Advances in Theoretical and Mathematical Physics

Volume 10 (2006)

Number 4

Vector bundle extensions, sheaf cohomology, and the heterotic standard model

Pages: 525 – 589

DOI: http://dx.doi.org/10.4310/ATMP.2006.v10.n4.a3

Authors

Volker Braun

Yang-Hui He

Burt A. Ovrut

Tony Pantev

Abstract

Stable, holomorphic vector bundles are constructed on a torus fibered, non-simply connected Calabi-Yau three-fold using the method of bundle extensions. Since the manifold is multiply connected, we work with equivariant bundles on the elliptically fibered covering space. The cohomology groups of the vector bundle, which yield the low energy spectrum, are computed using the Leray spectral sequence and fit the requirements of particle phenomenology. The physical properties of these vacua were discussed previously. In this paper, we systematically compute all relevant cohomology groups and explicitly prove the existence of the necessary vector bundle extensions. All mathematical details are explained in a pedagogical way, providing the technical framework for constructing heterotic standard model vacua.

2010 Mathematics Subject Classification

Primary 14J81. Secondary 14J60, 81T30, 81V22.

Full Text (PDF format)