AN ADDITIVE THEOREM AND RESTRICTED SUMSETS

ZHI-WEI SUN

ABSTRACT. Let G be any additive abelian group with cyclic torsion subgroup, and let A, B and C be finite subsets of G with cardinality $n > 0$. We show that there is a numbering $\{a_i\}_{i=1}^n$ of the elements of A, a numbering $\{b_i\}_{i=1}^n$ of the elements of B and a numbering $\{c_i\}_{i=1}^n$ of the elements of C, such that all the sums $a_i + b_i + c_i$ ($1 \leq i \leq n$) are (pairwise) distinct. Consequently, each subcube of the Latin cube formed by the Cayley addition table of $\mathbb{Z}/N\mathbb{Z}$ contains a Latin transversal. This additive theorem is an essential result which can be further extended via restricted sumsets in a field.

1. Introduction

In 1999 Snevily [Sn] raised the following beautiful conjecture in additive combinatorics which is currently an active area of research.

Snevily's Conjecture. Let G be an additive abelian group with $|G|$ odd. Let A and B be subsets of G with cardinality $n \in \mathbb{Z}^+ = \{1, 2, 3, \ldots\}$. Then there is a numbering $\{a_i\}_{i=1}^n$ of the elements of A and a numbering $\{b_i\}_{i=1}^n$ of the elements of B such that the sums $a_1 + b_1, \ldots, a_n + b_n$ are (pairwise) distinct.

In Snevily’s conjecture the abelian group is required to have odd order. (An abelian group of even order has an element g of order 2 and hence we don’t have the described result for $A = B = \{0, g\}$.) For a general abelian group G with its torsion subgroup $\text{Tor}(G) = \{a \in G : a$ has a finite order} cyclic, if we make no hypothesis on the order of G, what additive properties can we impose on several finite subsets of G with cardinality n? In this direction we establish the following new theorem of additive nature.
Theorem 1.1. Let G be any additive abelian group with cyclic torsion subgroup, and let A_1, \ldots, A_m be arbitrary subsets of G with cardinality $n \in \mathbb{Z}^+$, where m is odd. Then the elements of A_i ($1 \leq i \leq m$) can be listed in a suitable order a_{i1}, \ldots, a_{in}, so that all the sums $\sum_{i=1}^m a_{ij}$ ($1 \leq j \leq n$) are distinct. In other words, for a certain subset A_{m+1} of G with $|A_{m+1}| = n$, there is a matrix $(a_{ij})_{1 \leq i \leq m+1, 1 \leq j \leq n}$ such that \{a_{11}, \ldots, a_{1n}\} A_1 for all $i = 1, \ldots, m+1$ and the column sum $\sum_{i=1}^{m+1} a_{ij}$ vanishes for every $j = 1, \ldots, n$.

Remark 1.1. Theorem 1.1 in the case $m = 3$ is essential; the result for $m = 5, 7, \ldots$ can be obtained by repeated use of the case $m = 3$.

Example 1.1. In Theorem 1.1 the condition $2 \nmid m$ is indispensable. Let G be an additive cyclic group of even order n. Then G has a unique element g of order 2 and hence $a \neq -a$ for all $a \in G \setminus \{0, g\}$. Thus $\sum_{a \in G} a = 0 + g = g$. For each $i = 1, \ldots, m$ let a_{i1}, \ldots, a_{in} be a list of the n elements of G. If those $\sum_{i=1}^m a_{ij}$ with $1 \leq j \leq n$ are distinct, then
\[
\sum_{a \in G} a = \sum_{j=1}^n \sum_{i=1}^m a_{ij} = \sum_{i=1}^m \sum_{j=1}^n a_{ij} = m \sum_{a \in G} a,
\]
hence $(m-1)g = (m-1)\sum_{a \in G} a = 0$ and therefore m is odd.

Example 1.2. The group G in Theorem 1.1 cannot be replaced by an arbitrary abelian group. To illustrate this, we look at the Klein quaternion group
\[
\mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z} = \{(0,0), (0,1), (1,0), (1,1)\}
\]
and its subsets
\[
A_1 = \{(0,0), (0,1)\}, \ A_2 = \{(0,0), (1,0)\}, \ A_3 = \cdots = A_m = \{(0,0), (1,1)\},
\]
where $m \geq 3$ is odd. For $i = 1, \ldots, m$ let a_i, a_i' be a list of the two elements of A_i, then
\[
\sum_{i=1}^m (a_i + a_i') = (0,1) + (1,0) + (m-2)(1,1) = (0,0)
\]
and hence $\sum_{i=1}^m a_i = -\sum_{i=1}^m a_i' = \sum_{i=1}^m a_i'$.

Recall that a line of an $n \times n$ matrix is a row or column of the matrix. We define a line of an $n \times n \times n$ cube in a similar way. A Latin cube over a set S of cardinality n is an $n \times n \times n$ cube whose entries come from the set S and no line of which contains a repeated element. A transversal of an $n \times n \times n$ cube is a collection of n cells no two of which lie in the same line. A Latin transversal of a cube is a transversal whose cells contain no repeated element.

Corollary 1.1. Let N be any positive integer. For the $N \times N \times N$ Latin cube over $\mathbb{Z}/N\mathbb{Z}$ formed by the Cayley addition table, each $n \times n \times n$ subcube with $n \leq N$ contains a Latin transversal.

Proof. Just apply Theorem 1.1 with $G = \mathbb{Z}/N\mathbb{Z}$ and $m = 3$. □

In 1967 Ryser [R] conjectured that every Latin square of odd order has a Latin transversal. Another conjecture of Brualdi (cf. [D], [DK, p. 103] and [EHNS]) states that every Latin square of order n has a partial Latin transversal of size $n-1$. These and Corollary 1.1 suggest that our following conjecture might be reasonable.
Conjecture 1.1. Every $n \times n \times n$ Latin cube contains a Latin transversal.

Note that Conjecture 1.1 does not imply Theorem 1.1 since an $n \times n \times n$ subcube of a Latin cube might have more than n distinct entries.

Corollary 1.2. Let G be any additive abelian group with cyclic torsion subgroup, and let A_1, \ldots, A_m be subsets of G with cardinality $n \in \mathbb{Z}^+$, where m is even. Suppose that all the elements of A_m have odd order. Then the elements of A_i ($1 \leq i \leq m$) can be listed in a suitable order a_{i1}, \ldots, a_{in}, so that all the sums $\sum_{i=1}^m a_{ij}$ ($1 \leq j \leq n$) are distinct.

