Mathematical Research Letters

Volume 15 (2008)

Number 3

$p$-adic properties of Maass forms arising from theta series

Pages: 459 – 470

DOI: http://dx.doi.org/10.4310/MRL.2008.v15.n3.a6

Authors

Sharon Anne Garthwaite (Bucknell University)

David Penniston (Furman University)

Abstract

We investigate arithmetic properties of the Fourier coefficients of certain harmonic weak Maass forms of weight $1/2$ and $3/2$. Each of the forms in question is the sum of a holomorphic function and a period integral of a theta series. In particular, for any positive integer $M$ coprime to $6$ we prove that the coefficients of the holomorphic function satisfy Ramanujan-type congruences modulo $M$, and establish sufficient conditions under which they are well-distributed modulo $\ell^j$ for primes $\ell \geq 5$. As an example we show that our results apply to Ramanujan’s mock theta function $\omega(q)$.

Full Text (PDF format)