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On consistency and robustness properties of
Support Vector Machines for heavy-tailed
distributions∗

Andreas Christmann
†
, Arnout Van Messem, and Ingo Steinwart

Support Vector Machines (SVMs) are known to be con-
sistent and robust for classification and regression if they
are based on a Lipschitz continuous loss function and on a
bounded kernel with a dense and separable reproducing ker-
nel Hilbert space. These facts are even true in the regression
context for unbounded output spaces, if the target function
f is integrable with respect to the marginal distribution of
the input variable X and if the output variable Y has a
finite first absolute moment. The latter assumption clearly
excludes distributions with heavy tails, e.g., several stable
distributions or some extreme value distributions which oc-
cur in financial or insurance projects. The main point of
this paper is that we can enlarge the applicability of SVMs
even to heavy-tailed distributions, which violate this mo-
ment condition. Results on existence, uniqueness, represen-
tation, consistency, and statistical robustness are given.
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1. INTRODUCTION

The goal in non-parametric statistical machine learn-
ing, both for classification and for regression purposes, is
to relate an X -valued input random variable X to a Y-
valued output random variable Y , under the assumption
that the joint distribution P of (X, Y ) is (almost) com-
pletely unknown. Common choices of input and output
spaces are X × Y = R

d × {−1, +1} for classification and
X × Y = R

d × R for regression. In order to model this
relationship one typically assumes that one has a training
data set Dtrain = ((x1, y1), . . . , (xn, yn)) ∈ (X × Y)n with
observations from independent and identically distributed
(i.i.d.) random variables (Xi, Yi), i = 1, . . . , n, which all have
the same distribution P on X ×Y equipped with the corre-
sponding Borel σ-algebra. Informally, the aim is to build a
predictor f : X → Y based on these observations such that
f(X) is a good approximation of Y .

∗We would like to thank Ursula Gather and Xuming He for drawing
our attention to the L�-trick.
†Corresponding author.

To formalize this aim we call a function L : X ×Y ×R →
[0,∞) a loss function (or just loss) if L is measurable. The
loss function assesses the quality of a prediction f(x) for an
observed output value y by L(x, y, f(x)). We follow the con-
vention that the smaller L(x, y, f(x)) is, the better the pre-
diction is. We will further always assume that L(x, y, y) = 0
for all y ∈ Y, because practitioners usually argue that the
loss is zero, if the forecast f(x) equals the observed value
y.

The quality of a predictor f is measured by the expecta-
tion of the loss function, i.e., by the L-risk

RL,P(f) := EPL(X, Y, f(X)).

One tries to find a predictor whose risk is close to the min-
imal risk, i.e., close to the Bayes risk

R∗
L,P := inf{RL,P(f) ; f : X → R measurable}.

One way to build a non-parametric predictor f is to use a
support vector machine

(1) fL,P,λ := arg inf
f∈H

RL,P(f) + λ ‖f‖2
H ,

where L is a loss function, H is a reproducing kernel Hilbert
space (RKHS) of a measurable kernel k : X × X → R, and
λ > 0 is a regularization parameter to reduce the danger of
overfitting, see e.g., Vapnik [1998] and Schölkopf and Smola
[2002]. The reproducing property states, for all f ∈ H and
all x ∈ X ,

f(x) = 〈f,Φ(x)〉H.

A kernel k is called bounded, if

‖k‖∞ := sup{
√

k(x, x) : x ∈ X} < ∞ .

Using the reproducing property and ‖Φ(x)‖H =
√

k(x, x),
we obtain the well-known inequalities

(2) ‖f‖∞ ≤ ‖k‖∞ ‖f‖H

and

(3) ‖Φ(x)‖∞ ≤ ‖k‖∞ ‖Φ(x)‖H ≤ ‖k‖2
∞
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for f ∈ H and x ∈ X . As an example of a bounded kernel we
mention the popular Gaussian radial basis function (RBF)
kernel defined by

(4) kRBF(x, x′) = exp(−γ−2 ‖x − x′‖2), x, x′ ∈ X ,

where γ is a positive constant. Furthermore, it is universal
in the sense of Steinwart [2001], that is, its RKHS is dense
in C(X ) for all compact X ⊂ R

d. Finally, see Theorem 4.63
of Steinwart and Christmann [2008b], its RKHS is dense in
L1(μ) for all probability measures μ on R

d.
Of course, the regularized risk

Rreg
L,P,λ(f) := RL,P(f) + λ ‖f‖2

H

is in general not computable, because P is unknown. How-
ever, the empirical distribution

D =
1
n

n∑
i=1

δ(xi,yi)

corresponding to the data set D can be used as an estimator
of P. Here δ(xi,yi) denotes the Dirac distribution in (xi, yi). If
we replace P by D in (1), we obtain the regularized empirical
risk Rreg

L,D,λ(f) and the empirical SVM fL,D,λ.
SVMs based on a convex loss function have under

weak assumptions at least the following four advanta-
geous properties, which partially explain their success, see
e.g., Vapnik [1998], Cristianini and Shawe-Taylor [2000],
Schölkopf and Smola [2002], and Steinwart and Christmann
[2008b] for details. (i) An SVM fL,P,λ exists and is the
unique solution of a certain convex problem. (ii) SVMs are
L-risk consistent, i.e., for suitable null-sequences (λn) with
λn > 0 we have

RL,P(fL,D,λn) → R∗
L,P, n → ∞,

in probability. (iii) SVMs have good statistical robust-
ness properties, if k is bounded in the sense of ‖k‖∞ :=
sup{

√
k(x, x) : x ∈ X} < ∞ and if L is Lipschitz contin-

uous with respect to its third argument, i.e., there exists a
constant |L|1 ∈ (0,∞) such that, for all (x, y) ∈ X × Y and
all t1, t2 ∈ R,

(5) |L(x, y, t1) − L(x, y, t2)| ≤ |L|1 |t1 − t2|.

In a nutshell, robustness implies that fL,P,λ only varies in a
smooth and bounded manner if P changes slightly in the set
M1 of all probability measures on X × Y . (iv) There exist
efficient numerical algorithms to determine fL,D,λ even for
large and high-dimensional data sets D.

If L : X × Y × R → [0,∞) only depends on its last
two arguments, i.e., if there exists a measurable function
L̂ : Y × R → [0,∞) such that L(x, y, t) = L̂(y, t) for all
(x, y, t) ∈ X × Y × R, then L is called a supervised loss.
A loss function L is called a Nemitski loss if there exists a

measurable function b : X × Y → [0,∞) and an increasing
function h : [0,∞) → [0,∞) such that

L(x, y, t) ≤ b(x, y) + h(|t|), (x, y, t) ∈ X × Y × R.

If additionally b ∈ L1(P), we say that L is a P-integrable
Nemitski loss.

If not otherwise mentioned, we will restrict attention to
Lipschitz continuous (w.r.t. the third argument) loss func-
tions L for three reasons. (i) Many loss functions used in
practice are Lipschitz continuous, e.g., the hinge loss

L(x, y, t) := max{0, 1 − yt}

and the logistic loss

(6) L(x, y, t) := ln(1 + exp(−yt))

for classification; the ε-insensitive loss

L(x, y, t) := max{0, |y − t| − ε}

for some ε > 0, Huber’s loss

L(x, y, t) :=

{
0.5(y − t)2 if |y − t| ≤ α

α|y − t| − 0.5α2 if |y − t| > α

for some α > 0, and the logistic loss

(7) L(x, y, t) := − ln
4 exp(y − t)

(1 + exp(y − t))2

for regression; and the pinball loss

(8) L(x, y, t) :=

{
(τ − 1)(y − t), if y − t < 0,

τ(y − t), if y − t ≥ 0,

for some τ > 0 for quantile regression. (ii) Lipschitz contin-
uous loss functions are trivially Nemitski loss functions for
all probability measures on X × Y , because

L(x, y, t) = L(x, y, 0) + L(x, y, t) − L(x, y, 0)
≤ b(x, y) + |L|1 |t|,

where b(x, y) := L(x, y, 0) for (x, y, t) ∈ X × Y × R and
|L|1 ∈ (0,∞) denotes the Lipschitz constant of L. Further-
more, Lipschitz continuous L are P-integrable if RL,P(0)
is finite. (iii) SVMs based on the combination of a Lip-
schitz continuous loss and a bounded kernel have good
statistical robustness properties for classification and re-
gression, see Christmann and Steinwart [2004, 2007] and
Christmann and Van Messem [2008].

Let us assume that the probability measure P can be
split up into the marginal distribution PX on X and the
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conditional probability P(y|x) on Y , which is possible if Y ⊂
R is closed. Then we obtain for the L-risk the inequality

RL,P(f) = EP

(
L(X, Y, f(X)) − L(X, Y, Y )

)
(9)

≤ |L|1
∫
X

∫
Y
|f(x) − y| dP(y|x) dPX(x)

≤ |L|1
∫
X
|f(x)| dPX(x)

+ |L|1
∫
X

∫
Y
|y|dP(y|x) dPX(x),

which is finite, if f ∈ L1(PX) and

(10) EP|Y | =
∫
X

∫
Y
|y| dP(y|x) dPX(x) < ∞ .

The latter condition excludes heavy-tailed distributions such
as many stable distributions, including the Cauchy distribu-
tion, and many extreme value distributions which occur in fi-
nancial or actuarial problems. The moment condition (10) is
one of the assumptions made by Christmann and Steinwart
[2007] and Steinwart and Christmann [2008b] for their con-
sistency and robustness proofs of SVMs for an unbounded
output set Y .

The main point of this paper is to enlarge the applica-
bility of SVMs even to heavy-tailed distributions, which vi-
olate the moment condition EP|Y | < ∞, by using a trick
well-known in the literature on robust statistics, see e.g.,
Huber [1967]: we shift the loss L(x, y, t) downwards by the
amount of L(x, y, 0) ∈ [0,∞). We will call the function
L� : X × Y × R → R defined by

(11) L�(x, y, t) := L(x, y, t) − L(x, y, 0)

the shifted loss function or the shifted version of L. We ob-
tain, for all f ∈ L1(PX),

EPL�(X, Y, f(X))(12)

= EP

(
L(X, Y, f(X)) − L(X, Y, 0)

)
≤

∫
X×Y

|L(x, y, f(x)) − L(x, y, 0)| dP(x, y)

≤ |L|1
∫
X
|f(x)| dPX(x) < ∞,

no matter whether the moment condition (10) is fulfilled.
We will use this “L�-trick” to show that many important
results on the SVM fL,P,λ, such as existence, uniqueness,
representation, consistency, and statistical robustness, can
also be shown for

(13) fL�,P,λ := arg inf
f∈H

RL�,P(f) + λ ‖f‖2
H ,

where

RL�,P(f) := EPL�(X, Y, f(X))

denotes the L�-risk of f . Moreover, we will show that

fL�,P,λ = fL,P,λ

if fL,P,λ exists. Hence, there is no need for new algorithms
to compute fL�,D,λ because the empirical SVM fL,D,λ exists
for all data sets D. The advantage of fL�,P,λ over fL,P,λ is
that fL�,P,λ is still well-defined and useful for heavy-tailed
conditional distributions P(y|x), for which the first absolute
moment

∫
Y |y|dP(y|x) is infinite. In particular, our results

will show that even in the case of heavy-tailed distributions,
the forecasts fL�,D,λ(x) = fL,D,λ(x) are consistent and ro-
bust, if the kernel is bounded and a Lipschitz continuous loss
function such as, e.g., the pinball loss for quantile regression
is used.

