1. Introduction and statement of results

If k is a positive integer, let $S_k(N)$ denote the space of cusp forms of weight k on $\Gamma_1(N)$, and let $S^m_k(N)$ denote the subspace of $S_k(N)$ spanned by those forms having complex multiplication (see [Ri]). For a non-negative integer k and any positive integer $N \equiv 0 \pmod{4}$, let $M_{k+\frac{1}{2}}(N)$ (resp. $S_{k+\frac{1}{2}}(N)$) denote the space of modular forms (resp. cusp forms) of half-integral weight $k + \frac{1}{2}$ on $\Gamma_1(N)$. Similarly, if $k \in \frac{1}{2}\mathbb{N}$, then let $M_k(N,\chi)$ (resp. $S_k(N,\chi)$) denote the space of modular (resp. cusp) forms with respect to $\Gamma_0(N)$ and Nebentypus character χ. Throughout this note we shall refer to classical facts which may be found in [Ko, Mi, S-S, Sh].

If $i = 0$ or 1, $0 \leq r < t$, and $a \geq 1$, then let $\theta_{a,i,r,t}(z)$ denote the Shimura theta function

$$\theta_{a,i,r,t}(z) := \sum_{n \equiv r \pmod{t}} n^i q^{an^2}$$

(Note: $q := e^{2\pi i z}$ throughout). Each $\theta_{a,i,r,t}(z)$ is a holomorphic modular form of weight $i + \frac{1}{2}$. If $\Theta(N)$ is the set of modular forms generated by such functions of level dividing N, then the Serre-Stark Theorem [S-S] implies

$$\Theta(N) = M_{\frac{1}{2}}(N) \cup \left\{ \text{subspace of } M_{\frac{1}{2}}(N) \text{ spanned by those } \theta_{a,1,r,t}(z) \text{ on } \Gamma_1(N) \right\}.$$

If $g(z) \in M_{k+\frac{1}{2}}(N_1)$ and $h(z) \in \Theta(N_2)$, then let $g_h(n)$ denote the Fourier coefficient of q^n of the modular form

$$g(z) \cdot h(z) = \sum_{n=0}^{\infty} g_h(n)q^n.$$
Moreover, let $G_h(z)$ denote the modular form

$$G_h(z) := \sum_{\gcd(n,N_1 N_2) = 1} g_h(n) q^n.$$

It follows from [Lemma 4, S-S] that $G_h(z)$ is a modular form on $\Gamma_1(N_1^2 N_2^2)$ of integral weight $k + 1$ or $k + 2$.

Definition. A modular form $g(z) \in M_{k+\frac{1}{2}}(N_1)$ is **good** if there is an integer N_2 and a function $h(z) \in \Theta(N_2)$ for which

(i) $G_h(z)$ is a nonzero cusp form.

(ii) $G_h(z) \not\in S^\text{cm}_{k+1}(N_1^2 N_2^2) \cup S^\text{cm}_{k+2}(N_1^2 N_2^2)$.

There have been a number of recent papers on the non-vanishing of Fourier coefficients of half-integral weight modular forms modulo primes ℓ (see [B2, J, O-S1]), and in this direction the first author and C. Skinner were able to prove the following theorem for “good” forms.

Theorem. [p. 454, O-S1] Let $g(z) = \sum_{n=0}^{\infty} c(n) q^n \in M_{k+\frac{1}{2}}(N)$ be an eigenform whose coefficients are algebraic integers. If $g(z)$ is good, then for all but finitely many primes ℓ there are infinitely many square-free integers m for which $|c(m)|_\ell = 1$.

Here $| \bullet |_\ell$ denotes an extension of the usual ℓ-adic valuation to an algebraic closure of \mathbb{Q}.

In [O-S1], the first author and Skinner made the following natural conjecture:

The “Good” Conjecture. [p. 468, O-S1] Every form in $M_{k+\frac{1}{2}}(N) \setminus \Theta(N)$ is good.

In this note we prove:

Theorem 1. The “Good” Conjecture is true.

In a recent preprint, W. McGraw [M] obtains another proof of Theorem 1.

To prove the conjecture, we employ a well known result of M.-F. Vignéras, the Fundamental Lemma from [pp. 653–654, O-S2], and Brun’s sieve.

2. Proof of Theorem 1

Here we begin by recalling a well-known result due to M.-F. Vignéras [V] (see [B1] for a new elementary proof).

Theorem 2. [Th. 3, V] Suppose that $f(z) = \sum_{n=0}^{\infty} a(n) q^n$ is in $M_{k+\frac{1}{2}}(N)$. If there are finitely many square-free integers d_1, d_2, \ldots, d_j such that $a(n) = 0$ for every n not of the form $d_i m^2$ with $1 \leq i \leq j$ and $m \in \mathbb{Z}^+$, then $f(z) \in \Theta(N)$.

