Homology, Homotopy and Applications

Volume 8 (2006)

Number 2

The eta invariant and the “twisted” connective $K$-theory of the classifying space for cyclic 2-groups

Pages: 105 – 114

DOI: http://dx.doi.org/10.4310/HHA.2006.v8.n2.a6

Author

Egidio Barrera-Yanez (Instituto de Matematicas, UNAM, U. Cuernavaca, Mexico)

Abstract

Let $\ell=2^\nu\ge2$. We use the eta invariant to study the “twisted” connective real $K$-theory groups $ko_m(B\mathbb{Z}_\ell,\xi_1)$ of the classifying space $B\mathbb{Z}_\ell$ for the cyclic group $\mathbb{Z}_\ell$.

Keywords

connective $K$-theory; eta invariant

2010 Mathematics Subject Classification

55N15

Full Text (PDF format)