The paper is organized as follows. Section 2 gives some
simple facts on L� and on RL�,P(fL�,P,λ) and their coun-
terparts with respect to L. Section 3 contains our main re-
sults, i.e., existence, uniqueness, a representation theorem,
risk consistency, and statistical robustness of SVMs based
on L�. Section 4 contains a discussion. All proofs together
with some general facts are given in the Appendix.

2. SHIFTED LOSS FUNCTIONS

In this section we will give some general facts on the
function L� which will be used to obtain our main results
in the next section. Our general assumptions for the rest of
the paper are summarized in

Assumption 1. Let n ∈ N, X be a complete separable
metric space (e.g., a closed X ⊂ R

d), Y ⊂ R be a non-
empty and closed set, and P be a probability distribution
on X × Y enclipped with its Borel σ-algebra. Since Y is
closed, P can be split up into the marginal distribution PX

on X and the conditional probability P(y|x) on Y . Let L :
X ×Y×R → [0,∞) be a loss function and define its shifted
loss function L� : X × Y × R → R by

L�(x, y, t) := L(x, y, t) − L(x, y, 0).

We say that L (or L�) is convex, Lipschitz continuous, con-
tinuous or differentiable, if L (or L�) has this property with
respect to its third argument. If not otherwise mentioned,
k : X × X → R is a measurable kernel with reproducing
kernel Hilbert space H of measurable functions f : X → R,
and Φ : X → H denotes the canonical feature map, i.e.,
Φ(x) := k(·, x) for x ∈ X .

Obviously, L� < ∞. As shown in the introduction, we
obtain by (9) that the L-risk EPL(X, Y, f(X)) is finite, if
f ∈ L1(PX) and EP|Y | < ∞. On the other hand, (12) shows
us that EPL�(X, Y, f(X)) is finite, if f ∈ L1(PX) no matter
whether EP|Y | < ∞ is finite or infinite. Therefore, by using
the L�-trick, we can enlarge the applicability of SVMs by
relaxing the finiteness of the risk.

The following result gives a relationship between L and
L� in terms of convexity and Lipschitz continuity.
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Proposition 2. Let L be a loss function. Then the following
statements are valid.

i) L� is (strictly) convex, if L is (strictly) convex.
ii) L� is Lipschitz continuous, if L is Lipschitz continuous.

Furthermore, both Lipschitz constants are equal, i.e.,
|L|1 = |L�|1.

It follows from Proposition 2 and the strict convexity of
the mapping f �→ λ ‖f‖2

H, f ∈ H, that L�(x, y, ·) + λ ‖·‖2
H

is a strictly convex function if L is convex.

Proposition 3. The following assertions are valid.

i) inft∈R L�(x, y, t) ≤ 0.
ii) If L is a Lipschitz continuous loss, then for all f ∈ H:

(14) − |L|1EPX
|f(X)| ≤ RL�,P(f) ≤ |L|1EPX

|f(X)|,

− |L|1EPX
|f(X)| + λ ‖f‖2

H(15)

≤ Rreg
L�,P,λ(f) ≤ |L|1EPX

|f(X)| + λ ‖f‖2
H .

iii) inff∈H Rreg
L�,P,λ(f) ≤ 0 and inff∈H RL�,P(f) ≤ 0.

iv) Let L be a Lipschitz continuous loss and assume that
fL�,P,λ exists. Then we have

λ ‖fL�,P,λ‖2
H ≤−RL�,P(fL�,P,λ) ≤ RL,P(0),
0 ≤−Rreg

L�,P,λ(fL�,P,λ) ≤ RL,P(0),

λ ‖fL�,P,λ‖2
H ≤min

{
|L|1EPX

|fL�,P,λ(X)|,RL,P(0)
}
.(16)

If the kernel k is additionally bounded, then

‖fL�,P,λ‖∞ ≤ λ−1|L|1 ‖k‖2
∞ < ∞,(17)

|RL�,P(fL�,P,λ)| ≤ λ−1|L|21 ‖k‖
2
∞ < ∞.(18)

v) If the partial Fréchet- and Bouligand-derivatives1 of L
and L� exist for (x, y) ∈ X × Y, then

∇F
3 L�(x, y, t) = ∇F

3 L(x, y, t), ∀ t ∈ R,(19)

∇B
3 L�(x, y, t) = ∇B

3 L(x, y, t), ∀ t ∈ R.(20)

The following proposition ensures that the optimization
problem to determine fL�,P,λ is well-posed.

Proposition 4. Let L be a Lipschitz continuous loss and
f ∈ L1(PX). Then RL�,P(f) /∈ {−∞, +∞}. Moreover, we
have Rreg

L�,P,λ(f) > −∞ for all f ∈ L1(PX) ∩H.

3. MAIN RESULTS

This section contains our main results on the SVM
fL�,P,λ, namely existence, uniqueness, representation the-
orem, consistency, and statistical robustness.

1See Appendix A.1.3.

Theorem 5 (Uniqueness of SVM). Let L be a convex loss
function. Assume that (i) RL�,P(f) < ∞ for some f ∈ H
and RL�,P(f) > −∞ for all f ∈ H or (ii) L is Lipschitz
continuous and f ∈ L1(PX) for all f ∈ H. Then for all
λ > 0 there exists at most one SVM solution fL�,P,λ.

Theorem 6 (Existence of SVM). Let L be a Lipschitz con-
tinuous and convex loss function and let H be the RKHS
of a bounded measurable kernel k. Then for all λ > 0 there
exists an SVM solution fL�,P,λ.

The application of the L�-trick is superfluous if
RL,P(0) < ∞, because in this case we obtain

Rreg
L�,P,λ(fL�,P,λ)

= inf
f∈H

EP

(
L(X, Y, f(X)) − L(X, Y, 0)

)
+ λ ‖f‖2

H

= inf
f∈H

(
EPL(X, Y, f(X)) + λ ‖f‖2

H
)
− EPL(X, Y, 0)

= Rreg
L,P,λ(fL,P,λ) −RL,P(0)

and RL,P(0) is finite and independent of f . Hence, fL�,P,λ =
fL,P,λ if RL,P(0) < ∞.

A loss function L : X ×Y×R → [0,∞) is called distance-
based, if there exists a representing function ψ : R → R

with L(x, y, t) = ψ(y − t) for all (x, y, t) ∈ X × Y × R and
ψ(0) = 0. Such loss functions are often used in regression.
If L is a distance-based loss, L� does not necessarily share
this property.2

The following result gives a useful representation of
fL�,P,λ and shows that the mapping P �→ fL�,P,λ behaves
similar to a Lipschitz continuous function. The subdifferen-
tial of L� is denoted by ∂L�, see Definition 20.

Theorem 7 (Representer theorem). Let L be a convex and
Lipschitz continuous loss function, k be a bounded and mea-
surable kernel with separable RKHS H. Then, for all λ > 0,
there exists an h ∈ L∞(P) such that

h(x, y) ∈ ∂L�(x, y, fL�,P,λ(x)) ∀ (x, y),(21)

fL�,P,λ = − (2λ)−1
EP(hΦ),(22)

‖h‖∞ ≤ |L|1,(23) ∥∥fL�,P,λ − fL�,P̄,λ

∥∥
H ≤ λ−1 ‖EP(hΦ) − EP̄(hΦ)‖H ,(24)

for all distributions P̄ on X×Y. If L is additionally distance-
based, we obtain for (21) that

(25) h(x, y) ∈ −∂ψ(y − fL�,P,λ(x)) ∀ (x, y).

The next result shows that the L�-risk of the SVM
fL�,D,λn stochastically converges for n → ∞ to the small-
est possible risk, i.e., to the Bayes risk. This is somewhat
astonishing at first glance because fL�,D,λn is evaluated

2For the least squares loss L(x, y, t) = (y − t)2 we obtain L�(x, y, t) =
(y − t)2 + (y − 0)2 = t(t − 2y) which clearly cannot be written as a
function in y − t only.
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by minimizing a regularized empirical risk over the RKHS
H, whereas the Bayes risk is defined as the minimal non-
regularized risk over the broader set of all measurable func-
tions f : X → R.

Theorem 8 (Risk consistency). Let L be a convex, Lip-
schitz continuous loss function, L� its shifted version, and
H be a separable RKHS of a bounded measurable kernel k
such that H is dense in L1(μ) for all distributions μ on
X . Let (λn) be a sequence of strictly positive numbers with
λn → 0.

i) If λ2
nn → ∞, then, for all P ∈ M1(X × Y),

(26) RL�,P(fL�,D,λn) → R∗
L�,P, n → ∞,

in probability P∞ for all |D| = n.
ii) If λ2+δ

n n → ∞ for some δ > 0, then the convergence in
(26) holds even P∞-almost surely.

In general, it is unclear whether the convergence of the
risks in (26) implies the convergence of fL�,D,λn to a min-
imizer f∗

L�, P of the Bayes risk R∗
L�,P. However, Theorem 9

will show such a convergence for the important special case
of nonparametric quantile regression. Estimation of condi-
tional quantiles instead of estimation of conditional means
is especially interesting for heavy-tailed distributions that
often have no finite moments. It is known that the pinball
loss function defined in (8) can be used to estimate the con-
ditional τ -quantiles, τ ∈ (0, 1),

f∗
τ,P(x) :=

{
t∗ ∈ R : P

(
(−∞, t∗] |x

)
≥ τ and

P
(
[t∗,∞) |x

)
≥ 1 − τ

}
,

x ∈ X , see Koenker [2005] and Takeuchi et al. [2006].
For some recent result on SVMs based on this loss func-
tion we refer to Christmann and Steinwart [2008] and
Steinwart and Christmann [2008a]. The pinball loss func-
tion is convex and Lipschitz continuous, but asymmetric for
τ �= 1

2 . Before we formulate the next result, we define

d0(f, g) := EPX
min{1, |f(X) − g(X)|},

where f, g : X → R are arbitrary measurable functions. It
is known that d0 is a translation invariant metric describing
the convergence in probability.

Theorem 9 (Consistency). For τ ∈ (0, 1), let L be the τ -
pinball loss and L� its shifted version. Moreover, let P be
a distribution on X × R whose conditional τ -quantile f∗

τ,P :
X → R is PX-almost surely unique. Under the assumptions
of Theorem 8, we then have

d0(fL�,D,λn , f∗
τ,P) → 0, n → ∞,

where the convergence is either in probability P∞ or P∞-
almost surely, depending on whether assumption (i) or (ii)
on the null-sequence (λn) is taken from Theorem 8.