We begin by combining Theorem 2 and [Fund. Lemma, pp. 653–654, O-S2] to obtain a lower bound for the number of non-zero coefficients of any modular form $f(z) \in M_{k+\frac{1}{2}}(N, \chi) \setminus \Theta(N)$.

Theorem 3. Suppose that \(f(z) = \sum_{n=0}^{\infty} a(n)q^n \) is a modular form in \(M_{k+\frac{1}{2}}(N,\chi)\backslash \Theta(N) \). If \(f(z) \) is an eigenform of the Hecke operators \(T(p^2) \) for every prime \(p \nmid N \), then
\[
\#\{n \leq X : a(n) \neq 0\} \gg \frac{X}{\log X}.
\]

Proof. By [Lemma 8, S-S], we may assume that all of the Fourier coefficients \(a(n) \) and the eigenvalues of the Hecke operators \(T(p^2) \), for primes \(p \nmid N \), are algebraic integers in a fixed number field \(K \). Let \(v \) be a place in \(K \) over 2.

By Theorem 2 there are infinitely many square-free positive integers \(d_1 < d_2 < \ldots \) for which there are positive integers \(n \) with \(a(d_in^2) \neq 0 \). Let \(s_0 \) be the smallest integer for which there is a square-free integer \(d > 1 \), with \(d \nmid N \), and a positive integer \(n \) for which \(\text{ord}_v(a(dn^2)) = s_0 \). Moreover, let \(d_0 \) be such a \(d \) and let \(n_0 \) be a positive integer for which \(\text{ord}_v(a(d_0n_0^2)) = s_0 \). Since \(d_0 \nmid N \), there are square-free integers \(D_0 \) and \(D_1 \) for which \(d_0 = D_0D_1 \) and \(D_1 \mid N \) and \(\gcd(D_0,N) = 1 \). Similarly, let \(m_0 \) and \(m_1 \) denote the unique positive integers for which \(n_0 = m_0m_1 \), \(\gcd(m_0,N) = 1 \), and every prime \(p \mid m_1 \) also divides \(N \).

Now recall the action of the Hecke operators. If \(p \) is prime, then
\[
(4) \quad f(z) \mid T(p^2) := \sum_{n=0}^{\infty} \left(a(p^2n) + \chi(p) \left(\frac{(-1)^k}{p} \right) p^{k-1}a(n) + \chi(p^2) p^{2k-1}a(n/p^2) \right) q^n.
\]

Suppose that \(d \) is a positive integer and \(p \nmid N \) is a prime for which \(p^2 \nmid d \). Since \(f(z) \) is an eigenform, it is easy to see that \(a(d) \mid a(dp^2) \). As a consequence, it turns out that \(a(D_0D_1m_1^2) \neq 0 \) and \(\text{ord}_v(a(D_0D_1m_1^2)) = s_0 \).

If \(p \mid N \) is prime, then by [Lemma 1, S-S] it is known that
\[
(5) \quad f(z) \mid U(p) = \sum_{n=0}^{\infty} a(pm)q^n,
\]
is a cusp form in \(M_{k+\frac{1}{2}}(N,\chi \cdot \left(\frac{4p}{\bullet} \right)) \). Therefore, if \(j \) is any positive integer for which every prime \(p \mid j \) also divides \(N \), then
\[
f(z) \mid U(j) = \sum_{n=0}^{\infty} a(jn)q^n \in M_{k+\frac{1}{2}}(N,\chi \cdot \left(\frac{4j}{\bullet} \right)).
\]

Now define \(f_0(z) \in M_{k+\frac{1}{2}}(N,\chi \cdot \left(\frac{4D_1}{\bullet} \right)) \) by
\[
f_0(z) = \sum_{n=0}^{\infty} b(n)q^n := f(z) \mid U(D_1m_1^2) = \sum_{n=0}^{\infty} a(D_1m_1^2n)q^n.
\]
By construction, we have that $b(D_0) = a(D_0D_1m_1^2) \neq 0$ and $\text{ord}_v(b(D_0)) = s_0$. Also by construction, if there is an integer $s < s_0$ and an integer n for which $\text{ord}_v(b(n)) = s$, then $\gcd(n, N) \neq 1$. This follows from the minimality of s_0. If this is the case, then define $f_1(z) \in M_{k+\frac{1}{2}}(N^2, \chi \cdot \left(\frac{4D_1}{N^2}\right))$ (see [Lemma 4, S-S]) by

\begin{equation}
(6) \quad f_1(z) = \sum_{n=1}^{\infty} c(n)q^n := \sum_{\gcd(n,N)=1} b(n)q^n.
\end{equation}

If there is no such s, then let $f_1(z) = \sum_{n=0}^{\infty} c(n)q^n := f_0(z)$.