Proof. As $m - 1$ is odd, by Theorem 1.1 the elements of A_i ($1 \leq i \leq m - 1$) can be listed in a suitable order a_{i1}, \ldots, a_{in}, such that all the sums $s_j = \sum_{i=1}^{m-1} a_{ij}$ ($1 \leq j \leq n$) are distinct. Since all the elements of A_m have odd order, by [Su3, Theorem 1.1(ii)] there is a numbering $\{a_{mj}\}_{j=1}^n$ of the elements of A_m such that all the sums $s_j + a_{mj} = \sum_{i=1}^m a_{ij}$ ($1 \leq j \leq n$) are distinct. We are done. \square

As an essential result, Theorem 1.1 might have various potential applications in additive number theory and combinatorial designs.

We can extend Theorem 1.1 via restricted sumsets in a field. The additive order of the multiplicative identity of a field F is either infinite or a prime; we call it the characteristic of F and denote it by $\text{ch}(F)$. The reader is referred to [DH], [ANR], [Su2], [HS], [LS], [PS1], [Su3], [SY] and [PS2] for various results on restricted sumsets of the type

$$\{a_1 + \cdots + a_n : a_1 \in A_1, \ldots, a_n \in A_n \text{ and } P(a_1, \ldots, a_n) \neq 0\},$$

where $A_1, \ldots, A_n \subseteq F$ and $P(x_1, \ldots, x_n) \in F[x_1, \ldots, x_n]$.

For a finite sequence $\{A_i\}_{i=1}^n$ of sets, if $a_1 \in A_1, \ldots, a_n \in A_n$ and a_1, \ldots, a_n are distinct, then the sequence $\{a_i\}_{i=1}^n$ is called a system of distinct representatives (SDR) of $\{A_i\}_{i=1}^n$. This concept plays an important role in combinatorics and a celebrated theorem of Hall tells us when $\{A_i\}_{i=1}^n$ has an SDR (see, e.g., [Su1]). Most results in our paper involve SDRs of several subsets of a field.

Now we state our second theorem which is much more general than Theorem 1.1.

Theorem 1.2. Let h, k, l, m, n be positive integers satisfying

$$(1.1) \quad k - 1 \geq m(n - 1) \quad \text{and} \quad l - 1 \geq h(n - 1).$$

Let F be a field with $\text{ch}(F) > \max\{K, L\}$, where

$$(1.2) \quad K = (k - 1)n - (m + 1) \binom{n}{2} \quad \text{and} \quad L = (l - 1)n - (h + 1) \binom{n}{2}.$$

Assume that $c_1, \ldots, c_n \in F$ are distinct and $A_1, \ldots, A_n, B_1, \ldots, B_n$ are subsets of F with

$$(1.3) \quad |A_1| = \cdots = |A_n| = k \quad \text{and} \quad |B_1| = \cdots = |B_n| = l.$$

Let $P_i(x), \ldots, P_n(x), Q_1(x), \ldots, Q_n(x) \in F[x]$ be monic polynomials with $\deg P_i(x) = m$ and $\deg Q_i(x) = h$ for $i = 1, \ldots, n$. Then, for any $S, T \subseteq F$ with $|S| \leq K$
and $|T| \leq L$, there exist $a_1 \in A_1, \ldots, a_n \in A_n, b_1 \in B_1, \ldots, b_n \in B_n$ such that
\[a_1 + \cdots + a_n \notin S, \ b_1 + \cdots + b_n \notin T, \] and also
\[(1.4) \quad a_ibc_i \neq a_jb_jc_j, \ \{a_i(b_i) \neq P_j(a_j), \ Q_i(b_i) \neq Q_j(b_j) \text{ if } 1 \leq i < j \leq n. \]

Remark 1.2. If h, k, l, m, n are positive integers satisfying (1.1), then the integers K and L given by (1.2) are nonnegative since
\[K \geq m(n - 1)n - (m + 1) \left(\frac{n}{2}\right) \] and
\[L \geq (h - 1) \left(\frac{n}{2}\right). \]

From Theorem 1.2 we can deduce the following extension of Theorem 1.1.

Theorem 1.3. Let G be an additive abelian group with cyclic torsion subgroup. Let h, k, l, m, n be positive integers satisfying (1.1). Assume that $c_1, \ldots, c_n \in G$ are distinct, and $A_1, \ldots, A_n, B_1, \ldots, B_n$ are subsets of G with $|A_1| = \cdots = |A_n| = k$ and $|B_1| = \cdots = |B_n| = l$. Then, for any sets S and T with $|S| \leq (k - 1)n - (m + 1)\left(\frac{n}{2}\right)$ and $|T| \leq (l - 1)n - (h + 1)\left(\frac{n}{2}\right)$, there are $a_1 \in A_1, \ldots, a_n \in A_n, b_1 \in B_1, \ldots, b_n \in B_n$ such that $\{a_i, b_i \neq S, \ |b_1|, \ldots, b_n \neq T$, and also
\[(1.5) \quad a_i + b_i + c_i \neq a_j + b_j + c_j, \ ma_i \neq ma_j, \ hb_i \neq hb_j \text{ if } 1 \leq i < j \leq n. \]

Proof. Let H be the subgroup of G generated by the finite set
\[A_1 \cup \cdots \cup A_n \cup B_1 \cup \cdots \cup B_n \cup \{c_1, \ldots, c_n\}. \]
Since $\text{Tor}(H)$ is cyclic and finite, as in the proof of [Su3, Theorem 1.1] we can identify the additive group H with a subgroup of the multiplicative group $\mathbb{C}^* = \mathbb{C} \setminus \{0\}$, where \mathbb{C} is the field of complex numbers. So, without loss of generality, below we simply view G as the multiplicative group \mathbb{C}^*.