Let us now consider robustness properties of SVMs. De-
fine the function

T : M1(X × Y) → H, T (P) := fL�,P,λ.

In robust statistics we are often interested in smooth and
bounded functions T , because this will give us stable reg-
ularized risks within small neighbourhoods of P. If an ap-
propriately chosen derivative of T (P) is bounded, then we
expect the value of T (Q) to be close to the value of T (P)
for distributions Q in a small neighbourhood of P.

One general approach to robustness [Hampel, 1968, 1974]
is the one based on influence functions which are related to
Gâteaux-derivatives. Let M1 be the set of distributions on
some measurable space (Z,B(Z)) and let H be a repro-
ducing kernel Hilbert space. The influence function (IF) of
T : M1 → H at z ∈ Z for a distribution P is defined as

(27) IF(z; T, P) = lim
ε↓0

T ((1 − ε)P + εδz) − T (P)
ε

,

if the limit exists. Within this approach, a statistical method
T (P) is robust if it has a bounded influence function. The
influence function is neither supposed to be linear nor con-
tinuous. If the influence functions exists for all points z ∈ Z
and if it is continuous and linear, then the IF is a special
Gâteaux-derivative.

Theorem 10 (Influence function). Let X be a complete
separable metric space and H be a RKHS of a bounded
continuous kernel k. Let L be a convex, Lipschitz continu-
ous loss function with continuous partial Fréchet-derivatives
∇F

3 L(x, y, ·) and ∇F
3,3L(x, y, ·) which are bounded by

κ1 := sup
(x,y)∈X×Y

∥∥∇F
3 L(x, y, ·)

∥∥
∞ ∈ (0,∞),(28)

κ2 := sup
(x,y)∈X×Y

∥∥∇F
3,3L(x, y, ·)

∥∥
∞ < ∞.

Then, for all probability measures P on X × Y and for all
z := (x, y) ∈ X × Y, the influence function IF(z; T, P) of
T (P) := fL�,P,λ exists, is bounded, and equals

EP∇F
3 L�

(
X, Y, fL�,P,λ(X)

)
S−1Φ(X)(29)

−∇F
3 L�

(
x, y, fL�,P,λ(x)

)
S−1Φ(x),

where S : H → H is the Hessian of the regularized risk and
is given by

S(·) := 2λ idH(·)(30)

+ EP∇F
3,3L

�(X, Y, fL�,P,λ(X))〈Φ(X), ·〉Φ(X).

The Lipschitz continuity of L already guarantees κ1 <
∞. Some calculations for the logistic loss functions defined
in (6) and (7) give (κ1, κ2) = (1, 1

4 ) for classification and
(κ1, κ2) = (1, 1

2 ) for regression.

Consistency and robustness of SVMs for heavy-tailed distributions 315



Remark 11. (i) Note that only the second term of
IF(z; T, P) in (29) depends on z, where the contamina-
tion of P occurs. (ii) All assumptions of Theorem 10 can
be verified without knowledge of P, which is not true for
Steinwart and Christmann [2008b, Thm. 10.18]. It is easy to
check that the assumptions of Theorem 10 on L are fulfilled,
e.g., for the logistic loss functions for classification and for
regression defined in (6) and (7). The Gaussian RBF kernel
defined in (4) is bounded and continuous.

The next result shows that the H-norm of the difference
fL�,(1−ε)P+εQ,λ − fL�,P,λ increases in ε ∈ (0, 1) at most lin-
early. We denote the norm of total variation of a signed
measure μ by ‖μ‖M.

Theorem 12 (Bounds for bias). Let L be a convex and
Lipschitz continuous loss function and let H be a separable
RKHS of a bounded and measurable kernel k. Then, for all
λ > 0, all ε ∈ [0, 1], and all probability measures P and Q
on X × Y, we have

(31)
∥∥fL�,(1−ε)P+εQ,λ − fL�,P,λ

∥∥
H ≤ cP,Q ε,

where

cP,Q = λ−1 ‖k‖∞ |L|1 ‖P − Q‖M.

Let Q = δz be the Dirac measure in z = (x, y) ∈ X × Y. If
the influence function of T (P) = fL�,P,λ exists, then

‖IF(z; T, P)‖H ≤ cP,δz .

The Bouligand influence function (BIF) was intro-
duced by Christmann and Van Messem [2008] to investi-
gate robustness properties of SVMs based on non-Fréchet-
differentiable loss functions, such as, e.g., the ε-insensitive
loss or the pinball loss. The BIF of the map T : M1(X×Y) →
H for a distribution P in the direction of a distribution
Q �= P is the special Bouligand-derivative3 (if it exists)

(32) lim
ε↓0

∥∥T
(
(1 − ε)P + εQ

)
− T (P) − BIF(Q; T, P)

∥∥
H

ε
= 0.

The BIF has the interpretation that it measures the impact
of an infinitesimal small amount of contamination of the
original distribution P in the direction of Q on the quantity
of interest T (P). It is thus desirable that the function T has
a bounded BIF.

Theorem 13 (Bouligand influence function). Let X be a
complete separable normed linear space4 and H be a RKHS
of a bounded, continuous kernel k. Let L be a convex, Lip-
schitz continuous loss function with Lipschitz constant |L|1∈

3See Appendix A.1.3.
4E.g., X ⊂ R

d closed. By definition of the Bouligand-derivative, X has
to be a normed linear space.

(0,∞). Let the partial Bouligand-derivatives ∇B
3 L(x, y, ·)

and ∇B
3,3L(x, y, ·) be measurable and bounded by

κ1 := sup
(x,y)∈X×Y

∥∥∇B
3 L(x, y, ·)

∥∥
∞∈ (0,∞),(33)

κ2 := sup
(x,y)∈X×Y

∥∥∇B
3,3L(x, y, ·)

∥∥
∞< ∞.

Let P and Q �= P be probability measures on X ×Y, δ1 > 0,
δ2 > 0,

Nδ1(fL�,P,λ) := {f ∈ H : ‖f − fL�,P,λ‖H < δ1},

and λ > κ2
2 ‖k‖3

∞. Define G : (−δ2, δ2)×Nδ1(fL�,P,λ) → H,

(34) G(ε, f) := 2λf + E(1−ε)P+εQ∇B
3 L�(X, Y, f(X)) ·Φ(X),

and assume that ∇B
2 G(0, fL�,P,λ) is strong. Then the Bouli-

gand influence function BIF(Q; T, P) of T (P) := fL�,P,λ ex-
ists, is bounded, and equals

S−1
(
EP∇B

3 L�(X, Y, fL�,P,λ(X)) · Φ(X)
)

(35)

−S−1
(
EQ∇B

3 L�(X, Y, fL�,P,λ(X)) · Φ(X)
)
,

where S := ∇B
2 G(0, fL�,P,λ) : H → H is given by

S(·) = 2λ idH(·)
+ EP∇B

3,3L
�(X, Y, fL�,P,λ(X)) · 〈Φ(X), ·〉HΦ(X).

Note that the Bouligand influence function of the
SVM only depends on Q via the second term in (35).
We have (κ1, κ2) = (1, 0) for the ε-insensitive loss and
(κ1, κ2) = (max{1 − τ, τ}, 0) for the pinball loss, see
Christmann and Van Messem [2008].

4. DISCUSSION

Support vector machines play an important role in statis-
tical machine learning and are successfully applied even to
complex high-dimensional data sets. From a nonparametric
point of view, we do not know in supervised machine learn-
ing whether the moment condition EP|Y | < ∞ is fulfilled.
However, some recent results on consistency and statistical
robustness properties of SVMs for unbounded output spaces
were derived under the assumption that this absolute mo-
ment is finite which excludes distributions with heavy tails
such as many stable distributions, including the Cauchy dis-
tribution, and many extreme value distributions which occur
in financial or actuarial problems.

The main goal of this paper was therefore to enlarge the
applicability of support vector machines to situations where
the output space Y is unbounded, e.g., Y = R or Y = [0,∞),
without the above mentioned moment condition. We showed
that SVMs can still be used in a satisfactory manner. Re-
sults on existence, uniqueness, representation, consistency,
and statistical robustness were derived. There is no need to
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establish new algorithms to compute the SVM based on the
shifted loss function.

Finally, let us briefly comment some topics which
were not treated in this paper. (i) We decided to con-
sider only non-negative loss functions L (but the shifted
loss function L� can have negative values), because al-
most all loss functions used in practice are non-negative
and no results on SVMs seem available for loss func-
tions with negative values. (ii) It may be possible to de-
rive results similar to ours for convex, locally Lipschitzian
loss functions, including the least squares loss, but Lips-
chitz continuous loss functions can offer better robustness
properties, see Christmann and Steinwart [2004, 2007] and
Steinwart and Christmann [2008b]. (iii) From a robustness
point of view, bounded and non-convex loss functions may
also be of interest. We have not considered such loss func-
tions for two reasons. Firstly, existence, uniqueness, consis-
tency, and availability of efficient numerical algorithms are
widely accepted as necessary properties which SVMs should
have to avoid numerically intractable problems for large and
high-dimensional data sets, say for n > 105 and d > 100, see
e.g. Vapnik [1998] or Schölkopf and Smola [2002]. All these
properties can be achieved if the risk is convex which is true
for convex loss functions. Secondly, there are currently—to
our best knowledge—no general results on SVMs available
which guarantee that the risk remains convex although the
loss function is non-convex and bounded. However, the con-
vexity of the risk plays a key role in the proofs of the ex-
istence and uniqueness of SVMs. From our point of view,
such results would be a prerequisite for an investigation of
shifted versions of bounded and non-convex loss functions,
but this is beyond the scope of this paper.

APPENDIX: MATHEMATICAL FACTS AND
PROOFS

A.1 Mathematical prerequisites

A.1.1 Some definitions and properties

Let E and F be normed spaces and S : E → F a
linear operator. We will denote the closed unit ball by
BE := {x ∈ E : ‖x‖E ≤ 1}. The convex hull co A of A ⊂ E
is the smallest convex set containing A. The space of all
bounded (linear) operators mapping from E to F is written
as L(E, F ). If S ∈ L(E, F ) satisfies ‖Sx‖F = ‖x‖E for all
x ∈ E, then S is called an isometric embedding. Obviously,
S is injective in this case. If, in addition, S is also surjec-
tive, then S is called an isometric isomorphism and E and
F are said to be isometrically isomorphic. An S ∈ L(E, F )
is called compact if SBE is a compact subset in F . A special
case of linear operators are the bounded linear functionals,
i.e., the elements of the dual space E′ := L(E, R). Note that,
due to the completeness of R, dual spaces are always Banach
spaces. For x ∈ E and x′ ∈ E′, the evaluation of x′ at x is
often written as a dual pairing, i.e., 〈x′, x〉E′,E := x′(x). The

smallest topology on E′ for which the maps x′ �→ 〈x′, x〉E′,E

are continuous on E′ for all x ∈ E is called the weak* topol-
ogy. For S ∈ L(E, F ), the adjoint operator S′ : F ′ → E′

is defined by 〈S′y′, x〉E′,E := 〈y′, Sx〉F ′,F for all x ∈ E and
y′ ∈ F ′.

