Seiberg-Witten and Gromov invariants for symplectic 4-manifolds

Clifford Henry Taubes

edited by
Richard Wentworth
Preface

On March 28-30, 1996, International Press, the National Science Foundation, and the University of California at Irvine sponsored the First Annual International Press Lecture Series, held on the Irvine campus. The inaugural speaker for this event was Professor Cliff Taubes of Harvard University who delivered three lectures on “Seiberg-Witten and Gromov Invariants.” In addition, there were ten one-hour lectures delivered by some of the foremost researchers in the field of four dimensional smooth and symplectic topology. Volume I of these proceedings contains articles based on six of those lectures.

The present volume consists of four papers by Taubes comprising the complete proof of his remarkable result relating the Seiberg-Witten and Gromov invariants of symplectic four manifolds. The first paper “SW ⇒ Gr: From the Seiberg-Witten equations to pseudo-holomorphic curves” appeared in print in 1996 in the Journal of the American Mathematical Society. The remaining three papers appeared in the Journal of Differential Geometry. See the references below.*

It is especially gratifying to have this magnificent work collected together in one volume. Thanks are due to Cliff Taubes for agreeing to this arrangement, to the aforementioned journals for their permission to reprint the first two articles, and to Hugh Rutledge of International Press for his efforts in making this possible.

The idea for a distinguished lecture series was conceived by Peter Li and S.-T. Yau. The first conference was organized by Ronald J. Stern and Richard Wentworth, with the important assistance of Julie Crosby and the Department of Mathematics at UC-Irvine. We would like to thank the invited speakers and the audience of over 200 research mathematicians whose participation made this conference a great success.

References

*The author was supported in part by the National Science Foundation.

Contents

Preface

SW ⇒ Gr:

From the Seiberg–Witten equations to pseudo-holomorphic curves

1. The Seiberg-Witten equations .. 4
2. Estimates .. 11
3. The monotonicity formula .. 20
4. The local structure of $\alpha^{-1}(0)$ 30
5. Convergence to a current ... 44
6. Positivity and pseudo-holomorphic curves 55
7. Constraints on symplectic 4-manifolds 89

Counting pseudo-holomorphic submanifolds in dimension 4 103

1. The definition of Gr .. 104
2. The definition of $r(C, 1)$.. 108
3. The definition of $r(C, m)$ when $m > 1$ 112
4. The meaning of the term “admissable” 115
5. The proofs ... 117
6. A toroidal example .. 156
7. D on other surfaces ... 162

Gr ⇒ SW

From pseudo-holomorphic curves to Seiberg–Witten solutions

1. Setting the stage ... 170
2. The gluing construction .. 176
3. Introduction to Z_0 and Z .. 191
4. From almost solutions to true solutions, I 209
5. From almost solutions to true solutions, II 235
6. Analytic structures .. 258
Gr = SW:

Counting curves and connections

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Seiberg-Witten and Gromov-Witten Invariants</td>
<td>281</td>
</tr>
<tr>
<td>2</td>
<td>The proof of Theorem 1</td>
<td>294</td>
</tr>
<tr>
<td>3</td>
<td>Z_0 and compactness: The proof of Proposition 2.7</td>
<td>314</td>
</tr>
<tr>
<td>4</td>
<td>Orientations and other constructions for $\mathcal{M}^{(r)}$</td>
<td>330</td>
</tr>
<tr>
<td>5</td>
<td>The Proof of Proposition 2.10</td>
<td>337</td>
</tr>
<tr>
<td>6</td>
<td>The image of Ψ_r</td>
<td>353</td>
</tr>
<tr>
<td>7</td>
<td>Proof of Proposition 2.13</td>
<td>383</td>
</tr>
</tbody>
</table>