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A comparison principle for solutions to

the Ricci flow

Richard H. Bamler and Simon Brendle

In this note we derive a principle that enables us to bound solutions
to the Ricci flow on a metric level.

1. Introduction

Barrier principles are a basic tool in the study of geometric flows. For exam-
ple, if we have two solutions to the mean curvature flow with the property
that one is contained in the other initially, then the maximum principle guar-
antees that this remains so for all subsequent times. It is a natural question
whether there is a similar barrier principle for the Ricci flow. More specif-
ically, if gt is a family of metrics evolving by Ricci flow, we want to find
conditions that ensure that the evolving metrics gt stay above some family
of comparison metrics. This is a non-trivial problem: indeed, while the mean
curvature flow for hypersurfaces comes down to a scalar equation, the Ricci
flow is a weakly parabolic system.

The following is the main result of this note: Let Mm, Nn be smooth
manifolds and consider families (gt)t∈[0,T ) and (ht)t∈[0,T ) on M and N . We
assume that gt evolves by the Ricci flow ∂tgt = −2 Ricgt and that the family
ht satisfies the following condition: For every point p ∈ N and every two
unit vectors u, v ⊂ TpN we have

(1.1) ∂tht(u, u) ≤ −2(m− 1) max{0, secht
(u ∧ v)}.

Examples for such families are time-invariant metrics of non-positive sec-
tional curvatures or solutions to the Ricci flow on which the sectional cur-
vatures are non-negative and m ≤ n.

Assume that ft : (M, gt)→ (N,ht), t ∈ [0, T ) is a family of smooth maps
that evolve by harmonic map heat flow; that is

(1.2)
∂

∂t
ft = τgt,ht

(ft).
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Here, τg,h denotes the tension field, i.e.

(1.3) τg,h(f) =

m∑
k=1

(Dekdf)(ek) =: 4f,

where {ek} is a local orthonormal frame on (M, g) and D denotes the con-
nection on T ∗M ⊗ f∗TN induced by the Levi-Civita connections on (M, g)
and (N,h).

Our theorem is then

Theorem 1.1. Assume that M is closed, (gt)t∈[0,T ) is a Ricci flow, (ht)t∈[0,T )

satisfies the assumption involving equation (1.1) and that (M,ht) is complete
for all t ∈ [0, T ). Let f : (M, g0)→ (N,h0) be a smooth and 1-Lipschitz map.

Then the harmonic map heat flow equation (1.2) can be solved with the
initial condition f0 = f for all times t ∈ [0, T ) and the Lipschitz constant of
ft is non-increasing in t.

In other words, if the initial map f0 : (M, g0)→ (N,h0) is distance-
decreasing, then ft : (M, gt)→ (N,ht) is distance-decreasing for all t ≥ 0.
Note that we allow the dimension of N to be smaller than the dimension
of M . The proof of Theorem 1.1 uses the maximum principle, and follows
earlier work of Eells and Sampson [3]. We note that the harmonic map heat
flow also plays a role in the shorttime existence theory for Ricci flow (see
[1], [2], [4]).

A special case of this theorem is the following

Corollary 1.2. Assume that M is closed, (gt)t∈[0,T ) is a Ricci flow and
assume that (N,h) is a complete Riemannian manifold of non-positive sec-
tional curvature. Let f : (M, g0)→ (N,h) be a smooth map.

Then the harmonic map heat flow equation (1.2) with static target (N,h)
can be solved for the initial condition f0 = f for all times t ∈ [0, T ) and the
Lipschitz constant of ft is non-increasing in t.

Remark 1.3. In the case in which (N,ht) = (R, geucl), the differential dft
evolves by the following heat equation

D ∂

∂t
dft = 4dft,

where D ∂

∂t
represents the connection as in Uhlenbeck’s trick, i.e. D ∂

∂t
dft =

∂
∂tdft + df ◦ Ric. In this setting, Theorem 1.1 follows directly via the maxi-
mum principle.
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2. An evolution equation for the differential

Consider the pull back T spat(N × [0, T )) of the tangent bundle TN onto the
space-time N × [0, T ) via the obvious projection N × [0, T )→ N . This is
the bundle of spatial vector fields. The family of metrics (ht)t∈[0,T ) induces
a metric on T spat(N × [0, T )). Consider the Levi-Civita connection D of ht
on each time-slice N × {t}. We can extend D to a connection on T spat(N ×
[0, T )) via

D ∂

∂t
X =

∂

∂t
X +

1

2
(∂th) (X)

for every section X of T spat(N × [0, T )). Then D is a metric connection since

∂

∂t
h(X,Y ) = h(D ∂

∂t
X,Y ) + h(X,D ∂

∂t
Y ).

Similarly, we define a metric connectionD on the dual T spat∗(M × [0, T ))
via

D ∂

∂t
α =

∂

∂t
α+ α ◦ RicM

for every section α of T spat∗(M × [0, T )). This construction is known as
Uhlenbeck’s trick.