Given a measurable space (X ,A), L0(X ) denotes the
set of all real-valued measurable functions f on X and
L∞(X ) the set of all bounded measurable functions, i.e.,
L∞(X ) := {f ∈ L0(X ) : ‖f‖∞ < ∞}. Let us now assume
we have a measure μ on A. For p ∈ (0,∞) and f ∈ L0(X ) we
write ‖f‖Lp(μ) := (

∫
X |f |pdμ)1/p. To treat the case p = ∞,

we call N ∈ A a local μ-zero set if μ(N∩A) = 0 for all A ∈ A
with μ(A) < ∞. Then ‖f‖L∞(μ) := inf{a ≥ 0 : {x ∈ X :
|f(x)| > a} is a local μ-zero set}. In both cases the set of p-
integrable functions Lp(μ) := {f ∈ L0(X ) : ‖f‖Lp(μ) < ∞}
is a vector space of functions, and for p ∈ [1,∞] all prop-
erties of a norm on Lp(μ) are followed by the mapping
‖·‖Lp(μ). As usual, we call f, f ′ ∈ Lp(μ) equivalent, writ-
ten f ∼ f ′, if ‖f − f ′‖Lp(μ) = 0. In other words, f ∼ f ′

if and only if f(x) = f ′(x) for μ-almost all x ∈ X . The
set of equivalence classes Lp(μ) := {[f ]∼ : f ∈ Lp(μ)},
where [f ]∼ := {f ′ ∈ Lp(μ) : f ∼ f ′}, is a vector space
and ‖[f ]∼‖Lp(μ) := ‖f‖Lp(μ) is a complete norm on Lp(μ)
for p ∈ [1,∞], i.e., (Lp(μ), ‖·‖Lp(μ)) is a Banach space. It
is common practice to identify the Lebesgue spaces Lp(μ)
and Lp(μ) and hence we often abbreviate both ‖·‖Lp(μ) and
‖·‖Lp(μ) as ‖·‖p. In addition, we usually write Lp(X ) :=
Lp(μ) and Lp(X ) := Lp(μ) if X ⊂ R

d and μ is the Lebesgue
measure on X . For μ the counting measure on X , we write
p(X ) instead of Lp(μ).

Lemma 14 (Parallellogram identity). Let (H, 〈·, ·〉) be a
Hilbert space. Then, for all f, g ∈ H, we have

4〈f, g〉 = ‖f + g‖2
H − ‖f − g‖2

H ,

‖f + g‖2
H + ‖f − g‖2

H = 2 ‖f‖2
H + 2 ‖g‖2

H .

We refer to Cheney [2001] for the following result.

Theorem 15 (Fredholm alternative). Let E be a Banach
space and let S : E → E be a compact operator. Then idE+S
is surjective if and only if it is injective.

We refer to Werner [2002] for the following fact.

Theorem 16 (Fréchet-Riesz representation). Let H be a
Hilbert space and H′ its dual. Then the mapping ι : H →
H′ defined by ιx := 〈·, x〉 for all x ∈ H is an isometric
isomorphism.

For Hoeffding’s inequality, we refer to Yurinsky [1995].

Theorem 17 (Hoeffding’s inequality in Hilbert spaces). Let
(Ω,A, P) be a probability space, H be a separable Hilbert
space, and B > 0. Furthermore, let ξ1, . . . , ξn : Ω → H be
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independent H-valued random variables satisfying ‖ξi‖∞ ≤
B for all i = 1, . . . , n. Then, for all τ > 0, we have

P
(∥∥n−1

n∑
i=1

(ξi−EPξi)
∥∥
H ≥ B

√
2τ

n
+B

√
1
n

+
4Bτ

3n

)
≤ e−τ .

A.1.2 Some facts on convexity and subdifferentials

The following result on the continuity of convex functions
can be found, e.g., in Rockafellar and Wets [1998].

Lemma 18 (Continuity of convex functions). Let f : R →
R ∪ {∞} be a convex function with domain Domf := {t ∈
R : f(t) < ∞}. Then f is continuous at all t ∈ Int Domf .

The next result is a consequence of Ekeland and Turnbull
[1983, Prop. II.4.6].

Proposition 19. Let E be a Banach space and let f :
E → R ∪ {∞} be a convex function. If f is continuous and
lim‖x‖E→∞ f(x) = ∞, then f has a minimizer. Moreover,
if f is strictly convex, then f has a unique minimizer in E.

Now we will state some important properties of the sub-
differential of a convex function [see e.g., Phelps, 1993]. For
the remainder of this subsection, E and F will denote R-
Banach spaces. Let us begin by recalling the definition of
subdifferentials.

Definition 20. Let f : E → R∪{∞} be a convex function,
and w ∈ E with f(w) < ∞. Then the subdifferential of f at
w is defined by

∂f(w) :=
{
w′∈E′ : 〈w′, v−w〉 ≤ f(v)−f(w) for all v∈E

}
.

The following proposition provides some elementary facts
on the subdifferential, see Phelps [1993, Proposition 1.11].

Proposition 21. Let f : E → R∪{∞} be a convex function
and w ∈ E such that f(w) < ∞. If f is continuous at
w, then the subdifferential ∂f(w) is a non-empty, convex,
and weak*-compact subset of E′. In addition, if c ≥ 0 and
δ > 0 are constants satisfying

∣∣f(v) − f(w)
∣∣ ≤ c ‖v − w‖E,

v ∈ w + δBE, then we have ‖w′‖E ≤ c for all w′ ∈ ∂f(w).

This next proposition shows the extent to which the
known rules of calculus carry over to subdifferentials.

Proposition 22 (Subdifferential calculus). Let f, g : E →
R ∪ {∞} be convex functions, λ ≥ 0, and A : F → E be a
bounded linear operator. We then have:

i) For all w ∈ E with f(x) < ∞, we have ∂(λf)(w) =
λ∂f(w).

ii) If there exists a w0 ∈ E at which f is continuous, then,
for all w ∈ E satisfying both f(w) < ∞ and g(w) < ∞,
we have ∂(f + g)(w) = ∂f(w) + ∂g(w).

iii) If there exists a v0 ∈ F such that f is finite and contin-
uous at Av0, then, for all v ∈ F satisfying f(Av) < ∞,
we have ∂(f ◦A)(v) = A′∂f(Av), where A′ : E′ → F ′

denotes the adjoint operator of A.

iv) The function f has a global minimum at w ∈ E if and
only if 0 ∈ ∂f(w).

v) If f is finite and continuous at w ∈ E, then f is
Gâteaux-differentiable at w if and only if ∂f(w) is a
singleton, and in this case we have ∂f(w) = {f ′(w)}.

vi) If f is finite and continuous at all w ∈ E, then ∂f is
a monotone operator, i.e., for all v, w ∈ E and v′ ∈
∂f(v), w′ ∈ ∂f(w), we have 〈v′ − w′, v − w〉 ≥ 0.

The following proposition shows how the subdifferential
of a function defined by an integral can be computed.

Proposition 23. Let L̃ : X × Y × R → R be a measurable
function which is both convex and Lipschitz continuous with
respect to its third argument, P be a distribution on X ×Y,
and p ∈ [1,∞). Assume that R : Lp(P) → R∪{±∞} defined
by

R(f) :=
∫
X×Y

L̃(x, y, f(x, y)) dP(x, y)

exists for all f ∈ Lp(P) and define p′ by 1
p + 1

p′ = 1. If
|R(f)| < ∞ for at least one f ∈ Lp(P), then, for all f ∈
Lp(P), we have

∂R(f) =
{
h ∈ Lp′(P) : h(x, y) ∈ ∂L̃(x, y, f(x, y))

for P-almost all (x, y)
}

,

where ∂L̃(x, y, t) denotes the subdifferential of L̃(x, y, · ) at
the point t.

Proof of Proposition 23. Since L̃ is measurable, Lipschitz
continuous, and finite, it is a continuous function with re-
spect to its third argument. Thus it is a normal convex inte-
grand by Proposition 2C of Rockafellar [1976]. Then Corol-
lary 3E of Rockafellar [1976] gives the assertion. �

A.1.3 Some facts on derivatives

We first recall the definitions of the Gâteaux- and
Fréchet-derivative. Let E and F be normed spaces, U ⊂ E
and V ⊂ F be open sets, and f : U → V be a function. We
say that f is Gâteaux-differentiable at x0 ∈ U if there exists
a bounded linear operator ∇Gf(x0) ∈ L(E, F ) such that

lim
t→0, t
=0

∥∥f(x0 + tx) − f(x0) − t∇Gf(x0)(x)
∥∥

F

t
= 0, x ∈ E.

We say that f is Fréchet-differentiable at x0 if there exists
a bounded linear operator ∇F f(x0) ∈ L(E, F ) such that

lim
x→0, x 
=0

∥∥f(x0 + x) − f(x0) −∇F f(x0)(x)
∥∥

F

‖x‖E

= 0.

We call ∇Gf(x0) the Gâteaux-derivative and ∇F f(x0) the
Fréchet-derivative of f at x0. The function f is called
Gâteaux- (or Fréchet-) differentiable if f is Gâteaux- (or
Fréchet-) differentiable for all x0 ∈ U , respectively.
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We also recall some facts on Bouligand-derivatives and
strong approximation of functions, because these notions
will be used to investigate robustness properties for SVMs
for nonsmooth loss functions in Theorem 13. Let E1, E2, W ,
and Z be normed linear spaces, and let us consider neigh-
bourhoods N (x0) of x0 in E1, N (y0) of y0 in E2, and N (w0)
of w0 in W . Let F and G be functions from N (x0)×N (y0)
to Z, h1 and h2 functions from N (w0) to Z, f a function
from N (x0) to Z and g a function from N (y0) to Z. A func-
tion f approximates F in x at (x0, y0), written as f ∼x F
at (x0, y0), if

F (x, y0) − f(x) = o(x − x0).

Similarly, g ∼y F at (x0, y0) if F (x0, y)−g(y) = o(y−y0). A
function h1 strongly approximates h2 at w0, written as h1 ≈
h2 at w0, if for each ε > 0 there exists a neighbourhood
N (w0) of w0 such that whenever w and w′ belong to N (w0),∥∥(

h1(w) − h2(w)
)
−

(
h1(w′) − h2(w′)

)∥∥ ≤ ε ‖w − w′‖ .

A function f strongly approximates F in x at (x0, y0), writ-
ten as f ≈x F at (x0, y0), if for each ε > 0 there ex-
ist neighbourhoods N (x0) of x0 and N (y0) of y0 such that
whenever x and x′ belong to N (x0) and y belongs to N (y0)
we have∥∥(

F (x, y) − f(x)
)
−

(
F (x′, y) − f(x′)

)∥∥ ≤ ε ‖x − x′‖ .

