partial differential equations of first order (solvable or non-solvable), its n-geometrical graph is defined by

\[
\Gamma[PDES] = \{((x_1, \ldots, x_n), u(x_1, \ldots, x_n)) | (x_1, \ldots, x_n) \in \mathbb{R}^n, v \in V(\hat{G}[0])\}.
\]

Then, a conclusion on \(\Gamma[PDES] \) can be determined in the following.

Theorem 4.14. Let the Cauchy problem be \((PDES)\). Then every connected component of \(\Gamma[PDES] \) is a differentiable \(n \)-manifold with atlas \(\mathcal{A} = \{(U_v, \phi_v) | v \in V(\hat{G}[0])\} \) underlying graph \(\hat{G}[0] \), where \(U_v \) is the \(n \)-dimensional graph \(G[u(v)] \simeq \mathbb{R}^n \) and \(\phi_v \) the projection

\[
\phi_v : ((x_1, x_2, \ldots, x_n), u(x_1, x_2, \ldots, x_n)) \rightarrow (x_1, x_2, \ldots, x_n)
\]

for all \((x_1, x_2, \ldots, x_n) \in \mathbb{R}^n \).

Proof. Clearly, \(U_v \) is open and

\[
\phi_v^{-1} : (x_1, x_2, \ldots, x_n) \rightarrow ((x_1, x_2, \ldots, x_n), u(x_1, x_2, \ldots, x_n))
\]

for all \(v \in V(\hat{G}[0]) \). Notice that \(u \) is differentiable in \(\mathbb{R}^n \) and \(\phi_v \phi_u^{-1} = 1_{U_v \cap U_u} \) and \(\phi_v \phi_u^{-1} = 1_{U_u \cap U_v} \) on \(U_u \cap U_v \) are also differentiable by definition of \(U_u \cap U_v \) for \(u, v \in \mathbb{R}^n \).
Thus the connected \(n \)-dimensional component of \(\Gamma[PDES_m^C] \) is a differential manifold. □

Notice that it is shown in [11] that manifolds can be classified by \(n \)-dimensional graphs and listed by graphs. However, Theorem 4.14 enables one to get such \(n \)-dimensional graphs for differentiable manifolds by systems \((PDES_m^C)\) of partial differential equations. We know that the standard basis of a vector field \(T(M) \) on a differentiable \(n \)-manifold \(M \) is
\[
\left\{ \frac{\partial}{\partial x_i}, 1 \leq i \leq n \right\}
\]
and a vector field \(X \) can be viewed as a first order partial differential operator
\[
X = \sum_{i=1}^{n} a_i \frac{\partial}{\partial x_i},
\]
where \(a_i \) is \(C^\infty \)-differentiable for integers \(1 \leq i \leq n \). Combining Theorems 3.6 and 4.14 enables one to get the following result on vector fields.

Theorem 4.15. For any integer \(m \geq 1 \), let \(U_i, 1 \leq i \leq m \) be open sets in \(\mathbb{R}^n \) underlying a connected graph defined by
\[
V(G) = \{ U_i | 1 \leq i \leq m \}, \quad E(G) = \{ (U_i, U_j) | U_i \cap U_j \neq \emptyset, 1 \leq i, j \leq m \}.
\]
If \(X_i \) is a vector field on \(U_i \) for integers \(1 \leq i \leq m \), then there always exists a differentiable manifold \(M \subset \mathbb{R}^n \) with atlas \(\mathcal{A} = \{ (U_i, \phi_i) | 1 \leq i \leq m \} \) underlying graph \(G \) and a function \(u_G \in \Omega^0(M) \) such that
\[
X_i(u_G) = 0, \quad 1 \leq i \leq m.
\]

Proof. For any integer \(1 \leq k \leq m \), let
\[
X_k = \sum_{i=1}^{n} a_i^{[k]} \frac{\partial}{\partial x_i}.
\]
Notice that the system \((PDES_m^C)\) of partial differential equations
\[
\begin{aligned}
a_1^{[v]} \frac{\partial u}{\partial x_1} + a_2^{[v]} \frac{\partial u}{\partial x_2} + \cdots + a_n^{[v]} \frac{\partial u}{\partial x_n} &= 0 \\
v|_{x_n=x_n^{[0]}} &= u_v^{[0]}
\end{aligned}
\]
has a \(G \)-solution by Theorem 3.6. According to Theorem 4.14, its \(n \)-dimensional graph \(\Gamma[PDES_m^C] \) is an \(n \)-dimensional manifold \(M \). We construct a differentiable function \(u_G \) on \(M \). In fact, let \(u_v \) be a solution of the \(v \)th equation of system \((PDES_m^C)\) and \(\{ h_v, v \in V(G) \} \) a partition of unity on open sets \(\{ U_v, v \in V(G) \} \). Define
\[
\begin{aligned}
u_G &= \sum_{v \in V(G)} h_v u_v.
\end{aligned}
\]
Then, it is clear that
\[
\begin{aligned}
X_k(u_G) &= \sum_{i=1}^{n} a_i^{[k]} \frac{\partial u}{\partial x_i} = 0
\end{aligned}
\]
for any integers $1 \leq k \leq m$. □

