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1. Introduction

Let M be a compact complex manifold of complex dimension n. Suppose that M admits a
metric a=v/—1a;;dz* Adz7 >0 which is Kahler (that is, de=0). Yau’s celebrated solution
[43] of the Calabi conjecture says that given any smooth positive volume form o on M

with [ M= / @5 we can find a Kéhler metric w with this prescribed volume form:
wt=o0. (1.1)

Moreover, there exists such a metric so that [w]=[a] in H?(M,R), and with this coho-
mological constraint the metric w is unique.

Furthermore, Yau’s theorem is equivalent to a statement about the first Chern class
c¢1(M). Namely, given any smooth representative ¥ of ¢;(M), there exists a unique

Kahler metric w cohomologous to a such that
Ricci(w) =¥, (1.2)

where Ricci(w) is the Ricci form of the Kéhler metric w. Indeed, this follows immediately
from the definition of ¢; (M) and by applying the operator —v/—1901og to (1.1).
It is natural to investigate whether similar results hold when M does not admit a

Kahler metric, but only a Hermitian metric a. If we do not impose any constraint on
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the class of Hermitian metrics that we consider, then (1.1) can be trivially solved by
a conformal change of metric. However, there is a natural class of Hermitian metrics
which exist on all compact complex manifolds, namely Gauduchon metrics. A Hermitian

metric « is called Gauduchon if

20(a" 1) =0,

and a classical result of Gauduchon [12] says that every Hermitian metric is conformal
to a Gauduchon metric (uniquely up to scaling, when n>2). In particular, if we restrict
our attention to Gauduchon metrics, then we cannot use non-trivial conformal changes.

Motivated by Yau’s theorem, in 1984 Gauduchon [13, §IV.5] posed the following

conjecture.

Congecture 1.1. Let M be a compact complex manifold and ¥ be a closed real (1, 1)-
form on M with [¥]=cPC (M)eHéé (M,R). Then there is a Gauduchon metric w on M
with

Ricci(w) =¥. (1.3)

To explain our notation here,

_ {d-closed real (1, 1)-forms}

1,1
Hpo(M,R) = {V=1000) :p € O=(M,R)}

denotes the (finite-dimensional) Bott—Chern cohomology group, and Ricci(w) is the Chern—

Ricci form of w, which is locally given by
Ricci(w) = —v/—100 log det g,

where we write w:ﬁgijdziAde. It is a closed real (1, 1)-form and its first Bott—Chern
cohomology class ¢PC (M) =[Ricci(w)] € Hgg (M, R) is immediately seen to be independent
of the choice of w.

In the spirit of Yau’s theorem, we restate Conjecture 1.1 as an equivalent statement

about the existence of Gauduchon metrics with prescribed volume form.

Congecture 1.2. Let M be a compact complex manifold and o be a smooth positive

volume form. Then, there is a Gauduchon metric w on M with
w"=o. (1.4)

The equivalence with Conjecture 1.1 follows by applying the operator —/—190 log
to (1.4).
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Our result, Theorem 1.3 below, gives a proof of Conjecture 1.1 (and hence also of
Conjecture 1.2). Moreover, our result strengthens the conjecture by imposing a cohomo-
logical constraint on the solution w. Before we state our results, we make some remarks

about Conjecture 1.1.

(1) When M is Kéahler, this conjecture follows from Yau’s theorem.

(2) When n=2, the conjecture was proved by Cherrier [4] in 1987 by solving a
complex Monge-Ampere equation (see also [38] and [17] for different proofs).

(3) More recently, the second- and third-named authors [40] proved Conjecture 1.1
when M admits an astheno-Kdhler metric, i.e. a Hermitian metric a with 99(a"~2)=0
(a condition introduced in [21]).

(4) Clearly, there can be no uniqueness in Conjecture 1.1 as stated.

