Contents Online

# Mathematical Research Letters

## Volume 14 (2007)

### Number 4

### Degree and holomorphic extensions

Pages: 615 – 622

DOI: http://dx.doi.org/10.4310/MRL.2007.v14.n4.a6

#### Author

#### Abstract

Let $D$ be a bounded convex domain in $\C^N,\ N\geq 2$. We prove that a continuous map $\Phi\colon\ bD\rightarrow\C^N$ extends holomorphically through $D$ if and only if for every polynomial map $P\colon\ \C^N\rightarrow\C^N$ such that $\Phi+P\not= 0$ on $bD$, the degree of $\Phi+P|bD$ is nonnegative. We also prove another such theorem for more general domains.