Generally, we can also characterize these systems of shifted partial differential equations introduced in Theorem 2.7 by that of a generalization of manifold, i.e.
differentiable combinatorial manifold defined following.

Definition 4.16 ([6], [10]). Let $n_\nu, \nu \in \Lambda$ be positive integers. A differentiable
combinatorial manifold $\tilde{M}(n_\nu, \nu \in \Lambda)$ is a second countable Hausdorff space with a
maximal atlas $\mathcal{A} = \{(U_\nu, \phi_\nu) | \nu \in \Lambda\}$ for a countable set Λ such that $\phi_\nu : U_\nu \to \mathbb{R}^{n_\nu}$,
$\phi_\nu \phi_\nu^{-1} : \phi_\nu(U_\mu \cap U_\nu) \to \phi_\nu(U_\mu \cap U_\nu)$ are differentiable for $\forall \mu, \nu \in \Lambda$.

Clearly, a combinatorial manifold underlies a connected graph $G(\tilde{M}(n_\nu, \nu \in \Lambda))$
defined by $V(G(\tilde{M}(n_\nu, \nu \in \Lambda))) = \{U_\nu, \nu \in \Lambda\}$ and $E(G(\tilde{M}(n_\nu, \nu \in \Lambda))) =$
$\{(U_\mu, U_\nu) | U_\mu \cap U_\nu \neq \emptyset, \mu, \nu \in \Lambda\}$. Particularly, if Λ is finite, then $G(\tilde{M}(n_\nu, \nu \in \Lambda))$ is nothing but an finite connected graph, i.e., a compact $\tilde{M}(n_\nu, \nu \in \Lambda)$. The following
results are a generalization of Theorems 4.14 and 4.15, which can be similarly
obtained.

Theorem 4.17. Let the Cauchy problem be

$$
\begin{align*}
F_1(x_1, \ldots, x_n, x_{n+1}^{[1]}, \ldots, x_{n+1}^{[1]}, u, p_1, \ldots, p_n, p_{n+1}^{[1]}, \ldots, p_{n+1}^{[1]}) &= 0 \\
F_2(x_1, \ldots, x_n, x_{n+1}^{[2]}, \ldots, x_{n+1}^{[2]}, u, p_1, \ldots, p_n, p_{n+1}^{[2]}, \ldots, p_{n+1}^{[2]}) &= 0 \\
&\vdots \\
F_m(x_1, \ldots, x_n, x_{n+1}^{[m]}, \ldots, x_{n+1}^{[m]}, u, p_1, \ldots, p_n, p_{n+1}^{[m]}, \ldots, p_{n+1}^{[m]}) &= 0
\end{align*}
$$

of partial differential equations of first order with initial values u_0, x_i^0, p_i^0, $1 \leq i \leq n$
and $x_i^0 = 0, p_i^0 = 0$ for integers $i \geq n + 1$, where $x_1, \ldots, x_n, x_{n+1}^{[1]}, \ldots, x_{n+1}^{[1]}, \ldots,
\ldots, x_{n+1}^{[m]}, \ldots, x_{n+1}^{[m]}$ are independent, $p_k^i = \partial u / \partial x_k^i$ and $n \leq n_1 \leq n_2 \leq \ldots \leq n_m$. Then every connected component of $\Gamma[PDESC^m]$ is a differentiable combinatorial
manifold $\tilde{M}(n_i, 1 \leq i \leq m)$ with atlas $\mathcal{A} = \{(U_\nu, \phi_\nu) | \nu \in V(\hat{G}[0])\}$ underlying graph
$\hat{G}[0]$, where U_ν is the n_ν-dimensional graph $G[u^{[\nu]}] \simeq \mathbb{R}^{n_\nu}$ and ϕ_ν is a projection
determined by

$$
\phi_\nu : ((x_1, x_2, \ldots, x_{n_\nu}), u(x_1, x_2, \ldots, x_{n_\nu})) \to (x_1, x_2, \ldots, x_{n_\nu})
$$

for $\forall (x_1, x_2, \ldots, x_{n_\nu}) \in \mathbb{R}^{n_\nu}$.

