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Optimal two-stage sequential robust design
for gene-intervention studies
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Gene-intervention studies investigate the responsiveness
to therapies according to individuals’ genetic profiles. We
propose a two-stage sequential design for these studies and
investigate the cost of the sample size versus the statisti-
cal power. In a typical sequential design, a single normally
distributed test statistic is used. For a genetic study, the ro-
bust test is used because of the uncertainty of the underlying
genetic model (e.g. the recessive, additive or dominant mod-
els). The robust test statistic that we consider in the two-
stage sequential design is the maximum of three correlated
normally distributed statistics, each which is optimal under
the corresponding genetic model. We study various factors
that affect minimizing the average sample number (ASN)
or maximizing the power of a gene-intervention study under
the two-stage sequential design and make recommendations
for the optimal solutions under different scenarios.
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1. INTRODUCTION

1.1 Background

There has been a great interest in gearing therapies ac-
cording to individuals’ genetic profiles. As a result, the link
between a specific genetic marker and responsiveness to a
therapy is often investigated in a clinical study, referred to as
a gene-intervention study. The design of a gene-intervention
study is analogous to a case-control study design except that
the study is conducted prospectively. For a diallelic marker
with alleles a and A, the three genotypes are denoted by
aa, Aa and AA. Assume A is the allele of interest, an anal-
ysis can be performed to examine the association between
responsiveness to therapy and the A allele. The Cochran-
Armitage trend tests (CATTs) are often used to detect asso-
ciations (Armitage, 1955; Cochran, 1954; Sasieni, 1997). De-
pending on the underlying genetic model, i.e., the recessive,
additive (multiplicative) or dominant models, three CATTs
are available, each of which is optimal for the correspond-
ing genetic model (Slager and Schaid, 2001; Freidlin et al.,
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2002; Zheng et al., 2003). The disadvantage of using a sin-
gle CATT is that, when the true genetic model is unknown,
misspecification of a genetic model can result in substantial
power loss for the CATT. Freidlin et al. (2002) proposed
a robust test statistic which is the maximum of the three
CATTs over the recessive, additive and dominant models,
denoted by MAX3. Other robust tests, including the con-
strained likelihood ratio test (Wang and Sheffield, 2005) and
maximum of likelihood ratio tests (Gonzalez et al., 2008),
have also been studied in the literature. Note that under the
null hypothesis H0 which is no genetic effect for the candi-
date gene, MAX3 no longer follows N(0, 1) asymptotically.
Its asymptotic distribution can be obtained by simulation
(Zheng and Chen, 2005) or its tail probability can be ap-
proximated (Li et al., 2008).

Because of timing, cost and ethical reasons, group sequen-
tial designs have been widely used in clinical trials. Such de-
signs are often used to monitor accumulated data at regular
sample recruiting intervals and allow early stopping under
the null and/or the alternative hypotheses (Jennison and
Turnbull, 2000) while the pre-specified Type I errors are
controlled. Statistical methods for group sequential analy-
sis have been extensively applied in the situation where a
single test statistic is involved, which has a known distri-
bution, such as normal or t-distributions. Applications of
group sequential analysis to genetic studies for the purpose
of improving efficiency have been also reported in the liter-
ature. For example, Konig et al. (2001, 2003) demonstrated
the sample size savings in linkage and association studies
by utilizing a design with stopping boundaries based on the
mean test and the transmission disequilibrium test (TDT),
respectively. Konig and Ziegler (2003) extended the appli-
cations of sequential analysis to case-control studies using
a normally distributed test statistic. The MAX statistic is
more robust to the unknown genetic models than normally
distributed statistics.

Two-stage optimal sequential designs have been studied
in medical studies and clinical trials. Simon (1989) pro-
posed a two-stage optimal design that minimizes the ex-
pected sample size for a Phase II clinical trial. Shu et al.
(2007) studied the optimal designs for sequential evalua-
tion of a medical diagnostic test. Although two-stage designs
have also been studied in case-control genetic studies, they
are not typical two-stage sequential studies and often arise
from large association studies for marker selection. For ex-
ample, Satagopan and Elston (2003) proposed an optimized
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two-stage design for case-control studies by genotyping all
markers using a portion of samples at the first stage, and
selected the most promising markers to be genotyped using
the remaining samples at the second stage. Their approach
has been further extended in different situations with differ-
ent optimality criteria (Satagopan et al., 2004; Muller et al.,
2007). See also Elston et al. (2008) for multi-stage designs
for genetic case-control studies.

Recently, Nguyen et al. (2009) proposed a two-stage opti-
mal design that incorporates the genotyping cost and statis-
tical power in genome-wide association studies (GWAS). A
robust maximal statistic was considered in the design. The
design targets optimal power or cost in a setting where a por-
tion of the samples are genotyped for the whole marker set in
the first stage and then the rest of the samples are genotyped
for the promising markers in the second stage. The authors
found in one example that the allocation fraction of 0.48 was
optimal and that under a fixed power, increasing the sample
size by 13% could reduced the cost by 34.5%. However, this
design does not apply for a single marker study in which
the genotyping cost is not an issue but optimization of the
sample size or power are more focused for varying design
parameters of type I error spending and interim looks. Be-
low are two of the real world studies that motivated us to
consider a robust group sequential design in a single-marker
gene-intervenetion study.