Strong approximation amounts to requiring h1−h2 to have a
strong Fréchet-derivative of 0 at w0, though neither h1 nor
h2 is assumed to be differentiable in any sense. A similar
definition is made for strong approximation in y. We define
strong approximation for functions of several groups of vari-
ables, for example G ≈(x,y) F at (x0, y0), by replacing W
by E1×E2 and making the obvious substitutions. Note that
one has both f ≈x F and g ≈y F at (x0, y0) exactly if
f(x) + g(y) ≈(x,y) F at (x0, y0).

Recall that a function f : E1 → Z is called positive ho-
mogeneous if

f(αx) = αf(x) ∀α ≥ 0, ∀x ∈ E1.

Following Robinson [1987] we can now define the
Bouligand-derivative. Given a function f from an open sub-
set U of a normed linear space E1 into another normed
linear space Z, we say that f is Bouligand-differentiable
at a point x0 ∈ U , if there exists a positive homoge-
neous function ∇Bf(x0) : U → Z such that f(x0 + h) =
f(x0) + ∇Bf(x0)(h) + o(h), which can be rewritten as

lim
h→0

∥∥f(x0 + h) − f(x0) −∇Bf(x0)(h)
∥∥

Z

‖h‖E1

= 0.

Sometimes we use the abbreviations B-, F-, and G-
derivatives. Let F : E1 × E2 → Z, and suppose that F

has a partial B-derivative5 ∇B
1 F (x0, y0) with respect to x

at (x0, y0). We say ∇B
1 F (x0, y0) is strong if

F (x0, y0) + ∇B
1 F (x0, y0)(x − x0) ≈x F at (x0, y0).

We refer to Akerkar [1999] for the following implicit function
theorem for F-derivatives and to Robinson [1991, Cor. 3.4]
for a similar implicit function theorem for B-derivatives.

Theorem 24 (Implicit function theorem). Let E1 and E2

be Banach spaces, and let G : E1 × E2 → E2 be a continu-
ously Fréchet-differentiable function. Suppose that we have
(x0, y0) ∈ E1 ×E2 such that G(x0, y0) = 0 and ∇F

2 G(x0, y0)
is invertible. Then there exists a δ > 0 and a continuously
Fréchet-differentiable function f : x0 + δBE1 → y0 + δBE2

such that for all x ∈ x0 + δBE1 , y ∈ y0 + δBE2 we have
G(x, y) = 0 if and only if y = f(x). Moreover, the Fréchet-
derivative of f is given by

∇F f(x) = −
(
∇F

2 G(x, f(x))
)−1∇F

1 G(x, f(x)).

A.1.4 Properties of the risk and of RKHSs

We will need the following three results, see, e.g.,
Steinwart and Christmann [2008b, Lemma 2.19, 4.23, 4.24].
The first lemma relates the Lipschitz continuity of L to the
Lipschitz continuity of its risk.

Lemma 25 (Lipschitz continuity of the risks). Let L be a
Lipschitz continuous loss and P be a probability measure on
X × Y. Then we have, for all f, g ∈ L∞(PX),

|RL,P(f) −RL,P(g)| ≤ |L|1 · ‖f − g‖L1(PX) .

Lemma 26 (RKHSs of bounded kernels). Let X be a set
and k be a kernel on X with RKHS H. Then k is bounded if
and only if every f ∈ H is bounded. Moreover, in this case
the inclusion id : H → ∞(X ) is continuous and we have
‖id : H → ∞(X )‖ = ‖k‖∞.

Lemma 27 (RKHSs of measurable kernels). Let X be a
measurable space and k be a kernel on X with RKHS H.
Then all f ∈ H are measurable if and only if k(·, x) : X → R

is measurable for all x ∈ X .

A.2 Proofs for Section 2

Proof of Proposition 2. Let L be a convex loss function and
fix (x, y) ∈ X × Y. For all α ∈ [0, 1] we get

L�(x, y, αt1 + (1 − α)t2)
= L(x, y, αt1 + (1 − α)t2) − L(x, y, 0)
≤ αL(x, y, t1) + (1 − α)L(x, y, t2) − (1 − α + α)L(x, y, 0)
= αL�(x, y, t1) + (1 − α)L�(x, y, t2), t1, t2 ∈ R,

5Partial B-derivatives of f are denoted by ∇B
1 f , ∇B

2 f , ∇B
2,2f :=

∇B
2

(
∇B

2 f
)

etc.
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which proves the convexity of L�. For a strict convex loss,
the calculation is analogous. If L is a Lipschitz continuous
loss, we immediately obtain that |L�(x, y, t1)−L�(x, y, t2)| =
|L(x, y, t1)−L(x, y, t2)| ≤ |L|1 |t1− t2|, t1, t2 ∈ R, and hence
L� is Lipschitzian with |L�|1 = |L|1. �
Proof of Proposition 3. (i) Obviously, inft∈R L�(x, y, t) ≤
L�(x, y, 0) = 0.

(ii) We have for all f ∈ H that

|RL�,P(f)|
= |EPL�(X, Y, f(X))| = |EPL(X, Y, f(X)) − L(X, Y, 0)|
≤ EP|L(X, Y, f(X)) − L(X, Y, 0)| ≤ |L|1 EPX

|f(X)|,

which proves (14). Equation (15) follows from Rreg
L�,P,λ(f) =

RL�,P(f) + λ ‖f‖2
H.

(iii) As 0 ∈ H, we obtain inff∈H Rreg
L�,P,λ(f) ≤

Rreg
L�,P,λ(0) = 0 and the same reasoning holds for

inff∈H RL�,P(f).
(iv) Due to (iii) we have Rreg

L�,P,λ(fL�,P,λ) ≤ 0. As L ≥ 0
we obtain

λ ‖fL�,P,λ‖2
H ≤ −RL�,P(fL�,P,λ)

= EP

(
L(X, Y, 0) − L(X, Y, fL�,P,λ(X))

)
≤ EPL(X, Y, 0) = RL,P(0).

Using similar arguments as above, we obtain

0 ≤ −Rreg
L�,P,λ(fL�,P,λ)

= EP

(
L(X, Y, 0) − L(X, Y, fL�,P,λ(X))

)
− λ ‖fL�,P,λ‖2

H
≤ EPL(X, Y, 0) = RL,P(0).

Furthermore, we obtain

− |L|1 EPX
|fL�,P,λ(X)| + λ ‖fL�,P,λ‖2

H
≤ Rreg

L�,P,λ(fL�,P,λ)

≤ Rreg
L�,P,λ(0) = 0.

This yields (16). Using (2), (3), and (16), we obtain for
fL�,P,λ �= 0 that

‖fL�,P,λ‖∞ ≤ ‖k‖∞ ‖fL�,P,λ‖H
≤ ‖k‖∞

√
λ−1|L|1EPX

|fL�,P,λ(X)|

≤ ‖k‖∞
√

λ−1|L|1 ‖fL�,P,λ‖∞ < ∞.

Hence ‖fL�,P,λ‖∞ ≤ ‖k‖2
∞ λ−1|L|1. The case fL�,P,λ = 0 is

trivial.
(v) By definition of L� and of the Fréchet-derivative we

immediately obtain

∇F
3 L�(x, y, t) = lim

h→0, h
=0

L�(x, y, t + h) − L�(x, y, t)
h

= ∇F
3 L(x, y, t).

An analogous calculation is valid for the Bouligand-
derivative because the term L(x, y, 0) cancels out and we
obtain ∇B

3 L�(x, y, t) = ∇B
3 L(x, y, t). �

Proof of Proposition 4. Using (14) we have |RL�,P(f)| ≤
|L|1EPX

|f(X)| < ∞ for f ∈ L1(PX). Then (15) yields
Rreg

L�,P,λ(f) ≥ −|L|1EPX
|f(X)| + λ ‖f‖2

H > −∞. �

A.3 Proofs for Section 3

Lemma 28 (Convexity of risks). Let L be a (strictly) convex
loss. Then RL�,P : H → [−∞,∞] is (strictly) convex and
Rreg

L�,P,λ : H → [−∞,∞] is strictly convex.

Proof of Lemma 28. Proposition 2 yields that L� is
(strictly) convex. Trivially RL�,P is also convex. Further
f �→ λ ‖f‖2

H is strictly convex, and hence the mapping
f �→ Rreg

L�,P,λ(f) = RL�,P(f)+λ ‖f‖2
H is strictly convex. �

Proof of Theorem 5. Let us assume that the mapping f �→
λ ‖f‖2

H + RL�,P(f) has two minimizers f1 and f2 ∈ H with
f1 �= f2. (i) By Lemma 14, we then find

‖(f1 + f2)/2‖2
H < ‖f1‖2

H /2 + ‖f2‖2
H /2.

The convexity of f �→ RL�,P(f), see Lemma 28, and

λ ‖f1‖2
H + RL�,P(f1) = λ ‖f2‖2

H + RL�,P(f2)

then shows for f∗ := 1
2 (f1 + f2) that

λ ‖f∗‖2
H + RL�,P(f∗) < λ ‖f1‖2

H + RL�,P(f1),

i.e., f1 is not a minimizer of f �→ λ ‖f‖2
H + RL�,P(f). Con-

sequently, the assumption that there are two minimizers is
false. (ii) This condition implies that |RL�,P(f)| < ∞, see
Proposition 4, and the assertion follows from (i). �

Lemma 2.17 from Steinwart and Christmann [2008b]
gives us a result on the continuity of risks, which we will
adapt to our needs.

Lemma 29 (Continuity of risks). Let L be a Lipschitz con-
tinuous loss function. Then the following statements hold:

i) Let fn : X → R, n ≥ 1, be bounded, measurable func-
tions for which there exists a constant B > 0 with
‖fn‖∞ ≤ B for all n ≥ 1. If the sequence (fn) converges
PX-almost surely to a measurable function f : X → R,
then we have

lim
n→∞

RL�,P(fn) = RL�,P(f).

ii) The mapping RL�,P : L∞(PX) → R is well-defined and
continuous.