Let S and T be two sets with $|S| \leq (k - 1)n - (m + 1)\left(\frac{n}{2}\right)$ and $|T| \leq (l - 1)n - (h + 1)\left(\frac{n}{2}\right)$. Then
\[S' = \{a_1 + \cdots + a_n : a_1 \in A_1, \ldots, a_n \in A_n, \ \{a_1, \ldots, a_n\} \in S\} \]
and
\[T' = \{b_1 + \cdots + b_n : b_1 \in B_1, \ldots, b_n \in B_n, \ \{b_1, \ldots, b_n\} \in T\} \]
are subsets of \mathbb{C} with $|S'| \leq |S|$ and $|T'| \leq |T|$. By Theorem 1.2 with $P_i(x) = x^m$ and $Q_i(x) = x^h (1 \leq i \leq n)$, there are $a_1 \in A_1, \ldots, a_n \in A_n, b_1 \in B_1, \ldots, b_n \in B_n$ such that $a_1 + \cdots + a_n \notin S'$ (and hence $\{a_1, \ldots, a_n\} \notin S$), $b_1 + \cdots + b_n \notin T'$ (and hence $\{b_1, \ldots, b_n\} \notin T$), and also
\[a_ib_ic_i \neq a_jb_jc_j, \ a_i^m \neq a_j^m, \ b_i^h \neq b_j^h \text{ if } 1 \leq i < j \leq n. \]
This concludes the proof. □

Remark 1.3. Theorem 1.1 in the case $m = 3$ is a special case of Theorem 1.3.

Here is another extension of Theorem 1.1 via restricted sumsets in a field.
Theorem 1.4. Let \(k, m, n \) be positive integers with \(k - 1 \geq m(n - 1) \), and let \(F \) be a field with \(\text{ch}(F) > \max\{mn, (k - 1 - m(n - 1))n\} \). Assume that \(c_1, \ldots, c_n \in F \) are distinct, and \(A_1, \ldots, A_n, B_1, \ldots, B_n \) are subsets of \(F \) with \(|A_1| = \cdots = |A_n| = k \) and \(|B_1| = \cdots = |B_n| = n \). Let \(S_{ij} \subseteq F \) with \(|S_{ij}| < 2m \) for all \(1 \leq i < j \leq n \). Then there is an SDR \(\{b_i\}_{i=1}^n \) of \(\{B_i\}_{i=1}^n \) such that the restricted sumset

\[
(1.6) \quad S = \{a_1 + \cdots + a_n : a_i \in A_i, \ a_i - a_j \not\in S_{ij} \ \text{and} \ a_ib_ic_i \not= a_jb_jc_j \ \text{if} \ i < j\}
\]

has at least \((k - 1 - m(n - 1))n + 1 \) elements.

Now we introduce some basic notations in this paper. Let \(R \) be any commutative ring with identity. The permanent of a matrix \(A = (a_{ij})_{1 \leq i, j \leq n} \) over \(R \) is given by

\[
(1.7) \quad \text{per}(A) = \|a_{ij}\|_{1 \leq i, j \leq n} = \sum_{\sigma \in S_n} a_{1,\sigma(1)} \cdots a_{n,\sigma(n)},
\]

where \(S_n \) is the symmetric group of all the permutations on \(\{1, \ldots, n\} \). Recall that the determinant of \(A \) is defined by

\[
(1.8) \quad \det(A) = |a_{ij}|_{1 \leq i, j \leq n} = \sum_{\sigma \in S_n} \varepsilon(\sigma)a_{1,\sigma(1)} \cdots a_{n,\sigma(n)},
\]

where \(\varepsilon(\sigma) \) is 1 or \(-1\) according as \(\sigma \) is even or odd. We remind the difference between the notations \(|\cdot| \) and \(\|\cdot\| \). For the sake of convenience, the coefficient of the monomial \(x_1^{k_1} \cdots x_n^{k_n} \) in a polynomial \(P(x_1, \ldots, x_n) \) over \(R \) will be denoted by \([x_1^{k_1} \cdots x_n^{k_n}]P(x_1, \ldots, x_n)\).

In the next section we are going to prove Theorem 1.1 in two different ways. Section 3 is devoted to the study of duality between determinant and permanent. On the basis of Section 3, we will show Theorem 1.2 in Section 4 via the polynomial method. In Section 5, we will present our proof of Theorem 1.4.

2. Two proofs of Theorem 1.1

Lemma 2.1. Let \(R \) be a commutative ring with identity, and let \(a_{ij} \in R \) for \(i = 1, \ldots, m \) and \(j = 1, \ldots, n \), where \(m \in \{3, 5, \ldots\} \). The we have the identity

\[
(2.1) \quad \sum_{\sigma_1, \ldots, \sigma_{m-1} \in S_n} \varepsilon(\sigma_1 \cdots \sigma_{m-1}) \prod_{1 \leq i < j \leq n} \left(a_{mj} \prod_{s=1}^{m-1} a_{\sigma_s(j)} - a_{mi} \prod_{s=1}^{m-1} a_{\sigma_s(i)} \right) = \prod_{1 \leq i < j \leq n} (a_{1j} - a_{1i}) \cdots (a_{mj} - a_{mi}).
\]

Proof. Recall that \([x_j^{r-1}]_{1 \leq i, j \leq n} = \prod_{1 \leq i < j \leq n} (x_j - x_i) \) (Vandermonde). Let \(\Sigma \) denote
the left-hand side of (2.1). Then

\[\Sigma = \sum_{\sigma_1, \ldots, \sigma_{m-1} \in S_n} \varepsilon(\sigma_1 \cdots \sigma_{m-1}) |(a_1, \sigma_1(j) \cdots a_{m-1}, \sigma_{m-1}(j)a_m)^{i-1}|_{1 \leq i, j \leq n} \]

\[= \sum_{\sigma_1, \ldots, \sigma_{m-1} \in S_n} \varepsilon(\sigma_1) \times \cdots \times \varepsilon(\sigma_{m-1}) \]

\[\times \sum_{\tau \in S_n} \varepsilon(\tau) \prod_{i=1}^{n} (a_1, \sigma_1(\tau(i)) \cdots a_{m-1}, \sigma_{m-1}(\tau(i))a_m, \tau(i))^{i-1} \]

\[= \sum_{\tau \in S_n} \varepsilon(\tau)^m \prod_{i=1}^{n} a_{m, \tau(i)}^{-1} \times \prod_{s=1}^{m-1} \sum_{\sigma_s \in S_n} \varepsilon(\sigma_s) \prod_{i=1}^{n} a_{s, \sigma_s, \tau(i)}^{i-1} \]

\[= \sum_{\tau \in S_n} \varepsilon(\tau)^m \prod_{i=1}^{n} a_{m, \tau(i)}^{-1} \times \prod_{s=1}^{m-1} \sum_{\sigma_s \in S_n} \varepsilon(\sigma) \prod_{i=1}^{n} a_{s, \sigma(i)}^{i-1}. \]

Since \(m \) is odd, we finally have

\[\Sigma = |a_{m, j}|_{1 \leq i, j \leq n} \prod_{s=1}^{m-1} |a_{s, j}^{-1}|_{1 \leq i, j \leq n} = \prod_{s=1}^{m} \prod_{1 \leq i < j \leq n} (a_{s, j} - a_{s, i}). \]

This proves (2.1). \(\Box \)

Remark 2.1. When \(m \in \{2, 4, 6, \ldots \} \), the right-hand side of (2.1) should be replaced by

\[\|a_{m, j}^{-1}\|_{1 \leq i, j \leq n} \prod_{1 \leq i < j \leq n} (a_{1, j} - a_{1, i}) \cdots (a_{m-1, j} - a_{m-1, i}). \]

Definition 2.1. A subset \(S \) of a commutative ring \(R \) with identity is said to be regular if all those \(a - b \) with \(a, b \in S \) and \(a \neq b \) are units (i.e., invertible elements) of \(R \).