1.2 Motivational examples

The first example is a study entitled “Long Acting Beta
Agonist Response by GEnotype” (LARGE) (Wechsler et al.,
2009) which was conducted by the Asthma Clinical Research
Network (ACRN) and sponsored by the Division of Lung
Diseases (DLD) of the National Heart, Lung and Blood In-
stitute. The objective of the study was to examine the effects
of regularly scheduled long-acting beta-agonist in a group
of asthmatic patients harboring the B16-Arg/Arg genotype
and in a separate group of baseline matched patients har-
boring the B16-Gly/Gly genotype at the 16th aminoacid po-
sition of the β2-adrenergic receptor (a candidate-gene). The
study showed a significant genotype difference in respon-
siveness to methacholine between the two genotypes and
suggested a further investigation.

Another example is “The CardioGene Study”. This is a
study of restenosis in bare metal stents (BMS) for the treat-
ment of coronary artery disease (Ganesh et al., 2004). The
objective of the study is to identify the genetic profile of
patients at risk for in-stent restenosis (ISR). The study end-
point is the presence/absence of ISR at 6 months. Again
this is also a genomic clinical trial in which individuals are
enrolled prospectively. In such a study design, interim anal-
ysis can be performed after enrolling 50% of the patients.
Prospective risk stratification would allow for the rational
selection of specialized treatments against the development
of ISR. Because the mode of inheritance of ISR is not clear,

a robust test is considered for the sequential study design
with interim analysis.

Both examples above require a study design where all of
the study subjects are provided the target therapy and the
responsiveness to therapy was evaluated subsquently. The
study objective is to assess the association between a genetic
marker and responsiveness to therapy and an intervention
may take place in the future based on the results. In order
to save time and cost, such a study may be assessed sequen-
tially in two (or more) stages to potentially allow stopping
during the interim of the study. Because of the unknown na-
ture of the genetic mode for the marker, a robust test may
be desirable.

1.3 Overview

In this paper, we consider a classical sequential design for
a single genetic marker using the robust statistic MAX3 in
a gene-intervention study setting, and study how to allocate
samples (or information) in order to achieve minimum ASN
or maximum power. We investigate the operating character-
istics of the two-stage sequential design under a variety of
parameters. We take into account not only the design spe-
cific parameters, such as the allocation fraction of samples
for the first stage, an error spending function and alterna-
tive differences, but also genetic-related parameters includ-
ing the allele frequency and underlying genetic model. We
present the power and the ASN under each scenario and
make recommendations for the optimal two-stage sequen-
tial design for gene-intervention studies.

The subsequent sections of this paper are arranged as
follows: Section 2 provides the detailed description of a two-
stage sequential design in a gene-intervention study (Sec-
tion 2.1), the test statistics used for hypothesis testing (Sec-
tion 2.2), the statistical methods for obtaining the critical
values in a group sequential design (Section 2.3), and the pa-
rameters considered for optimization (Section 2.4). Section 3
presents simulations results and finally Section 4 provides
comments and discussions.

2. METHODS

2.1 Two-stage group sequential design in
a gene-intervention study

A typical gene-intervention study investigates associa-
tion between the responsiveness to therapy and a candi-
date marker (noted as Allele A). Suppose the study is con-
ducted in two stages. At Stage 1, a portion of the subjects
are genotyped and identified to have one of the three geno-
types (AA,Aa, aa, where the Allele a represents any other
allele). All subjects are treated with the therapy and at the
end the results are tabulated in a 2 by 3 table (Table 1).
If the results indicate a statistically significant advantage
or disadvantage for the subjects with the candicate allele,
the study may be stopped at Stage 1. Otherwise, the study
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Table 1. Gene-intervention study results

aa Aa AA Total

Responders r0 r1 r2 r
Non-responders s0 s1 s2 s

Total n0 n1 n2 n

proceeds to Stage 2 and continues recruiting the rest of the
subjects and the cumulative data are analyzed again at the
end of the study. Significant association results may result
in potential intervention, i.e., gearing the therapy to include
(or exclude) the subjects in order to maximize the benefit
from the targeted therapy.