In either case, $f_1(z) = \sum_{n=0}^{\infty} c(n)q^n$ is in $M_{k+\frac{1}{2}}(N^2, \chi \cdot \left(\frac{4D_1}{N^2}\right))$ and has the property that s_0 is indeed the smallest integer for which there is an n with $\text{ord}_v(c(n)) = s_0$. Moreover, the square-free integer D_0 which is coprime to N^2 is such an n. By the Fundamental Lemma [pp. 653–654, O-S2], if $f_1(z)$ is a cusp form, then

$$\# \{ n \leq X : \gcd(n, N^2) = 1 \text{ and } a(D_1m_1^2n) = c(n) \neq 0 \} \gg f_1 \frac{X}{\log X}.$$

Although the Fundamental Lemma is stated for eigenforms which are cusp forms, it is easy to modify the argument to apply to forms $f_1(z)$ which are not cuspidal. Following the proof of the Fundamental Lemma, consider the integer weight form

$$F(z) := f_1(z) \cdot \left(1 + 2 \sum_{n=1}^{\infty} q^{n^2} \right),$$

and decompose it into a cusp form $C(z)$ and a linear combination of Eisenstein series $E(z)$. By construction, the coefficient of q^{D_0} in $F(z)$ has minimal 2-adic valuation s_0, and is determined by a linear combination of generalized divisor functions related to the Eisenstein series in $E(z)$ (see [Mi]) and the collection of 2-adic Galois representations associated to the newforms constituting $C(z)$.

By Dirichlet’s Theorem on primes in arithmetic progressions, the Chebotarev Density theorem, and the multiplicativity of the coefficients of newforms, it follows that a ‘positive proportion’ of the square-free integers D with the same number of prime factors as D_0 have the property that the coefficient of q^D in $F(z)$ have minimal 2-adic valuation s_0. As in the proof of the Fundamental Lemma, this implies that

$$\# \{ 1 \leq n \leq X : c(n) \neq 0 \} \gg \frac{X}{\log X} (\log \log X)^{r-1}$$

where D_0 has exactly r prime factors. \hfill \Box

As a corollary, we obtain the following result (see [O] for a similar result).
Corollary 4. If \(f(z) = \sum_{n=0}^{\infty} a(n)q^n \) is a modular form in \(M_{k+\frac{1}{2}}(N,\chi)\backslash\Theta(N) \), then
\[
\#\{n \leq X : a(n) \neq 0\} \gg f \frac{X}{\log X}.
\]

Proof. If \(w = \sum_{n=0}^{\infty} a_w(n)q^n \) is a formal power series in \(q \), then define
\[
M_w(X) := \#\{0 \leq n \leq X : a_w(n) \neq 0\}.
\]

Now suppose that \(M_f(X) = o(X/\log X) \). In view of (4), it is easy to see that if \(p \nmid N \) is prime, then
\[
(7) \quad M_{f|T(p^2)}(X) \leq M_f(p^2X) + 2M_f(X).
\]

By (7), if \(p \nmid N \) is prime, then \(M_{f|T(p^2)}(X) = o(X/\log X) \).

If \(w_1 \) and \(w_2 \) are formal power series, then it is obvious that
\[
M_{w_1+w_2}(X) \leq M_{w_1}(X) + M_{w_2}(X).
\]

Therefore, if \(\mathcal{T} \) is the Hecke algebra generated by the Hecke operators \(T(p^2) \) and \(\mathcal{X} = \mathcal{T}f \), then for every \(u(z) \in \mathcal{X} \) we have that \(M_u(X) = o(X/\log X) \).

Since \(\mathcal{T} \) is commutative, every simple submodule of \(\mathcal{X} \) is generated by an eigenform. If \(u(z) \) is such an eigenform, then Theorem 3 contradicts the conclusion that \(M_u(X) = o(X/\log X) \). Therefore, it must be that \(M_f(X) \gg f X/\log X \).

□

Now we employ Brun’s sieve to obtain an important technical result regarding the prime divisors of a shifted set of integers. As usual, \(p^a \mid n \) means that \(a \) is the exact power of \(p \) dividing \(n \).

