Formal Meromorphic Functions on Manifolds of Finite Type

Robert Juhlin, Bernhard Lamel and Francine Meylan

Dedicated to Professor J.J. Kohn on the occasion of his 75th birthday

Abstract: It is shown that a real-valued formal meromorphic function on a formal generic submanifold of finite Kohn-Bloom-Graham type is necessarily constant.

1. Introduction

It is easy to see (and known, see [1]) that if $M \subset \mathbb{C}^N$ is a connected generic real-analytic CR manifold which is of finite type in the sense of Kohn [5] and Bloom-Graham [4] at some point $p \in M$, then any meromorphic map $H: U \to \mathbb{C}^m$ defined on a connected neighbourhood of M which satisfies $H(M) \subset E$, where $E \subset \mathbb{C}^m$ is a totally real real-analytic submanifold, is necessarily constant.

Let us give a short proof of this fact. First, we recall the definition of the Segre sets S_p^j. These are defined inductively. First, we define the Segre variety $S_p^1 = S_p$
for \(p \in M \). Let \(\rho(Z, \bar{Z}) = (\rho_1(Z, \bar{Z}), \ldots, \rho_d(Z, \bar{Z})) \) be a (vector-valued) defining function for \(M \) defined in a neighbourhood \(U \times \bar{U} \) of \((p, \bar{p})\), i.e.

\[
M \cap U = \{ Z \in U : \rho(Z, \bar{Z}) = 0 \}, \quad dp_1 \wedge \cdots \wedge dp_d \neq 0 \text{ on } U, \quad \rho(Z, \bar{Z}) = \bar{\rho}(\bar{Z}, Z).
\]

Then if \(S^1_q \) is defined by

\[
S^1_q = \{ Z \in U : \rho(Z, \bar{q}) = 0 \}, \quad q \in U,
\]

the \(j \)-th Segre set \(S^j_p \), \(j \in \mathbb{N} \), is defined inductively by

\[
S^j_p = \bigcup_{q \in S^{j-1}_p} S^1_q.
\]

We are using the following Theorem, which characterizes finite type in terms of properties of the Segre sets:

Theorem 1 (Baouendi, Ebenfelt and Rothschild [1]). *Let \(M \subset \mathbb{C}^N \) be a generic real-analytic CR manifold. Then \(M \) is of finite type at \(p \in M \) if and only if there exists an open set \(V \subset \mathbb{C}^N \) with \(V \subset S^d_{p+1} \).*

Now assume that \(H : U \to \mathbb{C}^m \) is a meromorphic map which satisfies \(H(M) \subset E \), where \(E \) is totally real. First note that since \(M \) is of finite type at some point \(p \), it is of finite type on the complement of a proper real-analytic subvariety \(F \subset M \). So there exists a point \(p \in M \) with the property that \(M \) is of finite type at \(p \) and \(H \) is holomorphic in some neighbourhood of \(p \) (because \(M \) is generic, it is a set of uniqueness for holomorphic functions). We shall prove that in this situation, \(H \) is constant on an open set in \(\mathbb{C}^N \), and thus constant.

We can find coordinates \(\eta \) in \(\mathbb{C}^m \) such that near \(H(p) \), \(E \) is given by an equation of the form \(\eta = \varphi(\bar{\eta}) \). Thus, \(H(Z) = \varphi(\bar{H}(Z)) \), whenever \(Z \in M \), and from this we have that \(H(Z) = \varphi(\bar{H}(\zeta)) \) whenever \(Z \in S^1_{\zeta} \) (restricting to a suitable neighbourhood \(U \) of \(p \)). Thus, \(H(Z) = \varphi(\bar{H}(p)) \) for \(Z \in S^1_p \); since \(p \in S^1_p \), \(H(Z) = H(p) \) for \(Z \in S^2_p \). Now we consider \(Z \in S^2_p \). For each such \(Z \), there is \(\zeta \in S^1_p \) with \(Z \in S^1_{\zeta} \). Our equation tells us that \(H(Z) = \varphi(\bar{H}(\zeta)) = \varphi(\bar{H}(p)) \), and again, since \(p \in S^2_p \), \(H(Z) = H(p) \) for \(Z \in S^2_p \).

