Mathematical Research Letters

Volume 20 (2013)

Number 5

Proof of the index conjecture in Hofer geometry

Pages: 981 – 984

DOI: http://dx.doi.org/10.4310/MRL.2013.v20.n5.a13

Author

Yasha Savelyev (Centre de Recherches Mathématiques, Université de Montréal, Québec, Canada)

Abstract

Let $\gamma$ be an Ustilovsky geodesic and $H$ its generating function. We give a simple proof of a generalization of the conjecture stated in [7], relating the Morse index of $\gamma$, as a critical point of the Hofer length functional, with the Conley Zehnder index of the extremizers of $H$, considered as periodic orbits.

Full Text (PDF format)