Lemma 5. Let \(\ell \) be a fixed prime, and let \(1 \leq r < t \) be integers for which \(\gcd(r,t) = 1 \). If \(A \) is a set of non-negative integers for which
\[
\#\{n \leq X : n \in A\} \gg \frac{X}{\log X},
\]
then there is a positive integer \(E \) and at least one integer \(n \in A \) with \(n < \ell^E \) such that \(p \mid (n + \ell^E) \) for some prime \(p \equiv r \pmod{t} \).

Proof. If \(\phi(\bullet) \) denotes the usual Euler phi-function, then define the polynomial \(F(n) \) by
\[
(8) \quad F(n) = (n + \ell)(n + \ell^2) \cdots (n + \ell^{\phi(t)+1}).
\]

Let \(\mathcal{A}_X \) denote the set of integers
\[
(9) \quad \mathcal{A}_X := \{F(n) : n \leq X\},
\]
and let P_X denote the set

$$P_X := \{ p \equiv r \pmod{t} \text{ prime : } \log^2 X < p < X \}. \quad (10)$$

It is easy to see that if X is sufficiently large, then every prime $p \in P_X$ has the property that the multiplicative order of ℓ in $(\mathbb{Z}/p\mathbb{Z})^\times$ is larger than $\phi(t) + 1$. Therefore, if n is an integer and $p \in P_X$ is any prime for which $F(n) \equiv 0 \pmod{p}$, then there is exactly one integer $1 \leq i \leq \phi(t) + 1$ for which

$$n + \ell^i \equiv 0 \pmod{p}. \quad (11)$$

Moreover, it is obvious that if $p \in P_X$, then there are $\phi(t) + 1$ distinct residue classes $n \pmod{p}$ for which $F(n) \equiv 0 \pmod{p}$.

Now we consider the function $S(A_X, P_X, X)$ which is defined by

$$S(A_X, P_X, X) := \#\{1 \leq n \leq X : \gcd(F(n), p) = 1 \text{ for every } p \in P_X\}. \quad (12)$$

By a straightforward application of Brun’s sieve method [Theorem 2.2, H-R] we find that

$$S(A_X, P_X; X) \ll X \prod_{p \in P_X} \left(1 - \frac{\phi(t) + 1}{p}\right). \quad (13)$$

Using the well known fact [p. 605, R] that

$$\prod_{p \equiv r \pmod{t}} \left(1 - \frac{1}{p}\right) \ll \frac{1}{(\log X)^{1/\phi(t)}},$$

it is easy to deduce

$$S(A_X, P_X; X) \ll \frac{X}{(\log X)^{1+1/2\phi(t)}}. \quad (14)$$

Therefore, if X is sufficiently large, then there are integers $n \in A$ with $n \leq X$ for which there is at least one prime $p \in P_X$ with $F(n) \equiv 0 \pmod{p}$. In particular, in view of (14) we find that

$$\#\{n \leq X : n \in A \text{ and } F(n) \equiv 0 \pmod{p} \text{ for some prime } p \in P_X\} \gg \frac{X}{\log X}. \quad (15)$$

However, the number of positive integers $n \leq X$ which are divisible by p^2 for some prime $p \in P_X$ is

$$\ll X \sum_{\log^2 X < p < X} \frac{1}{p^2} < \frac{X}{\log^2 X} \sum_{p < X} \frac{1}{p} \ll \frac{X}{(\log X)^{1+1/2}},$$
since \(\sum_{p \leq X} 1/p \ll \log \log X \). Therefore, by (11) and (15) we find that the number of integers \(n \leq X \) and \(n \in A \) for which there is at least one prime \(p \in P_X \) and an integer \(1 \leq e \leq \phi(t) + 1 \) such that \(p\|n + \ell^e \gg X/\log X \).

To conclude the proof, we note that if \(p\|(n + \ell^e) \), then \(p\|(n + \ell^E(j)) \) where \(E(j) := a + p(p - 1)(p(p - 1) + 1)^j \) and \(j \geq 0 \). To see this, note that \(n + \ell^E(j) = n + \ell^e + (\ell^E(j) - \ell^e) \), \(\ell^{p-1} \equiv 1 \mod{p} \) and \(\ell^{p-1} \equiv 1 \mod{p^2} \). Therefore if \(j \) is sufficiently large, then \(n < \ell^E \).

Proof of Theorem 1. Here we recall the essential facts regarding modular forms with complex multiplication (see [Ri]). If \(\phi(z) = \sum_{n=1}^{\infty} a_\phi(n)q^n \in S_k(N, \chi) \) is a newform with complex multiplication by the imaginary quadratic field \(K = \mathbb{Q}(\sqrt{d}) \), where \(d \) is the discriminant of \(K \), then \(d \mid N \), and if \(p \) is a prime for which \((\frac{d}{p}) = -1 \), then \(a_\phi(p) = 0 \).

