Mathematical Research Letters

Volume 9 (2002)

Number 3

A Circle of Modular Groups in PU(2,1)

Pages: 379 – 391

DOI: http://dx.doi.org/10.4310/MRL.2002.v9.n3.a11

Authors

E. Falbel

P.-V. Koseleff

Abstract

We prove that there exists a circle of discrete and faithful embeddings of the triangle group of type $(2, 3, \infty)$ in the automorphisms group of complex hyperbolic space. The proof is obtained by a construction of a fundamental domain using {\mbox{\bf C}}-spheres.

Full Text (PDF format)