Mathematical Research Letters

Volume 19 (2012)

Number 6

Determinants of pseudo-Laplacians

Pages: 1297 – 1308

DOI: http://dx.doi.org/10.4310/MRL.2012.v19.n6.a10

Authors

Tayeb Aissiou (Department of Mathematics and Statistics, Concordia University, Montreal, Quebec, Canada)

Luc Hillairet (UMR CNRS – Université de Nantes, France)

Alexey Kokotov (Department of Mathematics and Statistics, Concordia University, Montreal, Quebec, Canada)

Abstract

We derive comparison formulas relating the zeta-regularized determinant of an arbitrary self-adjoint extension of the Laplace operator with domain $C^\infty_c(X\setminus \{P\})\subset L_2(X)$ to the zeta-regularized determinant of the Laplace operator on $X$. Here, $X$ is a compact Riemannian manifold of dimension $2$ or $3$; $P\in X$.

Full Text (PDF format)