Communications in Analysis and Geometry

Volume 11 (2003)

Number 3

Minimal Spheres of Arbitrarily High Morse Index

Pages: 425 – 439

DOI: http://dx.doi.org/10.4310/CAG.2003.v11.n3.a2

Authors

Joel Hass

Paul Norbury

J. Hyam Rubinstein

Abstract

We construct a smooth Riemannian metric on any 3-manifold with the property that there are genus zero embedded minimal surfaces of arbitrarily high Morse index.

Full Text (PDF format)