Contents Online

# Mathematical Research Letters

## Volume 15 (2008)

### Number 2

### Joint reductions of monomial ideals and multiplicity of complex analytic maps

Pages: 389 – 407

DOI: http://dx.doi.org/10.4310/MRL.2008.v15.n2.a15

#### Author

#### Abstract

We characterize the joint reductions of a set of monomial ideals in the ring $\O_n$ of complex analytic functions defined in a neighbourhood of the origin in $\C^n$. We also study an integer $\sigma(I_1,\dots, I_n)$ attached to a family of ideals $I_1,\dots, I_n$ in a Noetherian local ring that extends the usual notion of mixed multiplicity. If $I_1,\dots, I_n$ are monomial ideals of $\O_n$, then we obtain a characterization of the families $g_1,\dots, g_n$ such that $g_i\in I_i$, for all $i=1,\dots, n$, and that $e(g_1,\dots, g_n)=\sigma(I_1,\dots, I_n)$.