(5) In [37] the second- and third-named authors proved that given a Hermitian
metric o, one can always find another Hermitian metric w of the form w=a++/—10du, for
ueC>®(M,R), solving (1.3). If n=2, then @ Gauduchon implies that w is also Gauduchon
(and this equation was solved in [4]), but this is no longer the case when n>3. Hence,
the result of [37] does not help to solve Conjecture 1.1 in dimension 3 or higher.

(6) A consequence of Conjecture 1.1 is that ¢P¢(M)=0 holds if and only if there
exist Chern-Ricci-flat Gauduchon metrics on M. More information about these “non-
Kéhler Calabi-Yau” manifolds can be found in [35].

We now state our main results. We first introduce some terminology concerning

cohomology classes of (n—1,n—1)-forms. Define the Aeppli cohomology group

{00-closed real (n—1,n—1)-forms}
[07+07:7 € A2 1 (A0}

H™" (M R) =

This space is naturally in duality with the Bott—Chern cohomology group we consid-
ered earlier, with the non-degenerate pairing HX_I’"_l(M7 R)@Hé’é (M,R)—R given by
wedge product and integration over M (see e.g. [1]). If ap is a Gauduchon metric, then
af~! defines a class [0 '€ HY "7 (M, R).

We prove the following result.

THEOREM 1.3. Let M be a compact complex manifold with a Gauduchon metric ayg,
and U be a closed real (1,1)-form on M with [‘I/}:cllgC(M)eHé’é(M, R). Then, there
exists a Gauduchon metric w satisfying [w"'|=[ad~ '] in HY """ (M,R) and

Ricci(w) = 0. (1.5)

This result immediately implies Conjectures 1.1 and 1.2.
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In [40], the second- and third-named authors observed that to solve Theorem 1.3 it
is enough to solve a certain partial differential equation, which was also independently
introduced by Popovici [30]. This equation is a variant of one introduced by Fu—Wang—
Wu [10] and related to Harvey-Lawson’s notion of (n—1)-plurisubharmonic functions
[18], [19].

Namely, we seek a Hermitian metric w on M with the property that

W't =ag T 4Oy + 07,

where
v= %\/ —10una™ 2,

uweC>®(M,R) and « is a background Gauduchon metric. Clearly, by construction, the

metric w is Gauduchon assuming that «g is Gauduchon. Substituting, we see that
W't =g /= 100una™ 2 +Re(vV—10und(a™?)), (1.6)

while if we write

Ricci(w) = ¥ ++/—190F,

then (1.5) is equivalent to

W = eF—&-ban,

for some constant b€R. This is exactly the equation that we solve, thus resolving [40,
Conjecture 1.5] and [30, Question 1.2].

THEOREM 1.4. Let M be a compact complex manifold with dimec M =n>2, equipped
with a Hermitian metric ag and a Gauduchon metric «. Given a smooth function F on
M, we can find a unique u€C>®(M,R) with sup,; u=0, and a unique bER such that the

Hermitian metric w defined by
Ww'hi=al T /= 100una" T+ Re(V—10und(a™2)) > 0

satisfies
wt=eftoan, (1.7)

Clearly, as we just described, Theorem 1.3 follows from this result if we take ap=a

Gauduchon. We make some remarks about Theorem 1.4.

(1) In the case when « is Kéhler, or more generally if the linear term involving
Ou is removed, the equation (1.7) reduces to the Monge-Ampere equation for (n—1)-
plurisubharmonic functions, solved by the second- and third-named authors [39], [40]
(see also [11] for earlier partial results).
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(2) In the case when n=2, this equation reduces to the complex Monge—Ampere
equation solved in [4] (see also [38]).

(3) It was shown in [40] that Theorem 1.4 can be reduced to a second-order a-priori
estimate of the form (cf. [20])

sup [V —100ul, < C(l—i—sup |Vu|i)7
M M

for solutions w of (1.7). This is precisely the estimate we prove in this paper.

(4) If in Theorem 1.4 we assume that g is strongly Gauduchon in the sense of
Popovici [29], namely that 5(&8_1) is 0-exact, then, by construction, so is the solution w.
Thus, we also get a Calabi—Yau-type theorem for strongly Gauduchon metrics. More
applications of this theorem can be found in [30].