2.2 Cochran-Armitage trend tests (CATT)
and MAX3

As in population-based case-control genetic studies,
CATT can also be a powerful statistical test to detect the
association between an allele and response to therapy in a
gene-intervention study setting. Assume A is the allele of
interest and also the one with the minor allele frequency
MAF. In Table 1 the responders (ri, i = 0, 1, 2) and non-
responders (si, i = 0, 1, 2) can be tabulated for genotypes
aa, Aa, and AA, respectively. These counts are further de-
termined by the corresponding genotype frequencies (pi, i =
0, 1, 2 among responders and qi, i = 0, 1, 2 among non-
responders), i.e., (r0, r1, r2) ∼ Multinomial(r; p0, p1, p2)
and (s0, s1, s2) ∼ Multinomial(s; q0, q1, q2). The null hy-
pothesis is H0 : pi = qi, i = 0, 1, 2. The CATT proposed by
Sasieni (1997) can be formulated as:

Zθ =
n1/2

∑2
i=0 xi(sri − rsi){

rs[n
∑2

i=0 x
2
ini − (

∑2
i=0 xini)2]

}1/2
,(1)

where x = (x0, x1, x2) = (0, θ, 1) is the set of scores for the
genotypes (aa, Aa, AA). Zθ is asymptotically normally dis-
tributed. The optimal sets of scores for the dominant, addi-
tive (multiplicative), and recessive models are x = (0, 1, 1),
(0, 1

2 , 1) and (0, 0, 1), respectively. For a given θ, the CATT
in (1) follows asymptotically N(0, 1) under H0.

The association between the candidate allele and respon-
siveness to therapy can be expressed in terms of genotype
relative risks (GRRs): γi = fi/f0 for being a responder and
δi = (1 − fi)/(1 − f0) for being a non-responder, i = 1, 2,
where the penetrance fi is the probability of being a respon-
der given the genotype with i copies of the allele of interest.
Then pi = γigi/

∑
γigi, and qi = δigi/

∑
δigi, where gi,

i = 0, 1, 2, are the genotype frequencies in the population
for the three genotypes G0 = aa, G1 = aA and G2 = AA.
The relationship between γ1 and γ2 under the dominant, ad-
ditive and recessive models follows γ1 = γ2, γ1 = (1+γ2)/2,
and γ1 = 1, respectively.

The MAX3 statistic is given by MAX3 =
max(|Z0|, |Z1/2|, |Z1|) or MAX3 = max(Z0, Z1/2, Z1),

depending on whether or not the risk allele is known.
When the risk allele is unknown, the one-sided MAX3
can still be used at the α/2 level with each allele being
treated as the risk allele. The asymptotic null correla-
tions (CorrH0(Z0, Z1/2),CorrH0(Z1/2, Z1),CorrH0(Z1, Z0))
among the three CATTs are used in applying sequential
analysis using MAX3. These correlations were given in
Freidlin et al. (2002):

CorrH0(Z0, Z1/2)

=
p2(p1 + 2p0)

{p2(1− p2)}1/2 {(p1 + 2p2)p0 + (p1 + 2p0)p2}1/2
,

CorrH0(Z1/2, Z1)

=
p0(p1 + 2p2)

{(p0(1− p0)}1/2 {(p1 + 2p2)p0 + (p1 + 2p0)p2)}1/2
,

CorrH0(Z1, Z0)

=
p0p2

{p0(1− p0)}1/2 {p2(1− p2)}1/2
.

2.3 Applying MAX3 in sequential design

Critical values for statistical testing in a group sequential
design are usually determined by the distribution of the test
statistic and a prespecified alpha spending function (ASF).
Conventional alpha spending methods, such as the Pocock
method (Pocock, 1977) and the O’Brien-Fleming method
(O’Brien and Fleming, 1979), can be readily applied to ob-
tain the critical values for a single test statistic with a known
form of distribution, however, the test statistic MAX3 does
not have an explicit form of distribution.

Using an approximation of the tail probability for
maximal-type statistics studied by Efron (1997), Yan et al.
(2008) proposed tools for obtaining the critical values when
MAX3 was used as the test statistic in a two-stage group
sequential design for a family-based genetic study. In the
family-based association study, MAX3 has the same form as
that for the case-control study. However, the test statistics
Zθ are different, so are their correlations. The goals of Yan
et al. (2008) were to study how to find critical values using
Efron’s approaches and a specific alpha spending function
so that the overall Type I error is controlled due to using
MAX3 sequentially. It should be noted that in Yan et al.
(2008), the design parameters were fixed so that the thresh-
olds for the two stages can be determined to control Type I
errors. In the next section, we will examine the performance
(in terms of minimum ASN or maximum statistical power)
of two-stage designs with changes of these design parame-
ters.

Among several approximations studied by Efron (1997),
Yan et al. (2008) found the two-point formula is simple
to use and controls the Type I error reasonably well. We
consider MAX3 = max(|Z0|, |Z1/2|, |Z1|) with a target α/2
level. The two-point formula can be written as:
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P (MAX3 > c) ≤ Φ̄(c)

+
∑

j=1/2,1

{∫ c

−∞
Φ̄

[
c− ρjt

(1− ρ2j )
1/2

]
φ(t)dt

}
,

where ρj is the asymptotic null correlation between Zj and
Zj−1/2 (j = 1/2, 1); φ and Φ are the density and distribution
functions of N(0, 1), respectively; and Φ̄ = 1− Φ.