Now suppose that \(F(z) = \sum_{n=1}^{\infty} a_F(n)q^n \) is an integer weight cusp form in \(S_\nu(N, \psi) \). There are finitely many fundamental discriminants of imaginary quadratic fields, say \(d_1, d_2, \ldots, d_j \) for which \(d_i \mid N \). Therefore, it is easy to construct an arithmetic progression \(r \mod{t} \) with \(\gcd(r, t) = 1 \) such that every prime \(p \equiv r \mod{t} \) has the property that \((\frac{d_i}{p}) = -1 \) for each \(1 \leq i \leq j \). Therefore, by the multiplicativity of the Fourier coefficients of newforms, \(F(z) \) cannot be a linear combination of forms with complex multiplication if there is a positive integer \(n \) and a prime \(p \equiv r \mod{t} \) for which \(p\|n \) and \(a_F(n) \neq 0 \).

Now we prove Theorem 1 by considering two different cases.

Case I. Suppose that \(g(z) = \sum_{n=0}^{\infty} a(n)q^n \in M_{k+\frac{1}{2}}(N, \chi) \setminus \Theta(N) \). By Corollary 4, we know that

\[
\#\{n \leq X : a(n) \neq 0\} \gg_g \frac{X}{\log X}.
\]

Now let \(\ell \mid 576N \) be prime, and let \(r \mod{t} \) with \(\gcd(r, t) = 1 \) be an arithmetic progression such that \((\frac{d_i}{p}) = -1 \) for every prime \(p \equiv r \mod{t} \) and every fundamental discriminant of an imaginary quadratic field \(d_i \mid 576N \). By Lemma 5, there exists an integer \(n < \ell^E \) for which \(a(n) \neq 0 \), a prime \(p \equiv r \mod{t} \), and a positive integer \(E \) such that \(p\|n + \ell^E \).

Now consider the cusp form \(g(z) \cdot \eta(24\ell^E z) \), where \(\eta(z) := q^{1/24} \prod_{n=1}^{\infty} (1 - q^n) \) denotes Dedekind’s eta-function. It is well known that

\[
\eta(24z) = q + \cdots \in S_{1/2}(576, \chi_{12}),
\]

where \(\chi_{12} \) is the non-trivial quadratic character with conductor 12. Obviously, \(\eta(24\ell^E z) \in \Theta(576\ell^E) \), and so \(g(z) \eta(24\ell^E z) \in S_{k+1}(576N\ell^E) \). The coefficient of \(q^{n+\ell^E} \) of this form is \(a(n) \neq 0 \). Since every fundamental discriminant of an imaginary quadratic field \(d \mid 576N\ell^E \) already divides 576N, we find that \(g(z) \eta(24\ell^E z) \) cannot be a linear combination of forms with complex multiplication (i.e., \(g(z) \) is good).
Case II. Suppose that \(g(z) = \sum_{n=0}^{\infty} a(n)q^n \in M_{k+s}(N, \Theta(N)) \). It is well known that if \(w \in \frac{1}{2}\mathbb{Z} \), then
\[
M_w(N) = \bigoplus_{\chi} M_w(N, \chi),
\]
where the direct sum is over Dirichlet characters \(\chi \mod N \). Therefore, we may decompose \(g(z) \) as
\[
g(z) = \sum_{\chi} \alpha_{\chi} g_{\chi}(z).
\]
If \(\chi \) is a character for which \(\alpha_{\chi} g_{\chi}(z) \neq 0 \), then by Case I there is a weight \(1/2 \) cusp form \(\theta(z) \in S_{1/2}(N_2, \Psi) \) for which \(g_{\chi}(z) \theta(z) \) is a weight \(k + 1 \) cusp form which is not a linear combination of forms with complex multiplication.

If \(\chi_1 \) and \(\chi_2 \) are distinct characters mod \(N \), then \(g_{\chi_1}(z) \theta(z) \) and \(g_{\chi_2}(z) \theta(z) \) will lie in different spaces of weight \(k+1 \) cusp forms with Nebentypus. Therefore, it follows immediately that \(g(z) \theta(z) \) is good. \(\square \)

References

J N. Jochnowitz, Congruences between modular forms of half integral weights and implications for class numbers and elliptic curves, preprint.
R D. Redmond, Number Theory, Marcel Dekker, New York, 1996.

Dept. Matemáticas, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049, Madrid, ESPAÑA.
E-mail address: jorge.jimenez@uam.es

Dept. of Math., Penn State University, University Park, Pennsylvania 16802.
E-mail address: ono@math.psu.edu