(5) Our method of proof of Theorem 1.4 can also be used to solve an equation
introduced by Fu-Wang—Wu [10] in certain cases. Suppose we have a compact Hermitian

manifold (M, ap) and we seek a Hermitian metric w solving (1.7) with the property that
W't =af V= 100(u ™ ?)

for some ueC*°(M,R) and some Hermitian metric . This setup is particularly inter-
esting because if ag is balanced (i.e. d(af~')=0, see [26]), then so is w, and one obtains
a Calabi-Yau theorem for balanced metrics (see also [35, §4]). When « is Kéhler, this
setup reduces to the setting of item (1). If we instead assume that « is astheno-Kéhler,

then we see that
wn—l :ag*1+\/_7185u/\an_2+2 Re(\/jlauAé(an_z)), (18)

which differs from (1.6) just for a factor of 2. Therefore, this problem falls into our
general framework (see Theorem 2.2 below), and we conclude that we have uniform
a-priori estimates for solutions of this equation. The exact same argument as in [40,
Theorem 1.7] using the continuity method then shows that the equation is indeed solvable.
In the case when we choose «g to be balanced, this gives a proof of [35, Conjectures 4.1
and 4.2], assuming that M admits astheno-Kéhler metrics. However, we should remark
that we are not aware of any example of a non-Kéahler compact complex manifold which
admits both balanced and astheno-Kihler metrics.(!)

(6) The same argument as the proof of Theorem 1.4 also allows us to find a Gaudu-

chon metric w solving the “complex-Hessian” equation

wk /\an—k — eF+ba"

(1) After this paper was posted, and prompted by our remark, explicit examples were constructed
in [9] and [22] in all complex dimensions >4.
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for any 1<k<n; see also [34, Proposition 24] for the case of (n—1)-plurisubharmonic
functions, and [8], [20] for the standard K#hler case where w=a++/—190u.

(7) The complex setting is very different from the real analogue of (1.7), treated for
example in more generality in [16]. The underlying reason is the fact that there are two
different types of complex derivatives. In our case, the special structure of the gradient

term in (1.7) plays a key role.

In fact, Theorem 1.4 follows from a much more general result, where we consider
a large class of fully non-linear second-order elliptic equations on Hermitian manifolds.
This result is analogous to the main result in [34], giving a-priori estimates in the presence
of a suitable subsolution. We will state this as Theorem 2.2 in §2. This result fits into
a large body of work on fully non-linear second-order elliptic equations, going back to
the work of Caffarelli-Nirenberg—Spruck [3] on the Dirichlet problem on domains in R™.
Some other works on this topic include [6], [7], [14]-[17], [23]-[25], [27], [28], [32], [33],
[41], [42], [44]-[46].

In our proof of Theorem 2.2, we use some of the language and approaches of the
recent paper of the first-named author [34]. However, if one is only interested in a direct
proof of Theorem 1.4, one can equally well use the language of [40]. In any case, the key
new ingredient is an understanding of the structure of the term Re(v/—1duAd(a”~?)).

The paper is organized as follows. In §2 we will introduce some notation and state
our main technical result (Theorem 2.2). The proof of this theorem will be given in §3,
and in §4 we show how this implies Theorem 1.4.

As the present work neared completion, we were informed that Bo Guan and Xiaolan

Nie have a work in progress on related results.

Acknowledgments. We thank the referee for useful remarks.

2. Background and the general setting

Let (M, «) be a compact Hermitian manifold of complex dimension n and write
a=y flozﬁdzi/\dij > 0.