Consider a two-stage sequential design with overall level
α. Assume the sample sizes in stage i is Ni with level αi,
i = 1, 2, and α1 + α2 = α. The sample allocation frac-
tion is denoted by π = N1/N2 (the samples in stage 2
include all samples in stage 1). Given α and π, the levels
α1 and α2 are determined by a prespecified alpha spending
function (ASF). Three commonly used ASFs are considered
here (Lan and Demets, 1983; Betensky, 1998): i) ASF1(t) =
2{1−Φ(zα/2t

−1/2)}, ii) ASF2(t) = α log{1+(e−1)t}, and iii)
ASF3(t) = αt, where t = π is the information fraction. The
first and second functions are equivalent to the discretized
O’Brien-Fleming and Pocock types of spending functions,
respectively. The third function is a uniform spending func-
tion with regard to information fraction.

2.4 Optimal two-stage design for
gene-intervention studies

In a two-stage sequential design, there is a trade-off be-
tween minimizing the sample size and maximizing the sta-
tistical power. Both are important when designing a group
sequential study and decisions are often made to balance the
trade-off between the two factors. Suppose one interim anal-
ysis is conducted at Stage 1 and one final analysis is done
at Stage 2. Define the stopping rule as that the study stops
if MAX3 is statistically significant at Stage 1, i.e., the study
terminates at the first stage if MAX31 > c1 and continues to
the second stage if otherwise. Denote the allocation fraction
π = N1/N2 as before, where N1 and N2 are the cumulative
sample sizes at the two stages. The ASN for the two-stage
sequential design can be calculated as:

ASN = N1P(Study stops at Stage 1)

+N2P(Study continues)

= N2 −N2(1− π)P (MAX31 > c1).

Accordingly, the Type I error and power can be respec-
tively written as:

α = P (MAX31 > c1|H0)

+ P (MAX31 ≤ c1 and MAX32 > c2|H0),

Power = P (MAX31 > c1|H1)

+ P (MAX31 ≤ c1 and MAX32 > c2|H1),

where MAX31 and MAX32 are the test statistics, and c1
and c2 are the critical values obtained using the method
described in Yan et al. (2008).

The goals of our optimal designs are to minimize the ASN
or to achieve the maximum power while the Type I error
is controlled, and find the ranges of parameter values to
achieve the minimum ASN or maximum power. Note that
a parameter considered in the design is a function of other
parameters in the design. Using the notation in Section 2.1,
given values of the MAF (and hence the genotype frequency
gi, i = 0, 1, 2 under Hardy-Weinberg equilibrium (HWE)),
the power of MAX3 for a given sample size is a function of
the GRRs and the underlying genetic model. In a two-stage
design, the ASN is determined by the power of detecting
the difference at each stage, which is determined not only
by the above parameters but also the critical values, which
are further determined by the alpha spending function and
the allocation fraction. Here we study the optimal designs
such that either the minimum ASN or the maximum power
are achieved. First, we present the optimal designs under a
fixed target sample size and study the impact on ASN and
power for different combinations of the specified values of
the allele frequency, genetic model (dominant, additive, or
recessive), the GRRs (γ1, γ2), and ASF. Then, from a differ-
ent perspective, we provide recommended sample sizes for
optimal designs under the specified values of those parame-
ters when the power is fixed. The results are also compared
with those for a single-stage design.

3. SIMULATION STUDIES AND EXAMPLES

In this section, we first present results when parameter
values change. Then we apply the results using values from
real examples in the simulation. Each simulation was repli-
cated 10,000 times. The critical values for MAX3 were ob-
tained given the values of the allocation fraction π from 0.1
to 0.5 with an increment of 0.05 and an ASF as described
before. When the target sample size was fixed, the simula-
tion was generated, and the ASN and power were calculated.
When the power was fixed, the simulation was repeated un-
til the sample size that achieved the specified power was
found. The ASN and power were then calculated based on
the simulated datasets. For all simulations, all tests were
two-sided at an overall alpha level of 0.05.

3.1 Fix the sample size

Given the target sample size of 2,000 subjects: 1,000 re-
sponders and 1,000 non-responders assuming the response
rate is 50%, we simulated results to obtain the ASNs and
the powers under the alternative hypotheses for each of the
three ASFs. The results are presented in Tables 2 through
4 for three different ASFs. In each table, results are pre-
sented under different allele frequencies MAF = 0.1, 0.3, or
0.5, a genetic model, dominant (DOM), additive (ADD), or
recessive (REC), and GRRs (γ1, γ2). The ASNs and powers
and the corresponding allocation fractions π are presented
for two scenarios: 1) when the minimum ASN is achieved
(Columns 5 through 7); and 2) when the maximum power is
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Table 2. Optimal allocation fractions π to achieve the minimum ASN or the maximum power given the target sample size for
a single-stage design (N = 1,000 per group): ASF = ASF1. The alternatives are specified by the GRRs (γ1, γ2) under three