A consequence of this lemma is that the function
f �→ Rreg

L�,P,λ(f) is continuous, since both mappings f �→
RL�,P(f) and f �→ λ ‖f‖2

H are continuous.
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Proof of Lemma 29. (i) Obviously, f is a bounded and
measurable function with ‖f‖∞ ≤ B. Furthermore, the con-
tinuity of L shows

lim
n→∞

|L�(x, y, fn(x)) − L�(x, y, f(x))|

= lim
n→∞

|L(x, y, fn(x)) − L(x, y, f(x))| = 0

for P-almost all (x, y) ∈ X × Y. In addition, we have

|L�(x, y, fn(x)) − L�(x, y, f(x))|
≤ |L|1 |fn(x) − f(x)|
≤ |L|1(‖fn‖∞ + ‖f‖∞)
≤ 2B|L|1 < ∞

for all (x, y) ∈ X × Y and all n ≥ 1. Since the constant
function 2B|L|1 is P-integrable, Lebesgue’s theorem of dom-
inated convergence together with

|RL�,P(fn) −RL�,P(f)|

≤
∫
X×Y

|L�(x, y, fn(x)) − L�(x, y, f(x))| dP(x, y)

gives the assertion.
(ii) We know from Proposition 4 that |RL�,P(f)| < ∞ for

f ∈ L1(PX) and thus also for all f ∈ L∞(PX). Moreover,
the continuity is a direct consequence of (i). �
Proof of Theorem 6. Since the kernel k of H is measur-
able, H consists of measurable functions by Lemma 27.
Moreover, k is bounded, and thus Lemma 26 shows that
id : H → L∞(PX) is continuous. In addition we have
L(x, y, t) ∈ [0,∞), and hence −∞ < L�(x, y, t) < ∞ for
all (x, y, t) ∈ X ×Y ×R. Thus L� is continuous by the con-
vexity of L� and Lemma 18. Therefore, Lemma 29 shows
that RL�,P : L∞(PX) → R is continuous and hence RL�,P :
H → R is continuous since H ⊂ L∞(PX), see Lemma 26.
In addition, Lemma 28 provides the convexity of this map-
ping. These lemmas also yield that f �→ λ ‖f‖2

H +RL�,P(f)
is strictly convex and continuous. Proposition 19 shows that
if RL�,P(f)+λ ‖f‖2

H is convex and continuous and addition-
ally RL�,P(f)+λ ‖f‖2

H → ∞ for ‖f‖H → ∞, then Rreg
L�,P,λ(·)

will have a minimizer. Therefore we need to show that this
limit is infinite. By using (2) and (3) we obtain

Rreg
L�,P,λ(f)

≥ − |L|1EPX
|f(X)| + λ ‖f‖2

H

≥ − |L|1 ‖f‖∞ + λ ‖f‖2
H

≥ − |L|1 ‖k‖∞ ‖f‖H + λ ‖f‖2
H → ∞ for ‖f‖H → ∞,

as |L|1 ‖k‖∞ ∈ [0,∞) and λ > 0. �
Proof of Theorem 7. The existence and uniqueness of
fL�,P,λ follow from the Theorems 5 and 6. As k is bounded,
Proposition 3(iv) is applicable and (17) and (18) yield

‖fL�,P,λ‖∞ ≤ λ−1|L|1 ‖k‖2
∞ < ∞ and |RL�,P(fL�,P,λ)| ≤

λ−1|L|21 ‖k‖
2
∞ < ∞. Further, the shifted loss function L� is

continuous because L and hence L� are Lipschitz continu-
ous. Moreover, R : L1(P) → R defined by

R(f) :=
∫
X×Y

L�
(
x, y, f(x, y)

)
dP(x, y), f ∈ L1(P),

is well-defined and continuous. The first property follows by
the definition of L� and its Lipschitz continuity, because

(36)

|R(f)| ≤ |L|1
∫
X×Y

|f(x, y)| dP(x, y) < ∞, f ∈ L1(P),

and hence R is well-defined. The continuity of R can be
shown as follows. Fix δ > 0 and let f1, f2 ∈ L1(P) with
‖f1 − f2‖L1(P) < δ. The Lipschitz continuity of L� yields

|R(f1) − R(f2)|

≤
∫
X×Y

∣∣L�(x, y, f1(x, y)) − L�(x, y, f2(x, y))
∣∣ dP(x, y)

≤ |L|1
∫
X×Y

|f1(x, y) − f2(x, y)| dP(x, y) < δ|L|1,

which shows the continuity of R. We can now apply Proposi-
tion 23 with p = 1 because (36) guarantees that R(f) exists
and is finite for all f ∈ L1(P). The subdifferential of R can
thus be computed by6

∂R(f) =
{
h ∈ L∞(P) : h(x, y) ∈ ∂L�(x, y, f(x, y))

for P-almost all (x, y)
}
.

Now, we infer from Lemma 26 that the inclusion map I :
H → L1(P) defined by (If)(x, y) := f(x), f ∈ H, (x, y) ∈
X × Y , is a bounded linear operator. Moreover, for h ∈
L∞(P) and f ∈ H, the reproducing property yields

〈h, If〉L∞(P),L1(P) = EPhIf = EPh〈f,Φ〉H
= 〈f, EPhΦ〉H = 〈ιEPhΦ, f〉H′,H,

where ι : H → H′ is the Fréchet-Riesz isomorphism de-
scribed in Theorem 16. Consequently, the adjoint operator
I ′ of I is given by I ′h = ιEPhΦ, h ∈ L∞(P). Moreover, the
L�-risk functional RL�,P : H → R restricted to H satisfies
RL�,P = R ◦ I, and hence the chain rule for subdifferen-
tials (see Proposition 22) yields ∂RL�,P(f) = ∂(R ◦ I)(f) =
I ′∂R(If) for all f ∈ H. Applying the formula for ∂R(f)
thus yields

∂RL�,P(f) =
{
ιEPhΦ : h ∈ L∞(P) with

h(x, y) ∈ ∂L�(x, y, f(x)) P-a.s.
}

6We have h ∈ L∞(P) since there exists an isometric isomorphism
between (L1(P))′ and L∞(P), see, e.g., Werner [2002, Thm. II.2.4].
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for all f ∈ H. In addition, f �→ ‖f‖2
H is Fréchet-

differentiable and its derivative at f is 2ιf for all f ∈ H.
By picking suitable representations of h ∈ L∞(P), Proposi-
tion 22 thus gives

∂Rreg
L�,P,λ(f) = 2λιf +

{
ιEPhΦ : h ∈ L∞(P) with

h(x, y) ∈ ∂L�(x, y, f(x)) ∀ (x, y)
}

for all f ∈ H. Now recall that Rreg
L�,P,λ( · ) has a minimum

at fL�,P,λ, and therefore we have 0 ∈ ∂Rreg
L�,P,λ(fL�,P,λ) by

another application of Proposition 22. This together with
the injectivity of ι yields the assertions (21) and (22).

Let us now show that (23) holds. Since k is a bounded
kernel, we have by (17) and (18) that

‖fL�,P,λ‖∞ ≤ λ−1|L|1 ‖k‖2
∞ := Bλ < ∞.

Now (21) and Proposition 21 with δ := 1 yield, for all (x, y)
∈ X × Y,

|h(x, y)| ≤ sup
(x,y)∈X×Y

∣∣∂L�(x, y, fL�,P,λ(x))
∣∣ ≤ |L|1

and hence we have shown h ∈ L∞(P) and (23).
Let us now establish (24). To this end, observe that we

have by (21) and the definition of the subdifferential

h(x, y)
(
fL�,P̄,λ(x) − fL�,P,λ(x)

)
≤ L�

(
x, y, fL�,P̄,λ(x)

)
− L�

(
x, y, fL�,P,λ(x)

)
for all (x, y) ∈ X × Y. By integrating with respect to P̄, we
hence obtain

〈fL�,P̄,λ − fL�,P,λ, EP̄hΦ〉H(37)

≤ RL�,P̄(fL�,P̄,λ) −RL�,P̄(fL�,P,λ).

Moreover, an easy calculation shows

2λ 〈fL�,P̄,λ − fL�,P,λ, fL�,P,λ〉H(38)

+ λ
∥∥fL�,P,λ − fL�,P̄,λ

∥∥2

H

= λ
∥∥fL�,P̄,λ

∥∥2

H − λ ‖fL�,P,λ‖2
H .

By combining (37) and (38), we thus find〈
fL�,P̄,λ − fL�,P,λ, EP̄hΦ +2λfL�,P,λ

〉
H

+ λ
∥∥fL�,P,λ − fL�,P̄,λ

∥∥2

H
≤ Rreg

L�,P̄,λ
(fL�,P̄,λ) −Rreg

L�,P̄,λ
(fL�,P,λ) ≤ 0,

and consequently the representation fL�,P,λ = − 1
2λ EPhΦ

yields in combination with the Cauchy-Schwarz inequality
that

λ
∥∥fL�,P,λ − fL�,P̄,λ

∥∥2

H
≤

〈
fL�,P,λ − fL�,P̄,λ, EP̄hΦ − EPhΦ

〉
H

≤
∥∥fL�,P,λ − fL�,P̄,λ

∥∥
H · ‖EP̄hΦ − EPhΦ‖H .

From this we easily obtain (24).
It remains to show (25) for the special case of a distance-

based loss function. By the definition of the subdifferential
we obtain for L and L� that, for all (x, y) ∈ X × Y,

∂L�(x, y, t)

=
{
t′ ∈ R

′ : 〈t′, v − t〉 ≤ L�(x, y, v) − L�(x, y, t) ∀ v ∈ R
}

=
{
t′ ∈ R

′ : 〈t′, v − t〉 ≤ L(x, y, v) − L(x, y, t) ∀ v ∈ R
}

= ∂L(x, y, t), t ∈ R.

Hence ∂L(f) = ∂L�(f) for all measurable functions f : X →
R. If we combine this with Proposition 22, it follows, for all
(x, y) ∈ X ×Y, that ∂L�(x, y, t) = ∂L(x, y, t) = −∂ψ(y − t)
for all t ∈ R, and therefore (21) implies (25). �

Proof of Theorem 8. (i) To avoid handling too many con-
stants, let us assume ‖k‖∞ = 1. This implies ‖f‖∞ ≤
‖k‖∞ ‖f‖H ≤ ‖f‖H for all f ∈ H. Now we use the Lip-
schitz continuity of L (and thus also of L�), |L|1 < ∞, and
Lemma 25 to obtain, for all g ∈ H,

(39)
∣∣RL�,P(fL�,P,λn)−RL�,P(g)

∣∣ ≤ |L|1 ‖fL�,P,λn − g‖H .

For n ∈ N and λn > 0, we write hn := hL�,n : X × Y → R

for the function h obtained by the representer theorem 7.
Let Φ : X → H be the canonical feature map. We have
fL�,P,λn = −(2λn)−1

EPhnΦ, and for all distributions Q on
X × Y , we have

‖fL�,P,λn − fL�,Q,λn‖H ≤ λ−1
n ‖EPhnΦ − EQhnΦ‖H .

Note that ‖hn‖∞ ≤ |L|1 due to (23). Moreover, let ε ∈ (0, 1)
and D be a training set of n data points and corresponding
empirical distribution D such that

(40) ‖EPhnΦ − EDhnΦ‖H ≤ λnε

|L|1
.

Then Theorem 7 gives ‖fL�,P,λn − fL�,Dn,λn‖H ≤ ε
|L|1 and

hence (39) yields

∣∣RL�,P(fL�,P,λn) −RL�,P(fL�,D,λn)
∣∣(41)

≤ |L|1 · ‖fL�,P,λn − fL�,D,λn‖H ≤ ε.