Theorem 2.1. Let \(R \) be a commutative ring with identity, and let \(m > 0 \) be odd. Then, for any regular subsets \(A_1, \ldots, A_m \) of \(R \) with cardinality \(n \in \mathbb{Z}^+ \), the elements of \(A_i \) (\(1 \leq i \leq m \)) can be listed in a suitable order \(a_1, \ldots, a_{in} \), so that all the products \(\prod_{i=1}^{in} a_{i,j} \) (\(1 \leq j \leq n \)) are distinct.

Proof. The case \(m = 1 \) is trivial. Below we let \(m \in \{3, 5, \ldots \} \).

Write \(A_s = \{b_{s, 1}, \ldots, b_{s, n}\} \) for \(s = 1, \ldots, m \). As all those \(b_{s, j} - b_{s, i} \) with \(1 \leq s \leq m \) and \(1 \leq i < j \leq n \) are units of \(R \), the product

\[\prod_{1 \leq i < j \leq n} (b_{1, j} - b_{1, i}) \cdots (b_{m, j} - b_{m, i}) \]

is also a unit of \(R \) and hence nonzero. Thus, by Lemma 2.1 there are \(\sigma_1, \ldots, \sigma_{m-1} \in S_n \) such that whenever \(1 \leq i < j \leq n \) we have

\[b_{1, \sigma_1(i)} \cdots b_{m-1, \sigma_{m-1}(i)}b_{mi} \neq b_{1, \sigma_1(j)} \cdots b_{m-1, \sigma_{m-1}(j)}b_{mj}. \]
For $1 \leq s \leq m$ and $1 \leq j \leq n$, let $a_{sj} = b_{s,\sigma_s(j)}$ if $s < m$, and $a_{sj} = b_{sj}$ if $s = m$. Then $\{a_{s1}, \ldots, a_{sn}\} = A_s$, and all the products $\prod_{s=1}^m a_{sj}$ ($j = 1, \ldots, n$) are distinct. This concludes the proof. □

Proof of Theorem 1.1. As mentioned in the proof of Theorem 1.3 via Theorem 1.2, without loss of generality we may simply take G to be the multiplicative group $\mathbb{C}^* = \mathbb{C} \setminus \{0\}$. As any nonzero element of a field is a unit in the field, the desired result follows from Theorem 2.1 immediately. □

Now we turn to our second approach to Theorem 1.1.

Lemma 2.2. Let c_1, \ldots, c_n be elements of a commutative ring with identity. Then we have

\[
[x_1^{n-1} \cdots x_n^{n-1} y_1^{n-1} \cdots y_n^{n-1}] \prod_{1 \leq i < j \leq n} (x_j - x_i)(y_j - y_i)(c_j x_j y_j - c_i x_i y_i)
\]

(2.2)

\[
= \prod_{1 \leq i < j \leq n} (c_j - c_i).
\]

Proof. Observe that

\[
\prod_{1 \leq i < j \leq n} (x_j - x_i)(y_j - y_i)(c_j x_j y_j - c_i x_i y_i)
\]

\[
= |x_i^{j-1}|_{1 \leq i,j \leq n} |y_i^{j-1}|_{1 \leq i,j \leq n} |(c_i x_i y_i)^{j-1}|_{1 \leq i,j \leq n}
\]

\[
= \sum_{\sigma \in S_n} \varepsilon(\sigma) \prod_{i=1}^n x_i^{\sigma(i) - 1} \times \sum_{\tau \in S_n} \varepsilon(\tau) \prod_{i=1}^n y_i^{\tau(i) - 1} \times \sum_{\lambda \in S_n} \varepsilon(\lambda) \prod_{i=1}^n (c_i x_i y_i)^{\lambda(i) - 1}
\]

\[
= \sum_{\lambda \in S_n} \varepsilon(\lambda) \prod_{i=1}^n c_i^{\lambda(i) - 1} \sum_{\sigma, \tau \in S_n} \varepsilon(\sigma \tau) \prod_{i=1}^n \left(x_i^{\lambda(i) + \sigma(i) - 2} y_i^{\lambda(i) + \tau(i) - 2}\right).
\]

Thus the left-hand side of (2.2) coincides with

\[
\sum_{\lambda \in S_n} \left(\varepsilon(\lambda) \prod_{i=1}^n c_i^{\lambda(i) - 1}\right) \varepsilon(\bar{\lambda} \lambda) = |c_i^{j-1}|_{1 \leq i,j \leq n} \prod_{1 \leq i < j \leq n} (c_j - c_i),
\]

where $\bar{\lambda}(i) = n + 1 - \lambda(i)$ for $i = 1, \ldots, n$. We are done. □

Let us recall the following central principle of the polynomial method.

Combinatorial Nullstellensatz [A1]. Let A_1, \ldots, A_n be finite subsets of a field F with $|A_i| > k_i$ for $i = 1, \ldots, n$, where k_1, \ldots, k_n are nonnegative integers. If the total degree of $f(x_1, \ldots, x_n) \in F[x_1, \ldots, x_n]$ is $k_1 + \cdots + k_n$, and $[x_1^{k_1} \cdots x_n^{k_n}]f(x_1, \ldots, x_n)$ is nonzero, then $f(a_1, \ldots, a_n) \neq 0$ for some $a_1 \in A_1, \ldots, a_n \in A_n$.