Theorem 4.18. For any integer $m \geq 1$, let $U_1, 1 \leq i \leq m$ be open sets in \mathbb{R}^n_i
underlying a connected graph defined by

$$
V(G) = \{U_i | 1 \leq i \leq m\}, \quad E(G) = \{(U_i, U_j) | U_i \cap U_j \neq \emptyset, 1 \leq i, j \leq m\}.
$$

If X_i is a vector field on U_i for integers $1 \leq i \leq m$, then there always exists a
differentiable combinatorial manifold $\tilde{M} \subset \mathbb{R}^{m+\sum_{i=1}^{m}(n_i-\tilde{m})}$ with atlas $\mathcal{A} = \{(U_i, \phi_i) | 1 \leq
i \leq m\}$ underlying graph G, where

$$
\tilde{m} = \dim \left(\bigcap_{i=1}^{m} \mathbb{R}^{n_i} \right)
$$

and a function $u_G \in \Omega^0(\tilde{M})$ such that

$$
X_i(u_G) = 0, \quad 1 \leq i \leq m.
$$
Theorems 4.14, 4.15 and 4.17, 4.18 show the differentiable geometry on combinatorial manifolds discussed in [6] and [10] is more valuable for knowing the global behavior of a thing in the world.

5. Applications.

5.1. Interaction fields. Let \(\mathcal{F}_1, \mathcal{F}_2, \ldots, \mathcal{F}_m \) be \(m \) interaction fields with respective Hamiltonians \(H^{[1]}, H^{[2]}, \ldots, H^{[m]} \), i.e., a combinatorial field \(\tilde{\mathcal{F}} \) introduced in [7], where

\[
H^{[k]} : (q_1, \ldots, q_n, p_2, \ldots, p_n, t) \to H^{[k]}(q_1, \ldots, q_n, p_1, \ldots, p_n, t)
\]

for integers \(1 \leq k \leq m \). Thus

\[
\begin{align*}
\frac{\partial H^{[k]}}{\partial p_i} &= \frac{dq_i}{dt}, \\
\frac{\partial H^{[k]}}{\partial q_i} &= -\frac{dp_i}{dt}, \quad 1 \leq i \leq n
\end{align*}
\]

Such an interaction system naturally underlies a graph \(G \) with

\[
V(G) = \{ H^{[i]} | 1 \leq i \leq m \},
\]

\[
E(G) = \{ (H^{[i]}, H^{[j]}) | H^{[i]} \text{ interacts with } H^{[j]} \text{ for integers } 1 \leq i, j \leq m \}.
\]

For example, let \(m = 4 \). Then such an interaction system are shown in Fig. 2. Such a system is equivalent to the system \((APDES^C_m)\) of non-solvable partial differential equations

\[
\begin{align*}
\frac{\partial u}{\partial t} &= H_i(t, x_1, \ldots, x_{n-1}, p_1, \ldots, p_{n-1}) \\
u|_{t=t_0} &= u_0(x_1, x_2, \ldots, x_{n-1})
\end{align*}
\]

\(1 \leq k \leq m. \)

\[\text{FIG. 2}\]

Whence, if \(X_0^{[i]} \) be an equilibrium point of the \(i \)th equation in this system,

\[
\sum_{k=1}^{m} H^{[k]}(X) > 0 \quad \text{and} \quad \sum_{k=1}^{m} \frac{\partial H^{[k]}}{\partial t} \leq 0
\]

for \(X \neq \sum_{k=1}^{m} X_0^{[k]} \), then \(\tilde{\mathcal{F}} \) is sum-stable and furthermore, if

\[
\sum_{k=1}^{m} \frac{\partial H^{[k]}}{\partial t} < 0
\]
for $X \neq \sum_{k=1}^{m} X_0^{[k]}$, then it is also asymptotically sum-stable by Theorem 4.4.

Similarly, if

$$\prod_{k=1}^{m} H^{[k]}(X) > 0 \quad \text{and} \quad \sum_{k=1}^{m} \frac{1}{H^{[k]}(X)} \frac{\partial H^{[k]}}{\partial t} \leq 0$$

for $X \neq \prod_{k=1}^{m} X_0^{[k]}$, then \tilde{F} is prod-stable and furthermore, if

$$\sum_{k=1}^{m} \frac{1}{H^{[k]}(X)} \frac{\partial H^{[k]}}{\partial t} < 0$$

for $X \neq \prod_{k=1}^{m} X_0^{[k]}$, then it is also asymptotically prod-stable by Theorem 4.4. Such combinatorial fields are extensively existed in theoretical physics (See references [7], [9]-[10] for details).