Continuing the iteration process like this, we see that \(H(Z) = H(p) \) for \(Z \in S^j_p \) for \(j \in \mathbb{N} \). Since \(S^{d+1}_p \) contains an open subset of \(\mathbb{C}^N \) by Theorem 1, the identity principle implies that \(H(Z) = H(p) \) on \(U \). This proves the constancy of such an \(H \).
Our main point in this paper is the extension of this result to the formal category. Here we cannot “move to a good point”. In this setting, a formal meromorphic map is given by $H = N / D$, where D is a (nonvanishing) formal power series and $N: (\mathbb{C}^N, 0) \rightarrow (\mathbb{C}^m, 0)$ is a formal holomorphic map. Note that if $E \subset \mathbb{C}^m$ is a formal totally real manifold, then in suitable coordinates $\eta \in \mathbb{C}^m$, E is given by $\text{Im} \eta = 0$. We say that $H = N / D$ maps M into E if for any formal map $\gamma(t) = (\gamma_1(t), \gamma_2(t))$ satisfying $\rho(\gamma_1(t), \gamma_2(t)) = 0$ for every defining function ρ of M we have

$$N_j(\gamma_1(t))\bar{D}(\gamma_2(t)) - \bar{N}_j(\gamma_2(t))D(\gamma_1(t)) = 0$$

for every $j = 1, \ldots, m$. We shall freely use the terminology of formal real submanifolds as explained in e.g. [2]. We show the following:

Theorem 2. Let $M \subset \mathbb{C}^N$ be a formal generic manifold of finite type, $H: (\mathbb{C}^N, 0) \rightarrow (\mathbb{C}^m, 0)$ a formal meromorphic map which satisfies $H(M) \subset E$, where E is a formal totally real manifold. Then H is formal holomorphic, and thus, constant.

We note that the finite type assumption is necessary. Indeed, every manifold of the form $M = \tilde{M} \times E$ where \tilde{M} is some CR manifold and E is totally real has nonconstant CR maps onto a totally real manifold (the projection onto its second coordinate). On the other hand, here is another example, due to J. Lebl:

Example 1. Let $M \subset \mathbb{C}^3$ be given by

$$w_1 = \overline{w_1}e^{p|z|^2}, \quad w_2 = \overline{w_2}e^{q|z|^2},$$

for some integers p and q. Then the function

$$H(z, w_1, w_2) = \frac{w_1^q}{w_2^p}$$

maps M into \mathbb{R} and is not the restriction of a holomorphic function. Also note that this function is not even continuous on M. Our results imply that no nonconstant holomorphic choice of projection onto \mathbb{R} can be made.

2. **Reflection Identities and Consequences**

We shall first show that we can simplify our situation somewhat by choosing ”normal” coordinates. Recall that normal coordinates for a formal generic
submanifold \((M, 0) \subset (\mathbb{C}^N, 0)\) means a choice of coordinates \((z, w) \in \mathbb{C}^n \times \mathbb{C}^d\) (\(d\) being the real codimension of \((M, 0)\)) together with formal functions \(Q_j(z, \chi, \tau) \in \mathbb{C}[[z, \chi, \tau]], j = 1, \ldots, d,\) satisfying

\[Q_j(z, 0, \tau) = Q_j(0, \chi, \tau) = \tau_j, \quad j = 1, \ldots, d,\]

such that \(w_j - Q_j(z, \chi, \tau)\) generate the manifold ideal associated to \((M, 0)\) in \(\mathbb{C}[[z, w, \chi, \tau]].\) We will write \(Q = (Q_1, \ldots, Q_d),\) and abbreviate the generating set with \(w - Q(z, \chi, \tau).\)

We will show that in normal coordinates, a formal meromorphic function \(H\) which maps \((M, 0)\) into \((\mathbb{R}, 0)\) actually only depends on the transverse variables \(w.\) To do this, we first give a reflection identity which we will use.

