Journal of Symplectic Geometry

Volume 7 (2009)

Number 3

Q-algebroids and their cohomology

Pages: 263 – 293



Rajan Amit Mehta


A Q-algebroid is a graded Lie algebroid equipped with a compatible homological vector field and is the infinitesimal object corresponding to a Q-groupoid. We associate to every Q-algebroid a double complex. As a special case, we define the Becchi-Rouet-Stora-Tyutin (BRST) model of a Lie algebroid, which generalizes the BRST model for equivariant cohomology. We extend to this setting the Mathai-Quillen-Kalkman isomorphism of the BRST and Weil models, and we suggest a definition of a basic subcomplex which, however, requires a choice of a connection. Other examples include Roytenberg's homological double of a Lie bialgebroid, Ginzburg's model of equivariant Lie algebroid cohomology, the double of a Lie algebroid matched pair, and Q-algebroids arising from lifted actions on Courant algebroids.

Full Text (PDF format)