Mathematical Research Letters

Volume 19 (2012)

Number 1

Discrepancies of products of zeta-regularized products

Pages: 199 – 212

DOI: http://dx.doi.org/10.4310/MRL.2012.v19.n1.a16

Authors

Victor Castillo-Garate (Departamento de Matemática, P. Universidad Católica de Chile, Casilla 306, Santiago 22, Chile)

Eduardo Friedman (Departamento de Matemática, Universidad de Chile, Casilla 653, Santiago 1, Chile)

Abstract

Zeta-regularized products $\p a_m$ are known not tocommute with finite products, soone studies the discrepancy $F_n$ given by\vspace*{6pt}\[\exp(F_n):=\frac{\p \left(\prod_{j=1}^na_{m,j}\right)}{\prod_{j=1}^n \left(\p a_{m,j}\right)}.\vspace*{6pt}\]For a rather general class of products, associated to polynomials $P_j$in several variables, we show thatthe discrepancy $F_n(P_1,\dots,P_n)$ of $n$ products is a sum of pairwisecontributions $F_2(P_i,P_j)$. Namely,\vspace*{6pt}\[\left(\sum_{j=1}^n \deg P_j \right)F_n(P_1,\dots,P_n)=\sum_{1\le i<j\le n}(\deg P_i +\deg P_j )F_2(P_i,P_j).\vspace*{6pt}\]Thus, there are no higher interactions behind the non-commutativity.

Full Text (PDF format)