Theorem 2.2. Let A_1, \ldots, A_n and B_1, \ldots, B_n be subsets of a field F with cardinality n. And let c_1, \ldots, c_n be distinct elements of F. Then there is an SDR $\{a_i\}_{i=1}^n$ of
{A}_i}_{i=1}^n \text{ and an SDR } \{b_i\}_{i=1}^n \text{ of } \{B_i\}_{i=1}^n \text{ such that the products } a_1b_1c_1, \ldots, a_nb_nc_n \text{ are distinct.}

\textbf{Proof.} As } c_1, \ldots, c_n \text{ are distinct, (2.2) implies that }

[x_1^{n-1} \cdots x_n^{n-1} y_1^{n-1} \cdots y_n^{n-1}] \prod_{1 \leq i < j \leq n} (x_j - x_i)(y_j - y_i)(c_jx_jy_j - c_ix_iy_i) \neq 0.

\text{Applying the Combinatorial Nullstellensatz, we obtain the desired result.} \quad \square

\textbf{Remark 2.2.} When } F = \mathbb{C}, A_1 = \cdots = A_n \text{ and } B_1 = \cdots = B_n, \text{ Theorem 2.2 yields Theorem 1.1 with } m = 3. \text{ Note also that Theorems 1.2 and 1.4 are different extensions of Theorem 2.2.}

\section{3. Duality between determinants and permanents}

\textit{Let us first summarize Theorem 2.1 and Corollary 2.1 of Sun [Su3] in the following theorem.}

\textbf{Theorem 3.1 (Sun [Su3]).} Let } R \text{ be a commutative ring with identity, and let } A = (a)_{i,j} \leq n \text{ be a matrix over } R.

(i) \text{ Let } k_1, \ldots, k_n, m_1, \ldots, m_n \in \mathbb{N} = \{0, 1, 2, \ldots\} \text{ with } M = \sum_{i=1}^{n} m_i + \delta \binom{n}{2} \leq \sum_{i=1}^{n} k_i \text{ where } \delta \in \{0, 1\}. \text{ Then }

[x_1^{k_1} \cdots x_n^{k_n}] a_{ij} x_j^{m_j} | [1 \leq i, j \leq n] \prod_{1 \leq i < j \leq n} (x_j - x_i)^\delta \left(\sum_{s=1}^{n} x_s\right)^{\sum_{i=1}^{n} k_i - M} \sum_{\sigma \in S_n, D_\sigma \subset \mathbb{N}} \varepsilon(\sigma) N_\sigma \prod_{i=1}^{n} a_{i, \sigma(i)} \left(\sum_{i=1}^{n} x_s\right)^{\sum_{i=1}^{n} k_i - M}

\text{where }

D_\sigma = \{k_{\sigma(1)} - m_1, \ldots, k_{\sigma(n)} - m_n\},

T_\sigma = \{\sigma \in S_n; D_\sigma \subset \mathbb{N} \text{ and } |D_\sigma| = n\},

N_\sigma = \frac{(k_1 + \cdots + k_n - M)!}{\prod_{i=1}^{n} (k_{\sigma(i)} - m_i)!} \in \mathbb{Z}^+,

\text{and } \sigma' \text{ (with } \sigma \in T_\sigma \text{) is the unique permutation in } S_n \text{ such that }

0 \leq k_{\sigma(\sigma'(1))} - m_{\sigma'(1)} < \cdots < k_{\sigma(\sigma'(n))} - m_{\sigma'(n)}.

(ii) \text{ Let } k, m_1, \ldots, m_n \in \mathbb{N} \text{ with } m_1 \leq \cdots \leq m_n \leq k. \text{ Then }

[x_1^{k} \cdots x_n^{k}] a_{ij} x_j^{m_j} | [1 \leq i, j \leq n] (x_1 + \cdots + x_n)^{kn - \sum_{i=1}^{n} m_i} \left(\sum_{s=1}^{n} x_s\right)^{\sum_{i=1}^{n} k_i} \prod_{i=1}^{n} (k - m_i)! \det(A).

(3.1)
In the case \(m_1 < \cdots < m_n \), we also have

\[
[x_1^k \cdots x_n^k]\|a_{ij}x_j^{m_i}\|_{1 \leq i, j \leq n} \prod_{1 \leq i < j \leq n} (x_j - x_i) \times \left(\sum_{s=1}^{n} x_s \right)^{kn-\binom{n}{2} - \sum_{i=1}^{n} m_i}
\]

(3.2)

\[
= (-1)^{\binom{n}{2}} \frac{(kn - \binom{n}{2} - \sum_{i=1}^{n} m_i)!}{\prod_{i=1}^{n} \prod_{j \notin \{m_i, \ldots, n\}} m_i < j < k (j - m_i)} \per(A).
\]

In view of the minor difference between the definitions of determinant and permanent, by modifying the proof of the above result in [Su3] slightly we get the following dual of Theorem 3.1.

Theorem 3.2. Let \(R \) be a commutative ring with identity, and let \(A = (a_{ij})_{1 \leq i, j \leq n} \) be a matrix over \(R \).

(i) Let \(k_1, m_1, \ldots, k_n, m_n \in \mathbb{N} \) with \(M = \sum_{i=1}^{n} m_i + \delta \binom{n}{2} \leq \sum_{i=1}^{n} k_i \) where \(\delta \in \{0, 1\} \). Then

\[
[x_1^k \cdots x_n^k]\|a_{ij}x_j^{m_i}\|_{1 \leq i, j \leq n} \prod_{1 \leq i < j \leq n} (x_j - x_i)^{\delta} \times \left(\sum_{s=1}^{n} x_s \right)^{\sum_{i=1}^{n} k_i - M}
\]

\[
= \begin{cases}
\sum_{\sigma \in S_n, D_\sigma \subset \mathbb{N}} N_\sigma \prod_{i=1}^{n} a_{i, \sigma(i)} & \text{if } \delta = 0, \\
\sum_{\sigma \in T_n} \epsilon(\sigma\sigma') N_\sigma \prod_{i=1}^{n} a_{i, \sigma(i)} & \text{if } \delta = 1,
\end{cases}
\]

where \(D_\sigma, T_n, N_\sigma \) and \(\sigma' \) are as in Theorem 3.1(i).