genetic models with different allele frequencies MAF

Min ASN is achieved Max Power is achieved Power for a single

MAF Model γ1 γ2 ASN Power π Power ASN π stage study

0.1 DOM 1.5 1.5 786 0.978 0.5 0.978 1000 0.15 0.975
2 2 468 1.000 0.4 1.000 468 0.4 1.000

ADD 1.25 1.5 964 0.598 0.5 0.608 1000 0.25 0.601
1.5 2 745 0.991 0.5 0.991 916 0.35 0.989

REC 1 1.5 998 0.146 0.5 0.156 1000 0.15 0.151
1 2 988 0.430 0.5 0.454 1000 0.15 0.451

0.3 DOM 1.5 1.5 678 0.997 0.5 0.998 723 0.45 0.997
2 2 426 1.000 0.4 1.000 426 0.4 1.000

ADD 1.25 1.5 878 0.895 0.5 0.911 973 0.35 0.902
1.5 2 561 1.000 0.5 1.000 561 0.5 1.000

REC 1 1.5 918 0.827 0.5 0.831 985 0.35 0.823
1 2 600 1.000 0.5 1.000 600 0.5 1.000

0.5 DOM 1.5 1.5 802 0.968 0.5 0.973 1000 0.2 0.972
2 2 528 1.000 0.45 1.000 528 0.45 1.000

ADD 1.25 1.5 863 0.919 0.5 0.919 968 0.35 0.915
1.5 2 573 1.000 0.5 1.000 586 0.45 1.000

REC 1 1.5 736 0.993 0.5 0.993 736 0.5 0.990
1 2 439 1.000 0.4 1.000 439 0.4 1.000

Table 3. Optimal allocation fractions π to achieve the minimum ASN or the maximum power given the target sample size for
a single-stage design (N = 1,000 per group): ASF = ASF2. The alternatives are specified by the GRRs (γ1, γ2) under three

genetic models with different allele frequencies MAF

Min ASN is achieved Max Power is achieved Power for a single

MAF Model γ1 γ2 ASN Power π Power ASN π stage study

0.1 DOM 1.5 1.5 635 0.962 0.45 0.973 943 0.10 0.977
2 2 340 1.000 0.30 1.000 340 0.30 1.000

ADD 1.25 1.5 869 0.501 0.50 0.581 985 0.10 0.605
1.5 2 597 0.981 0.40 0.987 933 0.10 0.988

REC 1 1.5 968 0.119 0.45 0.137 997 0.10 0.153
1 2 914 0.351 0.50 0.425 995 0.10 0.452

0.3 DOM 1.5 1.5 547 0.994 0.45 0.998 727 0.20 0.998
2 2 291 1.000 0.25 1.000 291 0.25 1.000

ADD 1.25 1.5 722 0.852 0.50 0.891 958 0.10 0.903
1.5 2 431 1.000 0.35 1.000 440 0.30 1.000

REC 1 1.5 783 0.745 0.50 0.810 970 0.10 0.827
1 2 469 0.999 0.35 1.000 755 0.15 1.000

0.5 DOM 1.5 1.5 654 0.945 0.50 0.966 948 0.10 0.970
2 2 397 1.000 0.30 1.000 397 0.30 1.000

ADD 1.25 1.5 711 0.870 0.50 0.907 955 0.10 0.918
1.5 2 441 1.000 0.35 1.000 480 0.45 1.000

REC 1 1.5 592 0.982 0.45 0.989 926 0.10 0.990
1 2 306 1.000 0.25 1.000 306 0.25 1.000
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Table 4. Optimal allocation fractions π to achieve the minimum ASN or the maximum power given the target sample size for
a single-stage design (N = 1,000 per group): ASF = ASF3. The alternatives are specified by the GRRs (γ1, γ2) under three