Assume for now that (ft)t∈[0,T ) is a solution to the harmonic map heat
flow equation (1.2) and consider the induced map f : M × [0, T )→ N ×
[0, T ) that acts as the identity on the second factors. Then the vector bundle

E = T spat∗(M × [0, T ))⊗ f∗T spat(N × [0, T ))

over M × [0, T ) has an induced (metric) connection D. In the following we
will view dft as a section of E. Note that the choice of D allows us to study
the evolution of the eigenvalues of dft in a convenient way, e.g. D ∂

∂t
dft = 0

implies that the eigenvalues of dft don’t change up to first order.
We will now compute the evolution equation for dft. We first find that

for any stationary vector field X on M

(D ∂

∂t
dft)(X) = D ∂

∂t
+ ∂f

∂t

(dft(X)) + dft(RicM (X))

= Ddft(X)
∂f

∂t
+

1

2
(∂th) (dft(X)) + dft(RicM (X)).

Here we have used that df( ∂
∂t) = ∂

∂t + ∂f
∂t . Note that the term Ddft(X)

∂f
∂t ,

being a section of T spat(N × [0, T )), can be viewed as a section of the pull
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back f∗T spat(N × [0, T )) in which case we can write DX
∂f
∂t . By (1.3) we

have

DX
∂f

∂t
=

m∑
k=1

(D2
X,ekdft)(ek).

From now on, we will only work on a fixed time-slice M × {t} and we
will drop the t-index. Note that we have the following identity, which follows
from the fact that the Levi-Civita connection on N is torsion free

(DAdf)(B) = (DBdf)(A).

Hence

DX
∂f

∂t
=

m∑
k=1

(D2
X,ekdf)(ek)

=

m∑
k=1

(
(D2

ek,Xdf)(ek) +Rf∗TN (ek, X)(df(ek))− df(RM (ek, X)ek)
)

=

m∑
k=1

(
(D2

ek,ekdf)(X) +Rf∗TN (ek, X)(df(ek))
)
− df(RicM (X)).

Putting everything together yields

Lemma 2.1. The differential dft satisfies the following evolution equation

(
(D ∂

∂t
−4)dft

)
(X) =

1

2
(∂th)(dft(X)) +

m∑
k=1

RN (dft(ek), dft(X))(dft(ek)).

3. Proof of the Theorem

We will use the following Lemma.

Lemma 3.1. Assume that (ft)t∈[0,T ), T <∞ is a solution to the harmonic
map heat flow equation (1.2) and assume that |dft| is uniformly bounded on
M × [0, T ). Moreover, assume that (gt) and (ht) are smooth up to time T .
Then all higher derivatives of ft are uniformly bounded on M × [0, T ) as
well.
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Proof. Differentiating the evolution equation from Lemma 2.1 k − 1 times
yields

(D ∂

∂t
−4)dkft =

∑
i0+···+il=k

i1 6=0

(Di0(∂th)) ∗ di1ft ∗ · · · ∗ dilft

+
∑

i0+···+il=k+2
i1,i2,i3 6=0

Di0RN ∗ di1ft ∗ · · · ∗ dilft.

Now assume by induction that |dft|, . . . , |dk−1ft| < C on M × [0, T ). Then
we can estimate

(∂t −4)|dkft| ≤ C ′
(
1 + |dkft|

)
.

It follows by the maximum principle, that |dkft| is uniformly bounded on
M × [0, T ) as well. �

Proof of Theorem 1.1. The theorem follows with the help of the maximum
principle. We may assume without loss of generality that the Lipschitz con-
stant λ(0) of f0 is < 1. Note hereby that we may replace ht by (1− ε2 − εt)ht
for small ε > 0.

Let [0, T1) ⊂ [0, T ) be the maximal time-interval on which we can solve
the harmonic map heat flow equation (1.2) and let λ(t) be the Lipschitz
constant of ft.

We first show that λ(t) is non-increasing in t. Pick t < T1 such that
λ(t) < 1 and consider a point p ∈M and a unit vector u ∈ TpM for which
|dft(u)| = λ(t).

Then 〈4dft(u), dft(u)〉 ≤ 0 and hence

λ′(t) = 〈(D ∂

∂t
dft)(u), dft(u)〉

≤
〈

1

2
(∂th)(dft(u)) +

m∑
k=1

RN (dft(ek), dft(u))dft(ek), dft(u)

〉

=
1

2
(∂th)(dft(u), dft(u)) +

m∑
k=1

secht
(dft(u) ∧ dft(ek)) · |dft(u) ∧ dft(ek)|2

≤ 1

2
(∂th)(dft(u), dft(u)) +

m∑
k=1

max{0, secht
(dft(u) ∧ dft(ek))} ≤ 0

Here we have used that |dft(u) ∧ dft(ek)| ≤ λ2(t) ≤ 1. It follows that the
condition λ(t) < 1 is preserved and hence λ(t) is non-decreasing on [0, T1).
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It remains to show that T1=T . Assume that T1<T . Then by Lemma 3.1
and the fact that |dft| is uniformly bounded on M × [0, T1), we conclude
that ft is smooth up to time T1. However, this contradicts the maximality
of T1. �
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