Proposition 1. If \((M, 0) \subset (\mathbb{C}^N, 0)\) is a formal generic submanifold, and \((z, w)\) are normal coordinates for \((M, 0)\) with corresponding generators \(w - Q(z, \chi, \tau).\) If \(H = ND: (M, 0) \to (\mathbb{R}, 0)\) is formal meromorphic, and \(N\) and \(D\) do not have any common factors, then there exists a formal holomorphic function \(a(z, \chi, z^1, w),\) with \(a(0, 0, 0, 0) = 1,\) such that

\[N(z, Q(z, \chi, \bar{Q}(\chi, z^1, w))) = a(z, \chi, z^1, w)N(z^1, w),\]
\[D(z, Q(z, \chi, \bar{Q}(\chi, z^1, w))) = a(z, \chi, z^1, w)D(z^1, w).\]

Proof. The conclusion is clear if \(N\) is identically zero, so we assume that this is not the case. By definition, we have

\[\bar{D}(\chi, \tau)N(z, Q(z, \chi, \tau)) = \bar{N}(\chi, \tau)D(z, Q(z, \chi, \tau)).\]

Taking the complex conjugate of the series and replacing \(\chi\) by \(z^1,\) \(\tau\) by \(w,\) and \(z\) by \(\bar{\chi}\) in this equation, we also have that

\[D(z^1, w)\bar{N}(\chi, Q(\chi, z^1, w)) = N(z^1, w)\bar{D}(\chi, Q(\chi, z^1, w)).\]

We now substitute \(\tau = \bar{Q}(\chi, z^1, w)\) into (2) to obtain

\[\bar{D}(\chi, \bar{Q}(\chi, z^1, w))N(z, Q(z, \chi, \bar{Q}(\chi, z^1, w))) = \bar{N}(\chi, \bar{Q}(\chi, z^1, w))D(z, Q(z, \chi, \bar{Q}(\chi, z^1, w))).\]

We now multiply the left (and right, respectively) hand sides of (3) and (4) with each other, and after cancelling the (nonvanishing) common factor \(\bar{N}(\chi, \bar{Q}(\chi, z^1, w))\bar{D}(\chi, \bar{Q}(\chi, z^1, w))\) we obtain

\[D(z^1, w)N(z, Q(z, \chi, \bar{Q}(\chi, z^1, w))) = D(z, Q(z, \chi, \bar{Q}(\chi, z^1, w)))N(z^1, w).\]
Now, using the fact that N and D do not have any common factors, unique factorization in the ring $\mathbb{C}[[z, \chi, z^1, w]]$ implies that there exists a unit $a(z, \chi, z^1, w)$ such that (1) holds. By evaluating (1) at $z = z^1$, and using the reality property $Q(z, \chi, \bar{Q}(\chi, z, w)) = w$, we have that $a(z, \chi, z, w) = 1$, so in particular, $a(0, 0, 0, 0) = 1$. □

Lemma 2. Let $(M, 0) \subset (\mathbb{C}^N, 0)$ be a formal generic submanifold. Assume that $H(Z) = \frac{N(Z)}{D(Z)}$ is a formal meromorphic map sending $(M, 0)$ into $(\mathbb{R}, 0)$. Then for any choice of normal coordinates (z, w) for $(M, 0)$, we have that $H(z, w) = H(0, w)$; i.e., there exist formal functions $\tilde{N}(w)$ and $\tilde{D}(w)$ such that $H(z, w) = \frac{\tilde{N}(w)}{\tilde{D}(w)}$.

Proof. We use Proposition 1. Setting $\chi = z^1 = 0$, we see that $N(z, w) = a(z, 0, 0, w)N(0, w), \quad D(z, w) = a(z, 0, 0, w)D(0, w).