genetic models with different allele frequencies MAF

Min ASN is achieved Max Power is achieved Power for a single

MAF Model γ1 γ2 ASN Power π Power ASN π stage study

0.1 DOM 1.5 1.5 652 0.964 0.45 0.977 960 0.10 0.979
2 2 354 1.000 0.30 1.000 354 0.30 1.000

ADD 1.25 1.5 882 0.526 0.50 0.584 979 0.15 0.602
1.5 2 613 0.983 0.45 0.988 831 0.20 0.988

REC 1 1.5 977 0.115 0.50 0.143 996 0.15 0.154
1 2 928 0.355 0.50 0.422 997 0.10 0.450

0.3 DOM 1.5 1.5 566 0.996 0.45 0.997 928 0.10 0.998
2 2 300 1.000 0.25 1.000 300 0.25 1.000

ADD 1.25 1.5 743 0.863 0.50 0.898 969 0.10 0.905
1.5 2 444 1.000 0.35 1.000 444 0.35 1.000

REC 1 1.5 794 0.778 0.50 0.822 982 0.10 0.832
1 2 487 1.000 0.40 1.000 799 0.15 1.000

0.5 DOM 1.5 1.5 661 0.953 0.50 0.967 959 0.10 0.971
2 2 411 1.000 0.35 1.000 411 0.35 1.000

ADD 1.25 1.5 729 0.876 0.50 0.914 936 0.15 0.918
1.5 2 460 1.000 0.35 1.000 460 0.35 1.000

REC 1 1.5 609 0.986 0.50 0.990 744 0.25 0.991
1 2 321 1.000 0.25 1.000 321 0.25 1.000

achieved (Columns 8 through 10). The last column presents
the power of a single-stage study with 1,000 responders and
1,000 non-responders.

While the optimal designs that achieve the minimum
ASNs suggest the allocation fractions of between 0.3 and 0.5
for Stage 1, depending on the ASFs and powers, the allo-
cation fractions for the designs where the maximum powers
are achieved are lower, ranging from 0.1 to 0.3. The gain
of the power is relatively small for having extra samples,
especially when the study power is high. For example, in
Table 3, under the additive model (γ1 = 1.25 and γ2 = 1.5)
where MAF=0.3, the minimum ASN is 722 subjects per
group when the allocation fraction is 0.5 with the corre-
sponding power of 85%. The ASN rises to 958 subjects per
group when the allocation fraction is 0.1, the power is max-
imized and increased to 89%, only 4% more than the power
achieved earlier. The power for a single-stage study with a
sample size of 1,000 per group is 90%.

For a given ASF, higher allele freqency (MAF) results
in lower ASN and higher power. For example, for ASF =
ASF2, under the additive model (γ1 = 1.25 and γ2 = 1.5),
the minimum ASN when MAF=0.1 is 869 with a power of
50% whereas the correponding minimum ASNs and powers
are 722 and 85% when p = 0.3, and 711 and 87% when
MAF=0.5.

Among the three genetic models, when the GRR for geno-
type AA (γ2) is fixed, the test has the highest power under
the dominant model and has the lowest power under the re-
cessive model. Focusing on the same section of results where

ASF = ASF2, MAF = 0.3 and γ2 = 1.5 in Table 3, the min-
imum ASN is 547 with a power of 99% under the dominant
model, whereas it is 722 with 85% power under the addi-
tive model, and 783 with 75% power under the recessive
model.

Finally, across different ASFs, the allocation fractions are
consistently suggested to be around 0.5 to achieve the min-
imum ASN when the alpha spending is conservative at the
first stage, e.g. ASF = ASF1 or the O’Brien-Fleming type.
When the allowance for Type I error increases, the alloca-
tion fractions that achieve the minimum ASN go slightly
lower (ranging from 0.25 to 0.5). The Pocock type of ASF
(ASF2) appears to result in the smallest ASNs with the
powers similar to those in the corresponding setting for the
other ASFs.

3.2 Fix the statistical power

For two-stage sequential designs, when the power is given
at, say 80%, the required sample size to achieve this given
power under a certain alternative can be obtained along with
the allocation fraction. Under similar simulation procedures,
we present in Tables 5 through 7 the planned sample sizes
(N), as well as the ASNs that achieve the power 80% under
different scenarios. Columns 5 through 8 show results when
the ASN is the minimum while Columns 9 through 12 show
the results when the ASN is the maximum as a comparison,
reflecting the less conservative nature of the designs in early
stopping.
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When the allocation ratio is set around half (π = 0.5),
the probability of stopping at Stage 1 is the highest and
the ASN reaches the minimum. On the other hand, when
the allocation ratio is set low (between 0.1 and 0.15), the
required sample size is relatively smaller because while the
probability of stopping at the first stage is small, the chance
of mistakenly stopping (Type I error) is small as well. The
ASNs, however, are about 7% higher than those in the case
where the allocation fraction is 0.5.

The results also confirm the conservativeness among the
three ASFs. When the O’Brien-Fleming type of spending
(ASF = ASF1) is utilized, the required sample sizes are the
smallest but the ASNs are maintained to be close to the
targeted sample size because the probability of stopping at
Stage 1 is smaller than those using the other ASFs.

In summary, for a two-stage sequential study, although
the target sample size is generally required to be larger than
what it is for a single-stage study, the ASN from a sequential
study is smaller than that in a single study if a moderate risk
exists. Figure 1 presents a simultaneous view of ASN and
power varying by ASF over different allocation fractions for
p = 0.3. The results show an earlier look, interim before 50%
of the samples, and more aggressive type I error spending
can result in substantial sample size saving with minimal
power loss.

