Asian Journal of Mathematics

Volume 20 (2016)

Number 3

A loop group method for minimal surfaces in the three-dimensional Heisenberg group

Pages: 409 – 448

DOI: http://dx.doi.org/10.4310/AJM.2016.v20.n3.a2

Authors

Josef F. Dorfmeister (Fakultät für Mathematik, Technische Universität München, Germany)

Jun-Ichi Inoguchi (Institute of Mathematics, Tsukuba University, Tsukuba, Japan)

Shimpei Kobayashi (Department of Mathematics, Hokkaido University, Sapporo, Japan)

Abstract

We characterize constant mean curvature surfaces in the three-dimensional Heisenberg group by a family of flat connections on the trivial bundle $\mathbb{D} \times \mathrm{GL}_2 \mathbb{C}$ over a simply connected domain $\mathbb{D}$ in the complex plane. In particular for minimal surfaces, we give an immersion formula, the so-called Sym-formula, and a generalized Weierstrass type representation via the loop group method. Our generalized Weierstrass type representation produces all simply-connected non-vertical minimal surfaces in the Heisenberg group.

Keywords

constant mean curvature, Heisenberg group, spinors, generalized Weierstrass type representation

2010 Mathematics Subject Classification

Primary 53A10, 58D10. Secondary 53C42.

Full Text (PDF format)

Published 12 July 2016