Let us now estimate the probability of D satisfying (40).
To this end, we first observe that λnn1/2 → ∞ implies that
λnε ≥ n−1/2 for all sufficiently large n ∈ N. Moreover, The-
orem 7 shows ‖hn‖∞ ≤ |L|1, and our assumption ‖k‖∞ = 1
thus yields ‖hnΦ‖∞ ≤ |L|1. Consequently, Hoeffding’s in-
equality in Hilbert spaces (see Theorem 17) yields for B = 1
and

ξ =
3
8

|L|−2
1 ε2λ2

nn

|L|−1
1 ελn + 3
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the bound

Pn
(
D ∈ (X × Y)n : ‖EPhnΦ − EDhnΦ‖H ≤ λnε

|L|1

)
≥ Pn

(
D ∈ (X × Y)n : ‖EPhnΦ − EDhnΦ‖H ≤

(√
2ξ + 1

)
n−1/2 +

4ξ

3n

)
≥ 1 − exp

(
−3

8
· ε2λ2

nn/|L|21
ελn/|L|1 + 3

)

= 1 − exp
(
−3

8
· ε2λ2

nn

(ελn + 3|L|1)|L|1

)

for all sufficiently large values of n. Now using λ > 0, λn → 0
and λnn1/2 → ∞, we find that the probability of sample
sets D satisfying (40) converges to 1 if |D| = n → ∞. As
we have seen above, this implies that (41) holds true with
probability tending to 1. Now, since λn > 0 and λn → 0,
n → ∞, we additionally have |RL�,P(fL�P,λn) −R∗

L�,P| ≤ ε
for all sufficiently large n, and hence we obtain the assertion
of L�-risk consistency of fL�P,λn .

(ii) In order to show the second assertion, we define εn :=
(ln(n + 1))−1/2 and

δn := RL�,P(fL�,P,λn) −R∗
L�,P + εn, n ∈ N.

Moreover, for an infinite sample

D∞ := ((x1, y1), (x2, y2), . . .) ∈ (X × Y)∞,

we write Dn := ((x1, y1), . . . , (xn, yn)). With these nota-
tions, we define, for n ∈ N,

An :=
{
D∞ ∈ (X ×Y)∞ : RL�,P(fL�,Dn,λn)−R∗

L�,P > δn

}
.

Now, our estimates above together with λ2+δ
n n → ∞ for

some δ > 0 yield

∑
n∈N

P∞(An) ≤
∑
n∈N

exp
(
−3

8
· ε2

nλ2
nn

(εnλn + 3|L|1)|L|1

)
< ∞.

We obtain by the Borel-Cantelli lemma [see e.g., Dudley,
2002] that

P∞( {
D∞ ∈ (X × Y)∞ : ∃n0 ∀n ≥ n0 with

RL�,P(fL�,Dn,λn) −R∗
L�,P ≤ δn

} )
= 1.

The assertion follows because λn → 0 implies δn → 0. �
Before we can prove Theorem 9, we need some pre-

requisites on self-calibrated loss functions and related re-
sults. Let τ ∈ (0, 1), L be a pinball loss function, and
L� its shifted version. Hence, L is Lipschitz continuous,
convex, and L(x, y, t) = ψ(y − t) → ∞ for |t| → ∞.
Our goal is to extend the consistency results derived in
Christmann and Steinwart [2008] to all distributions P on
X × R. To this end, we adopt the inner risk notation from

Steinwart and Christmann [2008b, Chapter 3] by writing,
for t ∈ R,

CL�,Q(t) :=
∫

R

L�(x, y, t) dQ(y) =
∫

R

ψ(y − t) − ψ(y) dQ(y),

where Q is a distribution on R that will serve us as a tem-
plate for the conditional distribution P( · |x). Similarly, we
write C∗

L�,Q := inft∈R CL�,Q(t) for the minimal inner L�-risk.
Note that, like for the L�-risk, we have |C∗

L�,Q| < ∞. Finally,
for ε ∈ [0,∞], we denote the set of ε-approximate minimiz-
ers by

ML�,Q(ε) :=
{
t ∈ R : CL�,Q(t) − C∗

L�,Q < ε
}

and the set of exact minimizers by

ML�,Q(0+) :=
⋂
ε>0

ML�,Q(ε) =
{
t ∈ R : CL�,Q(t) = C∗

L�,Q

}
.

Since |C∗
L�,Q| < ∞ it is easy to verify that these notations

coincide with those of Steinwart and Christmann [2008b,
Chapter 3] modulo the fact that we now consider the shifted
loss function L� rather than L. The following proposi-
tion, which is an L�-analogue to Steinwart and Christmann
[2008b, Prop. 3.9], computes the L�-excess risk and the set
of exact minimizers.

Proposition 30. For τ ∈ (0, 1), let L be the τ -pinball loss
and L� its shifted version. Moreover, let Q be a distribution
on R and t∗ be a τ -quantile of Q, i.e., we have

Q
(
(−∞, t∗]

)
≥ τ and Q

(
[t∗,∞)

)
≥ 1 − τ.

Then there exist real numbers q+, q− ≥ 0 such that q++q− =
Q({t∗}) and

CL�,Q(t∗ + t) − C∗
L�,Q = tq+ +

∫ t

0

Q
(
(t∗, t∗ + s)

)
ds,(42)

CL�,Q(t∗ − t) − C∗
L�,Q = tq− +

∫ t

0

Q
(
(t∗ − s, t∗)

)
ds,(43)

for all t ≥ 0. Moreover, we have

ML�,Q(0+) = {t∗} ∪
{
t > t∗ : q+ + Q((t∗, t)) = 0

}
∪

{
t < t∗ : q− + Q((−t, t∗)) = 0

}
.

Proof of Proposition 30. Let us consider the distribution
Q(t∗) defined by Q(t∗)(A) := Q(t∗ + A) for all mea-
surable sets A ⊂ R. Then it is not hard to see that
0 is a τ -quantile of Q(t∗). Moreover, we obviously have
CL�,Q(t∗ + t) = CL�,Q(t∗)(t). Therefore, we may assume
without loss of generality that t∗ = 0. Then our assumptions
together with Q((−∞, 0]) + Q([0,∞)) = 1 + Q({0}) yield
τ ≤ Q((−∞, 0]) ≤ τ + Q({0}), i.e., there exists a q+ ∈ R

satisfying 0 ≤ q+ ≤ Q({0}) and

(44) Q((−∞, 0]) = τ + q+.
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Let us now prove the first expression for the excess inner
risks of L�. To this end, we first observe that, for t ≥ 0, we
have

CL�,Q(t)

= (1 − τ)
∫

y<0

(t − y) + y dQ(y)

+
∫

0≤y<t

(1−τ)(t−y)−τy dQ(y) + τ

∫
y≥t

(y−t)− y dQ(y)

= (1−τ)tQ((−∞, 0))+
∫

0≤y<t

(1−τ)t−y dQ(y)−τt

∫
y≥t

dQ(y)

= (1 − τ)tQ((−∞, t)) −
∫

0≤y<t

y dQ(y) − τtQ([t,∞))

= tQ((−∞, 0)) − τt + tQ([0, t)) −
∫

0≤y<t

y dQ(y).

Moreover, using a well-known relationship between expec-
tations and tail bounds, see Bauer [2001, p. 141], we get

t Q([0, t)) −
∫

0≤y<t

y dQ(y) =

t∫
0

Q([0, t)) ds −
t∫

0

Q([s, t)) ds

= t Q({0}) +
∫ t

0

Q((0, s)) ds,

and since (44) implies

Q((−∞, 0)) + Q({0}) = Q((−∞, 0]) = τ + q+,

we thus obtain

CL�,Q(t) = tq+ +
∫ t

0

Q
(
(0, s)

)
ds.

Applying this equation to the pinball loss with parameter
1 − τ and the distribution Q̄ defined by Q̄(A) := Q(−A),
A ⊂ R measurable, gives a real number 0 ≤ q− ≤ Q({0})
such that Q([0,∞)) = 1 − τ + q− and

CL�,Q(−t) = tq− +
∫ t

0

Q
(
(−s, 0)

)
ds

for all t ≥ 0. Consequently, t∗ = 0 is a minimizer of CL�,Q( · )
and we have C∗

L�,Q = CL�,Q(0) = 0. From this we conclude
both (42) and (43). Moreover, combining Q([0,∞)) = 1−τ+
q− with (44), we find q++q− = Q({0}). Finally, the formula
for the set of exact minimizers is an obvious consequence of
(42) and (43). �

In order to investigate how well approximate L�-
risk minimizers approximate the exact L�-risk minimiz-
ers, we further have to adopt the self-calibration ap-
proach of Steinwart and Christmann [2008b, Chapter 3].
Fortunately, the fact that we always have |C∗

L�,Q| < ∞

makes our considerations a little easier than those in
Steinwart and Christmann [2008b, Chapter 3] for general
loss functions. To further decrease the notational burden
we assume in the following that the considered distribution
Q on R has a unique τ -quantile, denoted by t∗τ,Q or sim-
ply t∗ if no confusion can arise. Fortunately, this uniqueness
assumption is by no means necessary, and we refer the inter-
ested reader to Steinwart and Christmann [2008b, Chapter
3] for a modification to this general situation.

With these preparations, the L�-generalization of the self-
calibration function now reads as follows:

δmax(ε, Q) := inf
|t−t∗|≥ε

CL�,Q(t) − C∗
L�,Q, ε > 0.

Note that, for t ∈ R and ε := |t − t∗|, we have

δmax(|t − t∗|, Q) = δmax(ε, Q) ≤ CL�,Q(t) − C∗
L�,Q,

i.e., as for standard loss functions δmax(ε, Q) measures how
well approximate CL�,Q( · )-minimizers approximate the ex-
act minimizer t∗. Moreover, by Proposition 30 we conclude
that, for all ε > 0, we have

δmax(ε, Q) = min
{

εq+ +
∫ ε

0

Q
(
(t∗, t∗ + s)

)
ds,

εq− +
∫ ε

0

Q
(
(t∗ − s, t∗)

)
ds

}
> 0,

where we used the assumption that t∗ is the only τ -
quantile, i.e., the only exact CL�,Q( · )-minimizer. Since
the proofs of Theorem 3.61 and its Corollary 3.62 in
Steinwart and Christmann [2008b] only consider excess in-
ner risks and not the underlying loss function itself, a literal
repetition of these proofs then yields the following result.

Corollary 31. For τ ∈ (0, 1), let L be the τ -pinball loss
and L� its shifted version. Moreover, let P be a distribution
on X × R whose conditional τ -quantile f∗

τ,P : X → R is
PX-almost surely unique. Then, for all sequences (fn) of
measurable functions fn : X → R, the convergence

RL�,P(fn) → R∗
L�,P

implies

fn → f∗
τ,P in probability PX .

