Mathematical Research Letters

Volume 20 (2013)

Number 3

Alexandrov immersed minimal tori in $S^3$

Pages: 459 – 464

DOI: http://dx.doi.org/10.4310/MRL.2013.v20.n3.a4

Author

Simon Brendle (Department of Mathematics, Stanford University, Stanford, California, U.S.A)

Abstract

We show that any minimal torus in $S^3$ which is Alexandrov immersed must be rotationally symmetric. An analogous result holds for surfaces of constant mean curvature.

Full Text (PDF format)