Advances in Theoretical and Mathematical Physics

Volume 17 (2013)

Number 3

Conifold transitions in $M$-theory on Calabi-Yau fourfolds with background fluxes

Pages: 601 – 699

DOI: http://dx.doi.org/10.4310/ATMP.2013.v17.n3.a2

Authors

Kenneth Intriligator (Department of Physics, University of California at San Diego.)

Hans Jockers (Bethe Center for Theoretical Physics, Physikalisches Institut, Universität Bonn, Bonn, Germany)

Peter Mayr (Arnold Sommerfeld Center for Theoretical Physics, Ludwig-Maximilians-Universität, Munich, Germany)

David R. Morrison (Departments of Mathematics and Physics, University of California at Santa Barbara)

M. Ronen Plesser (Center for Geometry and Theoretical Physics, Duke University, Durham, North Carolina, U.S.A.)

Abstract

We consider topology changing transitions for $M$-theory compactifications on Calabi-Yau fourfolds with background $G$-flux. The local geometry of the transition is generically a genus g curve of conifold singularities, which engineers a 3d gauge theory with four supercharges, near the intersection of Coulomb and Higgs branches. We identify a set of canonical, minimal flux quanta which solve the local quantization condition on $G$ for a given geometry, including new solutions in which the flux is neither of horizontal nor vertical type. A local analysis of the flux superpotential shows that the potential has flat directions for a subset of these fluxes and the topologically different phases can be dynamically connected. For special geometries and background configurations, the local transitions extend to extremal transitions between global fourfold compactifications with flux. By a circle decompactification the $M$-theory analysis identifies consistent flux configurations in four-dimensional $F$-theory compactifications and flat directions in the deformation space of branes with bundles.

Full Text (PDF format)