Proof of Theorem 9. Due to the assumptions, Theorem 8 is
applicable and hence fL�,D,λn satisfies RL�,P(fL�,D,λn) →
R∗

L�,P in probability (or almost surely) for n → ∞. The
existence of a unique minimizer f∗

τ,P is guaranteed by the
assumptions of Theorem 9. Hence, Corollary 31 yields the
assertion. �
Proof of Theorem 10. Let z = (x, y) ∈ X ×Y. The two key
ingredients of our analysis are the function G : R ×H → H
defined by

(45) G(ε, f) := 2λf +E(1−ε)P+εδz
∇F

3 L�(X, Y, f(X))Φ(X),
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and the application of an implicit function theorem for
Fréchet-derivatives. Let us first check that G is well-defined.
Recall that every function f ∈ H is bounded because we
assumed that H has a bounded kernel k. By using (19) and
(28) we get EP|∇F

3 L�(X, Y, f(X))| ≤ κ1 ∈ (0,∞) for all
f ∈ H. As Φ(x) := k(x, ·) ∈ H for all x ∈ X , we obtain that
Φ : X → H is a bounded mapping. Therefore, the H-valued
(Bochner) integral used in the definition of G is well-defined
for all ε ∈ R and all f ∈ H. Note that for ε /∈ [0, 1] the
H-valued integral in (45) is with respect to a signed mea-
sure. As in Christmann and Steinwart [2007] we obtain for
ε ∈ [0, 1] the equation

(46)

G(ε, f) =
∂Rreg

L�,(1−ε)P+εδz,λ

∂H (f) = ∇F
3 Rreg

L�,(1−ε)P+εδz,λ(f).

Given an ε ∈ [0, 1], the function f �→ Rreg
L�,(1−ε)P+εδz,λ(f)

is convex and continuous (see the proof of Theorem 6)
and hence (46) shows that G(ε, f) = 0 if and only if
f = fL�,(1−ε)P+εδz,λ. Our aim is to show the existence of
a Fréchet-differentiable function ε �→ fε defined on a small
interval (−δ, δ) for some δ > 0 that satisfies G(ε, fε) = 0
for all ε ∈ (−δ, δ). Once we have shown the existence of this
function, we immediately obtain

IF(z; T, P) = ∇F fε(0).

For the existence of ε �→ fε we have to check by The-
orem 24 that G is continuously differentiable and that
∇F

2 G(0, fL�,P,λ) is invertible. Let us start with the first. By
the definition of G and by using ∇F

3 L�(x, y, ·) = ∇F
3 L(x, y, ·)

for all (x, y) ∈ X × Y, we get

∇F
1 G(ε, f)

(47)

= − EP∇F
3 L�(X, Y, f(X))Φ(X) + ∇F

3 L�(x, y, f(x))Φ(x)

= − EP∇F
3 L(X, Y, f(X))Φ(X) + ∇F

3 L(x, y, f(x))Φ(x).

A similar, but slightly more involved computation using (19)
and (30) yields

∇F
2 G(ε, f)(48)

= E(1−ε)P+εδz
∇F

3,3L(X, Y, f(X))〈Φ(X), ·〉Φ(X)

+ 2λidH,

which equals S. To prove that ∇F
1 G is continuous, we fix

ε ∈ R and a sequence (fn)n∈N such that fn ∈ H for all
n ∈ N and limn→∞ fn = f ∈ H. Since k is bounded, the
sequence (fn)n∈N is uniformly bounded. By (28), we have,
for all (x, y, t) ∈ X × Y × R, that |∇F

3 L(x, y, t)| ≤ κ1 + |t|.
Hence |∇F

3 L| is a P-integrable Nemitski loss function for
all probability measures P, because we only have to choose
the constant function b(x, y) ≡ κ1 in the definition of a P-
integrable Nemitski loss defined in the introduction. We can

thus find a bounded, measurable function g : X × Y → R

with |∇F
3 L�(x, y, fn(x))| ≤ |∇F

3 L�(x, y, g(y))| for all n ∈ N

and all (x, y) ∈ X ×Y. For the function v : X ×Y → R with
v(x, y) := L�(x, y, g(y)), we hence obtain by the definition
of L� and by the Lipschitz continuity of L that

∫
X×Y

|v(X, Y )| dP

=
∫
X×Y

|L(X, Y, g(Y )) − L(X, Y, 0)| dP ≤ |L|1 ‖g‖∞

is finite for all P ∈ M1(X ×Y). Thus, an application of the
dominated convergence theorem for Bochner integrals, see
Diestel and Uhl [1977, Thm. 3, p. 45], gives the continuity of
∇F

1 G. Because the continuity of G and ∇F
2 G can be shown

analogously, we obtain that G is continuously differentiable,
see for example Akerkar [1999, Thm. 2.6].

To show that ∇F
2 G(0, fL�,P,λ) is invertible, it suffices by

the Fredholm alternative (see Theorem 15) to show that
∇F

2 G(0, fL�,P,λ) is injective and that

Ag := EP∇F
3,3L

�(X, Y, fL�,P,λ(X))g(X)Φ(X), g ∈ H,

defines a compact operator on H. To show the compact-
ness of the operator A, recall that X , Y , and X × Y are
Polish spaces because X is a complete separable metric
space and Y ⊂ R is closed, see Dudley [2002]. Further-
more, Borel probability measures on Polish spaces are regu-
lar by Ulam’s theorem, that is, they can be approximated
from inside by compact sets. Hence, there exists a sequence
of measurable compact subsets Xn × Yn ⊂ X × Y with
P(Xn × Yn) ≥ 1 − 1

n , n ∈ N. Let us also define a sequence
of operators An : H → H, where Ang equals

∫
Xn

∫
Yn

∇F
3,3L

�(x, y, fL�,P,λ(x)) P(dy|x) g(x)Φ(x) dPX(x)

for all g ∈ H. Note that if X ×Y is compact, we can choose
Xn × Yn := X × Y , which implies A = An. Let us now
show that An, n ≥ 1, is a compact operator. To this end we
assume without loss of generality that ‖k‖∞ ≤ 1. Denote
the closed unit ball in H by BH. For g ∈ BH and x ∈ X , we
have due to the assumption (28) that

hg(x) :=
∫
Yn

∇F
3,3L

�(x, y, fL�,P,λ(x)) |g(x)| P(dy|x)

≤ κ2 ‖g‖∞ =: h(x).

Therefore, we have h ∈ L1(P), which implies hg ∈ L1(P)
with ‖hg‖1 ≤ ‖h‖1 < ∞ for all g ∈ BH. Consequently, μg :=
hgPX and μ := hPX are finite measures. By Diestel and Uhl
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[1977, Cor. 8, p. 48] we hence obtain

Ang :=
∫
Xn

sign g(x)Φ(x)hg(x) dPX(x)

=
∫
Xn

sign g(x)Φ(x) dμg(x)

∈ μg(Xn) aco Φ(Xn) ⊂ μ(Xn) aco Φ(Xn), g ∈ H,

where acoΦ(Xn) denotes the absolute convex hull of Φ(Xn),
and the closure is with respect to ‖·‖H. The continuity of k
yields the continuity of the canonical feature map Φ. Thus,
Φ(Xn) is compact and hence so is the closure of aco Φ(Xn).
This shows that An is a compact operator.

To see that A is compact, it therefore suffices to show
‖An − A‖ → 0 with respect to the operator norm for n →
∞. Recalling that the convexity of L� and the existence
of its second derivative implies ∇F

3,3L
�(x, y, ·) ≥ 0 for all

(x, y) ∈ X × Y, it follows from (28) that

0 ≤
∫

∇F
3,3L

�(x, y, fL�,P,λ(x)) dP(x, y) ≤ κ2,

which shows due to (19) that ∇F
3,3L

�(·, ·, fL�,P,λ(·)) =
∇F

3,3L(·, ·, fL�,P,λ(·)) ∈ L∞(P) for all P ∈ M1(X ×Y). Now
define B := (X × Y)\(Xn × Yn). Then the desired conver-
gence follows from (2) and (3), P(Xn × Yn) ≥ 1 − 1

n , and

‖Ang − Ag‖H
≤

∫
B

∇F
3,3L

�(x, y, fL�,P,λ(x)) |g(x)| ‖Φ(x)‖H dP(x, y)

≤ ‖g‖∞ ‖Φ(x)‖H
∫

B

∇F
3,3L

�(x, y, fL�,P,λ(x)) dP(x, y)

≤ κ2 ‖g‖H ‖k‖3
∞ .

Let us now show that ∇F
2 G(0, fL�,P,λ) = 2λidH + A is in-

jective. To this end, let us choose g ∈ H\{0}. Then we find

〈(2λidH + A)g, (2λidH + A)g〉H
> 4λ 〈g, Ag〉H
= 4λ EP∇F

3,3L
�(X, Y, fL�,P,λ(X))g2(X) ≥ 0,

which shows the injectivity. The implicit function Theorem
24 for Fréchet-derivatives guarantees that ε �→ fε is differ-
entiable on (−δ, δ) if δ > 0 is small enough. Furthermore,
(47) and (48) yield, for all z = (x, y) ∈ X × Y, that

IF(z; T, P) = ∇F fε(0)

= − S−1 ◦ ∇F
1 G(0, fL�,P,λ)

= S−1
(
EP

(
∇F

3 L�(X, Y, fL�,P,λ(X))Φ(X)
))

−∇F
3 L�(x, y, fL�,P,λ(x))S−1Φ(x),

which yields the existence of the influence function and (29).
The boundedness follows from (28) and (29). �

Proof of Theorem 12. Theorem 7 guarantees the existence
of a bounded measurable function h : X ×Y → R such that
‖h‖∞ ≤ |L|1 and

∥∥fL�,P,λ − fL�,(1−ε)P+εQ,λ

∥∥
H ≤ ε

λ
‖EPhΦ − EQhΦ‖H .

From (24) we get∥∥fL�,P,λ − fL�,(1−ε)P+εQ,λ

∥∥
H

≤ ε

λ
‖EPhΦ − EQhΦ‖H ≤ 1

λ
‖h‖∞ ‖k‖∞ ‖P − Q‖M ε,

which gives the assertion. �
Proof of Theorem 13. By definition of L� it follows from
(20) that ∇B

3 L(x, y, t) = ∇B
3 L�(x, y, t). Therefore,

G(ε, f) := 2λf + E(1−ε)P+εQ∇B
3 L�(X, Y, f(X))Φ(X)

= 2λf + E(1−ε)P+εQ∇B
3 L(X, Y, f(X))Φ(X).

Hence G(ε, f) is the same as in Theorem 2 in
Christmann and Van Messem [2008]. All conditions of The-
orem 2 are fulfilled since we assumed that ∇B

2 G(0, fL�,P,λ)
is strong. Hence the proof of Theorem 13 is identical to
the proof of Theorem 2 in Christmann and Van Messem
[2008], which is based on an implicit function theorem for B-
derivatives [Robinson, 1991], and the assertion follows. �
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