(ii) Let \(k, m_1, \ldots, m_n \in \mathbb{N} \) with \(m_1 \leq \cdots \leq m_n \leq k \). Then

\[
[x_1^k \cdots x_n^k]\|a_{ij}x_j^{m_i}\|_{1 \leq i, j \leq n} (x_1 + \cdots + x_n)^{kn-\sum_{i=1}^{n} m_i}
\]

(3.3)

\[
= \frac{(kn - \sum_{j=1}^{n} m_j)!}{\prod_{i=1}^{n} (k - m_i)!} \per(A).
\]

In the case \(m_1 < \cdots < m_n \), we also have

\[
[x_1^k \cdots x_n^k]\|a_{ij}x_j^{m_i}\|_{1 \leq i, j \leq n} \prod_{1 \leq i < j \leq n} (x_j - x_i) \times \left(\sum_{s=1}^{n} x_s \right)^{kn-\binom{n}{2} - \sum_{i=1}^{n} m_i}
\]

(3.4)

\[
= (-1)^{\binom{n}{2}} \frac{(kn - \binom{n}{2} - \sum_{i=1}^{n} m_i)!}{\prod_{i=1}^{n} \prod_{j \notin \{m_i, \ldots, n\}} m_i < j < k (j - m_i)} \det(A).
\]

Remark 3.1. Part (ii) of Theorem 3.2 follows from the first part.

Theorem 3.3. Let \(R \) be a commutative ring with identity, and let \(a_{ij} \in R \) for all \(i, j = 1, \ldots, n \). Let \(k, l_1, \ldots, l_n, m_1, \ldots, m_n \in \mathbb{N} \) with \(N = kn - \sum_{i=1}^{n} (i + m_i) \geq 0 \).

(i) (Sun [Su3, Theorem 2.2]) There holds the identity

\[
[x_1^k \cdots x_n^k]\|a_{ij}x_j^{m_i}\|_{1 \leq i, j \leq n} |x_j^{m_i}|_{1 \leq i, j \leq n} (x_1 + \cdots + x_n)^N
\]

(3.5)

\[
= [x_1^k \cdots x_n^k]\|a_{ij}x_j^{m_i}\|_{1 \leq i, j \leq n} |x_j^{m_i}|_{1 \leq i, j \leq n} (x_1 + \cdots + x_n)^N.
\]
(ii) We also have the following symmetric identities:

\[
[x_1^k \cdots x_n^k]\|a_{ij}x_j^m\|_{1 \leq i, j \leq n} |x_j^m|_{1 \leq i, j \leq n} (x_1 + \cdots + x_n)^N
\]

\[
= [x_1 \cdots x_n]\|a_{ij}x_j^m\|_{1 \leq i, j \leq n} |x_j^m|_{1 \leq i, j \leq n} (x_1 + \cdots + x_n)^N,
\]

(3.6)

\[
[x_1^k \cdots x_n^k]\|a_{ij}x_j^m\|_{1 \leq i, j \leq n} |x_j^m|_{1 \leq i, j \leq n} (x_1 + \cdots + x_n)^N
\]

\[
= [x_1 \cdots x_n]\|a_{ij}x_j^m\|_{1 \leq i, j \leq n} |x_j^m|_{1 \leq i, j \leq n} (x_1 + \cdots + x_n)^N,
\]

(3.7)

and

\[
[x_1^k \cdots x_n^k]\|a_{ij}x_j^m\|_{1 \leq i, j \leq n} |x_j^m|_{1 \leq i, j \leq n} (x_1 + \cdots + x_n)^N
\]

\[
= [x_1 \cdots x_n]\|a_{ij}x_j^m\|_{1 \leq i, j \leq n} |x_j^m|_{1 \leq i, j \leq n} (x_1 + \cdots + x_n)^N.
\]

Theorem 3.3(ii) can be proved by modifying the proof of [Su3, Theorem 2.2] slightly.

4. Proof of Theorem 1.2

Lemma 4.1. Let \(h, k, l, m, n\) be positive integers satisfying (1.1). Let \(c_1, \ldots, c_n\) be elements of a commutative ring \(R\) with identity, and let \(P(x_1, \ldots, x_n, y_1, \ldots, y_n)\) denote the polynomial

\[
\prod_{1 \leq i < j \leq n} (c_jx_jy_j - c_ix_iy_i)(x_j^m - x_i^m)(y_j^h - y_i^h) \times (x_1 + \cdots + x_n)^K(y_1 + \cdots + y_n)^L,
\]

where \(K\) and \(L\) are given by (1.2). Then

\[
[x_1^{k-1} \cdots x_n^{k-1} y_1^{l-1} \cdots y_n^{l-1}]P(x_1, \ldots, x_n, y_1, \ldots, y_n)
\]

\[
= \frac{K!L!}{N} \prod_{1 \leq i < j \leq n} (c_j - c_i),
\]

(4.1)

where

\[
N = (hm)^{-\binom{n}{2}} \prod_{r=0}^{n-1} \frac{(k - 1 - rm)!(l - 1 - rh)!}{(r!)^2} \in \mathbb{Z}^+.
\]

Proof. In view of Theorem 3.3(i) and Theorem 3.1(ii),

\[
[y_1^{l-1} \cdots y_n^{l-1}] \prod_{1 \leq i < j \leq n} (c_jx_jy_j - c_ix_iy_i)(y_j^h - y_i^h) \times (y_1 + \cdots + y_n)^L
\]

\[
= [y_1^{l-1} \cdots y_n^{l-1}] (c_jx_j)^{(i-1)h} y_j \cdot |1 \leq i, j \leq n| (y_j^{(i-1)h} |1 \leq i, j \leq n}(y_1 + \cdots + y_n)^L
\]

\[
= [y_1^{l-1} \cdots y_n^{l-1}] (c_jx_j)^{(i-1)h} \cdot |1 \leq i, j \leq n| (y_j^{(i-1)h} |1 \leq i, j \leq n}(y_1 + \cdots + y_n)^L
\]

\[
= (-1)^{\binom{n}{2}} \frac{L!}{L_0} \| (c_jx_j)^{(i-1)} \|_{1 \leq i, j \leq n},
\]
where
\[L_0 = \prod_{i=1}^{n} \prod_{j=(i-1)h}^{(i-1)h+j/h \leq l-1} (j - (i-1)h) = \prod_{i=1}^{n} \frac{(l-1-(i-1)h)!}{\prod_{0<j\leq n-(jh)}^{j/h \notin \{i \in \mathbb{Z}: i \leq s < n\}}}
\]
\[= \prod_{i=1}^{n} \frac{(l-1-(i-1)h)!}{(n-i)!h^{n-i}} = h^{-\binom{n}{2}} \prod_{r=0}^{n-1} \frac{(l-1-rh)!}{r!}.
\]