4. DISCUSSION

In this paper, we studied the operating characteristics of
a group sequential gene-intervention study of the associa-
tion between a single candidate marker and responsiveness

to therapy using the robust statistic MAX3. The results have
shown advantages of having a two-stage design on savings on
average sample size while maintaining the power at a slightly
reduced rate. Our results indicated that the typical alloca-
tion fraction of half often balances the trade-off between the
sample sizes and powers. The choice of alpha spending func-
tion can impact the sample size. Overly conservative alpha
spending, such as that of the O’Brien-Fleming type, helps
little in sample size saving in a two-stage design. On the
other hand, when the underlying difference is large, e.g., for
mild genotype relative risk (e.g., γ = 2.0 for Genotype AA),
the optimal design can be achieved by an earlier look (e.g.,
allocation fraction = 0.3) and more aggressive type I error
spending in the first stage (e.g. the Pocock type of spend-
ing function). Such a design can result in a reduction of
more than half for sample size compared to a single stage
study. In the framework where a genetic marker is studied
in either a retrospective or a prospective fashion, it is our
opinion that alpha spending during interim analyses does
not need to be as conservative as it is in a classical clinical
trial where treatment effect is evaluated. Therefore, we rec-
ommend using the Pocock spending method in genetic stud-
ies rather than the conservative ones such as the O’Brien-
Fleming spending method. Moreover, since the magnitude
of the association between a genetic marker and the study
endpoint, e.g. response to therapy or disease status, are fre-
quently rather moderate, it is also beneficial for sample size
savings to schedule an interim look time at 30% of the target
samples.

As there have been increasing interests in the area of
personalized medicines and gene-intervention therapies, our

Table 5. Sample size and optimal allocation fraction to achieve the power 80%: ASF = ASF1

Min ASN is achieved Max ASN is resulted

MAF Model γ1 γ2 π N ASN P(stopping at Stage 1) π N ASN P(stopping at Stage 1)

0.1 DOM 1.5 1.5 0.5 523 481 0.158 0.3 523 521 0.006
2 2 0.5 165 152 0.154 0.1 164 164 0.000

ADD 1.25 1.5 0.5 1572 1446 0.161 0.2 1547 1547 0.000
1.5 2 0.5 451 417 0.153 0.25 450 449 0.000

REC 1 1.5 0.5 7659 7074 0.153 0.25 7581 7573 0.002
1 2 0.5 2186 2039 0.135 0.3 2190 2187 0.002

0.3 DOM 1.5 1.5 0.5 377 348 0.153 0.1 368 368 0.000
2 2 0.5 133 122 0.155 0.1 132 132 0.000

ADD 1.25 1.5 0.5 747 690 0.153 0.25 745 744 0.002
1.5 2 0.5 237 217 0.166 0.2 240 240 0.000

REC 1 1.5 0.5 947 872 0.159 0.25 947 947 0.001
1 2 0.5 284 263 0.151 0.15 289 289 0.000

0.5 DOM 1.5 1.5 0.5 552 510 0.152 0.25 557 556 0.001
2 2 0.5 210 194 0.150 0.15 209 209 0.000

ADD 1.25 1.5 0.5 714 656 0.163 0.15 708 708 0.000
1.5 2 0.5 250 230 0.154 0.2 253 253 0.000

REC 1 1.5 0.5 445 410 0.157 0.1 440 440 0.000
1 2 0.5 142 131 0.153 0.1 143 143 0.000
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Table 6. Sample size and optimal allocation fraction to achieve the power 80%: ASF = ASF2

Min ASN is achieved Max ASN is resulted

MAF Model γ1 γ2 π N ASN P(stopping at Stage 1) π N ASN P(stopping at Stage 1)

0.1 DOM 1.5 1.5 0.4 596 469 0.354 0.1 541 527 0.027
2 2 0.45 194 148 0.428 0.1 169 166 0.023

ADD 1.25 1.5 0.5 1845 1385 0.499 0.1 1615 1574 0.028
1.5 2 0.5 540 410 0.483 0.1 465 454 0.027

REC 1 1.5 0.5 8830 6712 0.480 0.1 7903 7718 0.026
1 2 0.45 2566 1967 0.425 0.1 2254 2229 0.013

0.3 DOM 1.5 1.5 0.5 440 330 0.500 0.15 401 377 0.071
2 2 0.5 157 118 0.488 0.1 139 135 0.026

ADD 1.25 1.5 0.45 869 659 0.439 0.1 781 756 0.035
1.5 2 0.5 287 215 0.505 0.1 249 243 0.030

REC 1 1.5 0.5 1123 844 0.497 0.1 986 959 0.030
1 2 0.5 338 256 0.482 0.15 303 288 0.058

0.5 DOM 1.5 1.5 0.5 654 495 0.489 0.1 577 559 0.033
2 2 0.4 235 185 0.354 0.1 216 211 0.023

ADD 1.25 1.5 0.45 827 630 0.435 0.1 740 719 0.032
1.5 2 0.5 296 221 0.508 0.1 258 251 0.030

REC 1 1.5 0.45 518 393 0.437 0.1 459 447 0.030
1 2 0.5 172 129 0.503 0.1 149 145 0.027

Table 7. Sample size and optimal allocation fraction to achieve the power 80%: ASF = ASF3

