Homology, Homotopy and Applications

Volume 6 (2004)

Number 1

Autour des formes quadratiques quasi-voisines

Pages: 5 – 16

DOI: http://dx.doi.org/10.4310/HHA.2004.v6.n1.a2


Ahmed Laghribi (Fakultät für Mathematik, Universität Bielefeld, Germany)


In this article we study a generalization of the notion of Pfister neighbors. An anisotropic quadratic form $\phi$ over a field $F$ of characteristic not $2$ is called a quasi-Pfister neighbor when the anisotropic part $(\phi_{F(\phi)})_{an}$ is $F(\phi)$-similar to an $F$-quadratic form $\psi$ where $F(\phi)$ denotes the function field of the projective quadric given by $\phi$. We prove the uniqueness of $\psi$ up to $F$-similarity for forms $\phi$ of dimension $\leq 8$, odd dimension and many others of large dimension, and in these cases we give a precise description of $\psi$.


forme quadratique, corps des fonctions d’une quadrique projective, voisine de Pfister, quasi-voisine de Pfister, déploiement générique d’une forme quadratique

2010 Mathematics Subject Classification

11E04, 11E81

Full Text (PDF format)