Thus, with help of Theorem 3.3(ii) and Theorem 3.2(ii), we have
\[(-1)^{\binom{n}{2}} [x_1^{k-1} \cdots x_n^{k-1} y_1^{l-1} \cdots y_n^{l-1}] P(x_1, \ldots, x_n, y_1, \ldots, y_n) \]
\[= [x_1^{k-1} \cdots x_n^{k-1}] \frac{L_1}{L_0} \| (c_j x_j)^{i-1} \|_{1 \leq i,j \leq n} \prod_{1 \leq i,j \leq n} \left(x_j^m - x_j^m \right) \times \left(\sum_{k=1}^{n} x_k \right)^K \]
\[= \frac{L_1}{L_0} [x_1^{k-1} \cdots x_n^{k-1}] \| c_j^{i-1} x_j^{i-1} \|_{1 \leq i,j \leq n} \left(x_j^{(i-1)m} - x_j^{(i-1)m} \right) \times \left(\sum_{k=1}^{n} x_k \right)^K \]
\[= \frac{L_1}{L_0} [x_1^{k-1} \cdots x_n^{k-1}] \| c_j^{i-1} x_j^{i-1} \|_{1 \leq i,j \leq n} \left(x_j^{(i-1)m} - x_j^{(i-1)m} \right) \times \left(\sum_{k=1}^{n} x_k \right)^K \]
\[= \frac{L_1}{L_0} (-1)^{\binom{n}{2}} \frac{K!}{K_0} \| c_j^{i-1} \|_{1 \leq i,j \leq n} = (-1)^{\binom{n}{2}} \frac{K!L_1}{K_0 L_0} \prod_{1 \leq i,j \leq n} (c_j - c_i), \]

where
\[(3.3) \quad K_0 = \prod_{i=1}^{n} \prod_{j=(i-1)h}^{(i-1)h+j/h \leq l-1} (j - (i-1)h) = m^{-\binom{n}{2}} \prod_{r=0}^{n-1} \frac{(k-1-rm)!}{r!}.
\]

Therefore (4.1) holds with \(N = K_0 L_0 \in \mathbb{Z}^+. \) \(\square \)

Proof of Theorem 1.2. Let \(f(x_1, \ldots, x_n, y_1, \ldots, y_n) \) denote the polynomial
\[\prod_{1 \leq i < j \leq n} (P_i(x_j) - P_i(x_i))(Q_j(y_j) - Q_i(y_j))(c_j x_j y_j - c_i x_i y_i) \]
\[\times (x_1 + \cdots + x_n)^{K-|S|} \prod_{a \in S} (x_1 + \cdots + x_n - a) \]
\[\times (y_1 + \cdots + y_n)^{L-|T|} \prod_{b \in T} (y_1 + \cdots + y_n - b). \]

Then
\[\deg f \leq (m+h+2) \binom{n}{2} + |K| + |L| = (k-1+l-1)n = \sum_{i=1}^{n} (|A_i| - 1 + |B_i| - 1). \]
Since \(\text{ch}(F) > \max\{K, L\} \) and \(\prod_{1 \leq i < j \leq n} (c_j - c_i) \neq 0 \), in view of Lemma 4.1 we have

\[
[x_1^{k-1} \cdots x_n^{k-1} y_1^{i-1} \cdots y_n^{i-1}] f(x_1, \ldots, x_n, y_1, \ldots, y_n) \\
= [x_1^{k-1} \cdots x_n^{k-1} y_1^{i-1} \cdots y_n^{i-1}] P(x_1, \ldots, x_n, y_1, \ldots, y_n) \neq 0,
\]

where \(P(x_1, \ldots, x_n, y_1, \ldots, y_n) \) is defined as in Lemma 4.1. Applying the Combinatorial Nullstellensatz we find that \(f(a_1, \ldots, a_n, b_1, \ldots, b_n) \neq 0 \) for some \(a_1 \in A_1, \ldots, a_n \in A_n, b_1 \in B_1, \ldots, b_n \in B_n \). Thus (1.4) holds, and also \(a_1 + \cdots + a_n \not\in S \) and \(b_1 + \cdots + b_n \not\in T \). We are done. \(\Box \)

5. Proof of Theorem 1.4

Non-vanishing permanents are useful in combinatorics. For example, Alon’s permanent lemma [Al1] states that, if \(A = (a_{ij})_{1 \leq i, j \leq n} \) is a matrix over a field \(F \) with \(\text{per}(A) \neq 0 \), and \(X_1, \ldots, X_n \) are subsets of \(F \) with cardinality 2, then for any \(b_1, \ldots, b_n \in F \) there are \(x_1 \in X_1, \ldots, x_n \in X_n \) such that \(\sum_{j=1}^n a_{ij} x_j \neq b_i \) for all \(i = 1, \ldots, n \).

In contrast with [Su3, Theorem 1.2(ii)], we have the following auxiliary result.

Theorem 5.1. Let \(A_1, \ldots, A_n \) be finite subsets of a field \(F \) with \(|A_1| = \cdots = |A_n| = k \), and let \(P_i(x) = \cdots = P_n(x) \in F[x] \) have degree at most \(m \in \mathbb{Z}^+ \) with \([x^m] P_i(x), \ldots, [x^m] P_n(x) \) distinct. Suppose that \(k - 1 \geq m(n - 1) \) and \(\text{ch}(F) > (k - 1)n - (m + 1) \binom{n}{2} \). Then the restricted sumset

\[
(5.1) \quad C = \left\{ \sum_{i=1}^n a_i : a_i \in A_i, \ a_i \neq a_j \text{ for } i \neq j, \text{ and } \|P_j(a_j)^{i-1}\|_{1 \leq i, j \leq n} \neq 0 \right\}
\]

has cardinality at least \((k - 1)n - (m + 1) \binom{n}{2} + 1 > (m - 1) \binom{n}{2} \).

