Homology, Homotopy and Applications

Volume 17 (2015)

Number 1

Homological algebra for diffeological vector spaces

Pages: 339 – 376

DOI: http://dx.doi.org/10.4310/HHA.2015.v17.n1.a17


Enxin Wu (DIANA Group, Faculty of Mathematics, University of Vienna, Austria)


Diffeological spaces are natural generalizations of smooth manifolds, introduced by J.M. Souriau and his mathematical group in the 1980’s. As vector spaces, diffeological vector spaces appear canonically from geometry and analysis, and they also contain smooth information. In this paper, we first explore the basic algebraic and categorical constructions on diffeological vector spaces. Then we observe that not every short exact sequence of diffeological vector spaces splits. Motivated by this, we develop the natural analogues of basic tools of classical homological algebra by identifying a good class of projective objects in the category of diffeological vector spaces, together with some applications in analysis. Finally, we prove that there is a cofibrantly generated model structure on the category of diffeological chain complexes.


diffeological vector space, linear subduction, short exact sequence

2010 Mathematics Subject Classification

Primary 18G25. Secondary 26E10, 57P99.

Full Text (PDF format)