Contents Online

# Communications in Analysis and Geometry

## Volume 24 (2016)

### Number 4

### Austere submanifolds in $\mathbb{C}P^n$

Pages: 821 – 841

DOI: http://dx.doi.org/10.4310/CAG.2016.v24.n4.a6

#### Authors

#### Abstract

For an arbitrary submanifold $M \subset \mathbb{C}P^n$ we determine conditions under which it is austere, i.e., the normal bundle of $M$ is special Lagrangian with respect to Stenzel’s Ricci-flat Kähler metric on $T \, \mathbb{C}P^n$. We also classify austere surfaces in $\mathbb{C}P^n$.