Statistics and Its Interface

Volume 11 (2018)

Number 1

Penalized weighted least absolute deviation regression

Pages: 79 – 89

DOI: http://dx.doi.org/10.4310/SII.2018.v11.n1.a7

Authors

Xiaoli Gao (Department of Mathematics and Statistics, University of North Carolina, Greensboro, N.C., U.S.A.)

Yang Feng (Department of Statistics, Columbia University, New York, N.Y., U.S.A.)

Abstract

In a linear model where the data is contaminated or the random error is heavy-tailed, least absolute deviation (LAD) regression has been widely used as an alternative approach to least squares (LS) regression. However, it is well known that LAD regression is not robust to outliers in the explanatory variables. When the data includes some leverage points, LAD regression may perform even worse than LS regression. In this manuscript, we propose to improve LAD regression in a penalized weighted least absolute deviation (PWLAD) framework. The main idea is to associate each observation with a weight reflecting the degree of outlying and leverage effect and obtain both the weight and coefficient vector estimation simultaneously and adaptively. The proposed PWLAD is able to provide regression coefficients estimate with strong robustness, and perform outlier detection at the same time, even when the random error does not have finite variances. We provide sufficient conditions under which PWLAD is able to identify true outliers consistently. The performance of the proposed estimator is demonstrated via extensive simulation studies and real examples.

Keywords

lasso, leverage points, outlier detection, robust regression, weighted least absolute deviation

2010 Mathematics Subject Classification

Primary 62F12, 62F35. Secondary 62P35.

Full Text (PDF format)

Xiaoli Gao was partially supported by Simons Foundation #359337. Yang Feng was partially supported by NSF CAREER grant DMS-1554804.

Paper received on 16 March 2016.