Mathematical Research Letters

Volume 22 (2015)

Number 1

A note on weak convergence of singular integrals in metric spaces

Pages: 11 – 21

DOI: http://dx.doi.org/10.4310/MRL.2015.v22.n1.a2

Authors

Vasilis Chousionis (Department of Mathematics, University of Connecticut, Storrs, Conn., U.S.A.; and Department of Mathematics and Statistics, University of Helsinki, Finland)

Mariusz Urbanski (Department of Mathematics, University of North Texas, Denton, Tx., U.S.A.)

Abstract

We prove that in any metric space $(X, d)$ the singular integral operators\[T^k_{\mu, \epsilon} (f)(x) = \int_{X \setminus B(\mu, \epsilon)} k(x,y) f(y) d \mu (y)\]converge weakly in some dense subspaces of $L^2(\mu)$ under minimal regularity assumptions for the measures and the kernels.

Keywords

singular integrals, metric spaces

2010 Mathematics Subject Classification

Primary 32A55. Secondary 30L99.

Full Text (PDF format)

Published 13 April 2015