Mathematical Research Letters

Volume 15 (2008)

Number 4

Positive Quaternionic Kähler manifolds and symmetry rank: II

Pages: 641 – 651

DOI: http://dx.doi.org/10.4310/MRL.2008.v15.n4.a4

Author

Fuquan Fang (Capital Normal University)

Abstract

Let $M$ be a positive quaternionic Kähler manifold of dimension $4m$. If the isometry group $\text{Isom}(M)$ has rank at least $\frac {m}2 +3$, then $M$ is isometric to $\Bbb HP^m$ or $Gr_2(\Bbb C^{m+2})$. The lower bound for the rank is optimal if $m$ is even.

Full Text (PDF format)