Proof. Assume that \(|C| \leq K = (k - 1)n - (m + 1) \binom{n}{2} \). Clearly the polynomial

\[
f(x_1, \ldots, x_n) := \prod_{1 \leq i < j \leq n} (x_j - x_i) \times \|P_j(x_j)^{i-1}\|_{1 \leq i, j \leq n}
\times \prod_{c \in C} (x_1 + \cdots + x_n - c) \times (x_1 + \cdots + x_n)^{K - |C|}
\]

has degree not exceeding \((k - 1)n = \sum_{i=1}^n |A_i| - 1 \). Since \(\text{ch}(F) \) is greater than \(K \), and those \(b_i = [x^m] P_i(x) \) with \(1 \leq i \leq n \) are distinct, with the help of Theorem 3.2(ii) we have

\[
[x_1^{k-1} \cdots x_n^{k-1}] f(x_1, \ldots, x_n) \\
= [x_1^{k-1} \cdots x_n^{k-1}] \prod_{1 \leq i < j \leq n} (x_j - x_i) \times \|b_j^{i-1} x_j^{i-1} \|_{1 \leq i, j \leq n} \left(\sum_{s=1}^n x_s \right)^K \\
= (-1)^\binom{n}{2} \frac{K!}{K_0} \prod_{1 \leq i < j \leq n} (b_j - b_i) \neq 0,
\]

where \(K_0 \) is given by (4.3). Thus, by the Combinatorial Nullstellensatz, \(f(a_1, \ldots, a_n) \neq 0 \) for some \(a_1 \in A_1, \ldots, a_n \in A_n \). Clearly \(\sum_{i=1}^n a_i \in C \) if \(\|P_j(a_j)^{i-1}\|_{1 \leq i, j \leq n} \neq 0 \) and \(a_i \neq a_j \) for all \(1 \leq i < j \leq n \). So we also have \(f(a_1, \ldots, a_n) = 0 \) by the definition of \(f(x_1, \ldots, x_n) \). The contradiction ends our proof. \(\Box \)
Corollary 5.1. Let A_1, \ldots, A_n and $B = \{b_1, \ldots, b_n\}$ be subsets of a field with cardinality n. Then there is an SDR $\{a_i\}_{i=1}^n$ of $\{A_i\}_{i=1}^n$ such that the permanent $\| (a_j b_j)^{i-1} \|_{1 \leq i, j \leq n}$ is nonzero.

Proof. Simply apply Theorem 5.1 with $k = n$ and $P_j(x) = b_j x$ for $j = 1, \ldots, n$. □

Lemma 5.1. Let $k, m, n \in \mathbb{Z}^+$ with $k - 1 \geq m(n-1)$. Then

\[
[x_1^{k-1} \cdots x_n^{k-1}] \prod_{1 \leq i < j \leq n} (x_j - x_i)^{2m-1}(x_j y_j - x_i y_i) \times \left(\sum_{s=1}^{n} x_s \right)^N
= (-1)^{m(n)} \frac{(mn)! N!}{(m!)^n n!} \prod_{r=0}^{rm} \frac{(rm)!}{(k-1-rm)!} \times \| y_i^{j-1} \|_{1 \leq i, j \leq n},
\]

where $N = (k - 1 - m(n-1))$.

Proof. Since both sides of (5.2) are polynomials in y_1, \ldots, y_n, it suffices to show that (5.2) with y_1, \ldots, y_n replaced by $a_1, \ldots, a_n \in \mathbb{C}$ always holds.

By Lemma 2.1 and (2.6) of [SY], we have

\[
[x_1^{k-1} \cdots x_n^{k-1}] \prod_{1 \leq i < j \leq n} (x_j - x_i)^{2m-1}(a_j x_j - a_i x_i) \times \left(\sum_{s=1}^{n} x_s \right)^N
= \frac{N!}{((k-1)!)^n} (-1)^{m(n)} \frac{m!(2m)! \cdots (mn)!}{(m!)^n n!} \| a_j^{i-1} \|_{1 \leq i, j \leq n} \prod_{0 < r < n} \prod_{s=1}^{rm} (k - s)
= (-1)^{m(n)} \frac{(mn)! N!}{(m!)^n n!} \| a_j^{i-1} \|_{1 \leq i, j \leq n} \prod_{r=0}^{rm} \frac{(rm)!}{(k-1-rm)!}.
\]

This concludes the proof. □

Proof of Theorem 1.4. Since c_1, \ldots, c_n are distinct and $|B_1| = \cdots = |B_n| = n$, by Corollary 5.1 there is an SDR $\{b_i\}_{i=1}^n$ of $\{B_i\}_{i=1}^n$ such that $\| (b_j c_j)^{i-1} \|_{1 \leq i, j \leq n} \neq 0$.

Suppose that $|S| \leq N = (k - 1 - m(n-1))n$. We want to derive a contradiction. Let $f(x_1, \ldots, x_n)$ denote the polynomial

\[
\prod_{1 \leq i < j \leq n} \left(b_j c_j x_j - b_i c_i x_i \right) (x_j - x_i)^{2m-1-|S_i|} \prod_{c \in S_i} (x_j - x_i + c) \\
\times (x_1 + \cdots + x_n)^{N-|S|} \prod_{a \in S} (x_1 + \cdots + x_n - a).
\]

Then

\[
\deg f \leq 2m \binom{n}{2} + N = (k - 1)n = \sum_{i=1}^{n} (|A_i| - 1).
\]

With the help of Lemma 5.1, we have

\[
[x_1^{k-1} \cdots x_n^{k-1}] f(x_1, \ldots, x_n)
= [x_1^{k-1} \cdots x_n^{k-1}] (x_1 + \cdots + x_n)^N \prod_{1 \leq i < j \leq n} \left(b_j c_j x_j - b_i c_i x_i \right) (x_j - x_i)^{2m-1}
= (-1)^{m(n)} \frac{(mn)! N!}{(m!)^n n!} \prod_{r=0}^{rm} \frac{(rm)!}{(k-1-rm)!} \times \| (b_j c_j)^{i-1} \|_{1 \leq i, j \leq n} \neq 0
\]
since \(\text{ch}(F) > \max\{mn, N\} \). By the Combinatorial Nullstellensatz, there are \(a_1 \in A_1, \ldots, a_n \in A_n \) such that \(f(a_1, \ldots, a_n) \neq 0 \). On the other hand, we do have \(f(a_1, \ldots, a_n) = 0 \), because \(a_1 + \cdots + a_n \in S \) if \(a_i - a_j \notin S_{ij} \) and \(a_i b_i c_i \neq a_j b_j c_j \) for all \(1 \leq i < j \leq n \). So we get a contradiction. \(\square \)

References

[PS1] H. Pan and Z. W. Sun, A lower bound for \(|\{a + b: a \in A, b \in B, P(a, b) \neq 0\}| \), J. Combin. Theory Ser. A 100 (2002), 387–393.