The Lemma follows. □

3. Prolongation of the reflection along Segre maps and proof of Theorem 2

We will denote by $v^1(z, \chi, z^1; w) = Q(z, \chi, \bar{Q}(\chi, z^1, w))$;

in the usual Segre-map terminology, $v^1(z, \chi, z^1; 0)$ is the transversal component of the second Segre map of $(M, 0)$. We define $S^{(0)} = z$, and for $j \geq 1$

$S^{(j)} = (z, \chi, z^1, \chi^1, \ldots, z^j),$

and write $S^{(j)}_k = (z^k, \chi^k, \ldots, z^j)$ for $k \leq j$. With that notation and our simplification from Lemma 2, our reflection identity (1) now reads

$$N\left(v^1(S^{(1)}; w)\right) = a(S^{(1)}, w)N\left(w\right),$$

$$D\left(v^1(S^{(1)}; w)\right) = a(S^{(1)}, w)D\left(w\right).$$

For $j \geq 2$, we define inductively

$$v^j\left(S^{(j)}; w\right) = v^1(z, \chi, z^1; v^{j-1}(S^{(j)}_1; w)).$$

We can now state the finite type criterion of Baouendi, Ebenfelt and Rothschild [3], for later reference, as follows:
Theorem 3. If \((M,0)\) is of finite type in the sense of Kohn-Bloom-Graham, then there exists a \(j \geq 1\) such that
\[
S^{(j)} \mapsto v^j \left(S^{(j)}; 0 \right), \quad (\mathbb{C}^{(2j-1)n}, 0) \to (\mathbb{C}^d, 0),
\]
is of generic full rank \(d\).

Thus, if we for \(j \geq 2\) replace \(w\) by \(v^{j-1}(S^{(j)}; w)\) in (6), we obtain
\[
N \left(v^j(S^{(j)}; w) \right) = N \left(v^1(S^{(1)}; v^{j-1}(S^{(j)}; w)) \right) = a(S^{(1)}; v^{j-1}(S^{(j)}; w)) N \left(v^{j-1}(S^{(j)}; w) \right).
\]

Applying induction, we see that the following holds:

Lemma 3. For every \(j \geq 1\), there exists a unit \(a_j(S^{(j)}, w)\) such that
\[
(7) \quad N \left(v^j(S^{(j)}; w) \right) = a_j(S^{(j)}, w) N(w), \quad D \left(v^j(S^{(j)}; w) \right) = a_j(S^{(j)}, w) D(w).
\]

We can now prove Theorem 2: By Theorem 3, there exists a \(j\) such that \(v^j(S^{(j)}; 0)\) is of generic full rank. Assuming that \(D(0) = 0\), we see that \(D(v^j(S^{(j)}; 0)) = 0\). Since \(v^j\) is of generic full rank, this implies that \(D(w) = 0\); this contradiction shows that \(D(0) \neq 0\). Hence, we can assume that \(H(w) = N(w)\) is holomorphic, and without loss of generality, \(N(0) = 0\). Now the same argument as before shows that \(N(w) = 0\), and so, \(H\) is constant.

Remark 1. More generally, if we do not assume that \((M,0)\) is of finite type, then we can define the formal variety
\[
V_j = \overline{\text{image}(v^j(S^{(j)}; 0))} \cong \{ f \in \mathbb{C}[[w]] : f \circ v^j(S^{(j)}; 0) = 0 \},
\]
and \(V = \bigcup_j V_j\) (which is again a formal variety). The same arguments as above show that \(D\), as well as \(N\), are constant on \(V\). This corresponds to the statement that a real-valued CR meromorphic function is constant along the CR-orbits of \(M\).

References

Formal Meromorphic Functions on Manifolds of Finite Type

Robert Juhlin
Universität Wien, Fakultät für Mathematik,
Nordbergstrasse 15, A-1090 Wien,
Österreich
E-mail: robert.juhlin@univie.ac.at

Bernhard Lamel
Universität Wien, Fakultät für Mathematik,
Nordbergstrasse 15, A-1090 Wien,
Österreich
E-mail: bernhard.lamel@univie.ac.at

Francine Meylan
University of Fribourg, Department of Mathematics,
CH 1700 Perolles, Fribourg,
Suisse
E-mail: francine.meylan@unifr.ch