5.2. Flows in network. Let N be a network and let $q(x,t)$, $\rho(x,t)$, $u(x,t)$ be the respective rate, density and velocity of 1-dimensional flow on an arc (x,y) of N at time t. Then the continuity equation of 1-dimension enables one knowing that

$$\frac{\partial \rho}{\partial t} + \frac{\partial q}{\partial x} = 0 \quad \text{and} \quad q = \rho u.$$

Particularly, if $u(x,t)$ depends on $\rho(x,t)$, the density, let $u(x,t) = u(\rho(x,t))$, then $q(x,t) = \rho(x,t)u(\rho(x,t))$ and

$$\frac{\partial q}{\partial x} = \left(u + \rho \frac{\partial u}{\partial x} \right) \frac{\partial \rho}{\partial x} = \phi(\rho) \frac{\partial \rho}{\partial x},$$

where, $\phi(\rho) = u + \rho \frac{\partial u}{\partial x}$. Consequently,

$$\frac{\partial \rho}{\partial t} + \phi(\rho) \frac{\partial \rho}{\partial x} = 0.$$

Now let O be a node in N incident with m in-flows and 1 out-flow. Such as those shown in Fig.3.
Then how can we characterize the behavior of flow F? Denote the rate, density of flow f_i by $\rho^{[i]}$ for integers $1 \leq i \leq m$ and that of F by $\rho^{[F]}$, respectively. Then we know that
\[
\frac{\partial \rho^{[i]}}{\partial t} + \phi_i(\rho^{[i]}) \frac{\partial \rho^{[i]}}{\partial x} = 0, \quad 1 \leq i \leq m.
\]

Assume these flows $f^{[i]}$, $1 \leq i \leq m$ to be conservation at the node O. Then we know that $\rho^{[F]} = \sum_{i=1}^{m} \rho^{[i]}$. Whence,
\[
\frac{\partial \rho^{[F]}}{\partial t} = \sum_{i=1}^{m} \frac{\partial \rho^{[i]}}{\partial t} = - \sum_{i=1}^{m} \phi_i(\rho^{[i]}) \frac{\partial \rho^{[i]}}{\partial x}.
\]

Thus
\[
\frac{\partial \rho^{[F]}}{\partial t} + \sum_{i=1}^{m} \phi_i(\rho^{[i]}) \frac{\partial \rho^{[i]}}{\partial x} = 0
\]
by the continuity equation of 1-dimension. Generally, it is difficult to determine the behavior of flow F by this equation.

We prescribe the initial value of $\rho^{[i]}$ by $\rho^{[i]}(x, t_0)$ at time t_0. Replacing each $\rho^{[i]}$ by ρ in these flow equations of f_i, $1 \leq i \leq m$, we then get a non-solvable system \((PDESC_m)\) of partial differential equations following.
\[
\frac{\partial \rho}{\partial t} + \phi_i(\rho) \frac{\partial \rho}{\partial x} = 0
\]
\[
\rho_{|t=t_0} = \rho^{[i]}(x, t_0)
\]
\[
1 \leq i \leq m.
\]

Let $\rho_0^{[i]}$ be an equilibrium point of the ith equation, i.e., $\phi_i(\rho_0^{[i]}) \frac{\partial \rho_0^{[i]}}{\partial x} = 0$. Applying Theorem 4.4, if
\[
\sum_{i=1}^{m} \phi_i(\rho) < 0 \quad \text{and} \quad \sum_{i=1}^{m} \phi_i(\rho) \left[\frac{\partial^2 \rho}{\partial t \partial x} - \phi_i' \left(\frac{\partial \rho}{\partial x} \right)^2 \right] \geq 0
\]
for $X \neq \sum_{k=1}^{m} \rho_0^{[i]}$, then we know that the flow F is stable and furthermore, if
\[
\sum_{i=1}^{m} \phi_i(\rho) \left[\frac{\partial^2 \rho}{\partial t \partial x} - \phi_i' \left(\frac{\partial \rho}{\partial x} \right)^2 \right] < 0
\]
for $X \neq \sum_{k=1}^{m} \rho_0^{[i]}$, then it is also asymptotically stable.

REFERENCES