Min ASN is achieved Max ASN is resulted

MAF Model γ1 γ2 π N ASN P(stopping at Stage 1) π N ASN P(stopping at Stage 1)

0.1 DOM 1.5 1.5 0.5 586 460 0.430 0.1 525 516 0.020
2 2 0.45 184 146 0.370 0.15 173 168 0.035

ADD 1.25 1.5 0.45 1737 1382 0.371 0.1 1601 1571 0.021
1.5 2 0.5 508 400 0.425 0.15 467 451 0.039

REC 1 1.5 0.5 8512 6676 0.431 0.1 7698 7569 0.019
1 2 0.45 2471 1986 0.357 0.1 2235 2219 0.008

0.3 DOM 1.5 1.5 0.5 422 328 0.444 0.1 381 374 0.020
2 2 0.5 150 117 0.439 0.15 138 132 0.045

ADD 1.25 1.5 0.5 850 661 0.445 0.1 752 736 0.024
1.5 2 0.5 272 211 0.449 0.1 249 244 0.021

REC 1 1.5 0.45 1045 832 0.371 0.1 962 946 0.019
1 2 0.5 322 254 0.425 0.1 291 288 0.013

0.5 DOM 1.5 1.5 0.45 618 492 0.373 0.1 565 554 0.023
2 2 0.45 235 186 0.379 0.1 212 208 0.020

ADD 1.25 1.5 0.5 810 627 0.454 0.1 724 706 0.027
1.5 2 0.45 279 220 0.387 0.1 255 250 0.019

REC 1 1.5 0.5 496 387 0.438 0.1 450 440 0.023
1 2 0.5 162 126 0.439 0.1 146 143 0.019

analysis and results may provide some guidelines for design
and analysis of future genomic clinical trials. Through this
research, one may be about to utilize the findings to build
a clinical prediction model for future personalized medicine.
Some of our results are similar to those in a GWAS setting
in Nguyen et al. (2009) as the authors also used the robust
statistic. For example, both papers agreed on a possible al-

location fraction of less than 0.5, e.g., 0.30 for some additive
models. Our paper, however, provided more in-depth inves-
tigations on type I error spending and cost of sample size
and power. While simulations provide the closest results in
real world settings, we can also potentially apply and evalu-
ate the accuracy of the general optimization functions used
in Nguyen et al. (2009).
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Figure 1. ASNs and power by ASN and genotype relative risk (γ).

We proposed a solution to ease the cost of enrolling in-
dividuals through a two-stage group sequential design. This
design can naturally be extended to multiple-stage when
multiple interim analyses are used. Also, the idea of having
a two-stage sequential design under strong alternatives that
allows stopping for significance in order to reduce average
sample size can be extended to the opposite direction of the
stopping rule, i.e., the study stops for futility or no associa-
tion. Our simulation results also infer savings on sample size
for such a design although careful design on the allocation
of Type II error (β) needs to be considered. Furthermore,
the study can be designed to allow stopping for both sig-
nificance and non-significance, where the benefit may reach
the most in terms of sample size and power. Our prelimi-
nary results of the impact factors on sample sizes can be

a starting point for further research for optimal choices in
the genetic study setting. Our computer programs which
are used to determine critical values, and simulate sample
sizes and powers under different pre-specified values of the
design parameters can also be potentially used in practice
for designing any multi-stage group sequential study of the
association between a genetic marker and responsiveness to
therapy.

Note that in this article the calculation of critical values
for MAX3 is an approximation. Although the approxima-
tion method has been proved through simulation to work
well for a two-stage study, it can be overly conservative if
more stages are planned and therefore affects the choice of
required sample sizes. Further investigation may be needed
to compare different alpha spending functions in terms of
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their impact on the designs of the study given the distri-
bution of MAX3 under different alternatives with different
values of allele frequency and genetic models.

Throughout, the optimal sample sizes are determined
based on pre-specified differences in genotype frequencies
between responders and non responders. If apart from the
true values, these pre-specified frequencies may substantially
decrease the power of the study. When the observed geno-
type frequencies are smaller than the pre-specified ones, but
also of interest to the investigators, it may be desirable
that the sample size be increased so that the study is ade-
quately powered to detect smaller yet meaningful differences
in genotype frequencies. To this end, the adaptive strategies
developed in the clinical trial settings can be adopted. To
elaborate a bit more, we conduct the first interim analy-
sis with possible stopping when a pre-specified proportion
of the initial sample size is reached. Data from the interim
analysis are then used to estimate the genotype frequencies
among both responders and non-responders. Based on the
observed genotype frequencies the optimal final sample size
is updated, and the final test statistic can be defined as a
weighted average of the test statistics from the two stages;
see, e.g. Bauer and Kohne (1994), Cui, Hung and Wang
(1999), and Jennison and Turnbull (2003).
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