Fix a background (1,1)-form X:\/?lxﬁdzi/\déj which is not necessarily positive defi-
nite. Let W;;(Vu) be a Hermitian tensor which depends linearly on Vu. For u: M —R,
define a new tensor g,; by

937 = Xaj Tui; +Wij. (2.1)

Note that we do not assume that (g,;) is positive definite. We will study equations for
g, where W has a special structure related to the equation (1.7). To define this, let us
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write

- 1
955 = Palgi3) = —— ((tra g)aij — g;5), (2.2)

where P, is an operator on tensors, depending on the fixed metric «, defined by the
second equality in (2.2). Here tr, g is the trace of g with respect to a. As an aside, if
a is the Euclidean metric on C", then the condition P, (u,;;)>0 is equivalent to saying
that u is (n—1)-plurisubharmonic, in the sense of Harvey—Lawson [18].

Observe that, writing A:a”@ka@,

- ~ 1
95 =Xz +— (Aw)aij—uij) + 2 (2.3)

for Z given by

th = Pa(WzE) = ((tl‘a W)Oé WLE)? (24)

n—1 t

and similarly, X;;=Pa(x;;). Note that we can also write W explicitly in terms of Z:

A crucial assumption we make is that W depends on Vu in the following way: we assume
that the tensor Z has the form

Zij :Z%UPJFZ;)?IM (2.6)

for some tensor Z% independent of u. In addition we have the following.

Assumption for W. In orthonormal coordinates for « at any given point, the com-
ponent Z;z is independent of u; and u; (in other words, Z%:O for all ¢ and j), and V,;Z;

is independent of u; (in other words, V;Z%=0 for all 7).

Here, V is the Chern connection of . This assumption expresses a certain skew-
symmetry requirement for the tensor W. This assumption is satisfied for the (n—1)-
plurisubharmonic Monge-Ampere equation, the case of most interest to us, see (4.3)
below, the key reason being that the torsion tensor is skew-symmetric.

Let us record here a few consequences of this assumption, which will be used later.
Taking V, of (2.6), setting i=j, evaluating at that point and using that ZZ%:O7 we
see that V,Z;; is independent of u;; and u; (at that point, in orthonormal coordinates
for ). Here, the subscripts of u denote ordinary partial derivatives. Similarly, V;Z,; is
independent of w;;. Taking two covariant derivatives, we have

ViViZ; =ViNi Zouy+ 22NV jup+ Vi ZENVu, + V3 25V iy,

+ ViV ZPus+ ZENViViup+ Vi 20V up + Vi ZEV s,
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and evaluating at our point and using the assumptions V;Z-=0 and Z-=0, we see that
V;V.Z5 is independent of wg;, uz7, w7 and ug;.

Given a smooth function h, we study equations of the form
F(A)=h,

where A is the endomorphism A§:aiﬁgjﬁ of the holomorphic tangent bundle, which is
Hermitian with respect to the inner product defined by a, and F(A) is a symmetric

function of the eigenvalues A1, ..., A, of A:
F(A)=f(A1,., An)- (2.7)
We assume that our operator F has the special form F(M)=F(P(M)), where
P(M)=(n—1)" (Te(M)I - M),

analogous to P, above (here writing Tr(M) for the trace of the matrix M), and

F(B) = f(:ula [EXS) :U’n)a
where p1, ..., iy, are the eigenvalues of B, and f is another symmetric function. In terms
of eigenvalues, this means that

Ty s M) = (foP)Y (AL, ooy An), (2.8)

where we are writing P for the map R —R"” induced on diagonal matrices by the matrix
map P above. Explicitly, writing u=P(\) for the corresponding n-tuples A, u€R"™, we
have )
FOL, oy An) = Fpiny ooy pim),  for ,uk:EZ)\i. (2.9)
i#k

Assumptions for f and h. We make the following assumptions on f , and the func-
tion h in our equation:

(i) f is defined on an open symmetric convex cone I'GR™, containing the positive
orthant T'y,={(z1, ..., zp) ER™:2;>0,i=1, ..., n}.

(ii) f is symmetric, smooth, concave and increasing, i.e. its partials satisfy f;>0 for
all 7.

(iii) sup,y f<infas h.

(iv) For all €T, we have

lim f(tp) =sup f,
t—o0 T

where both sides are allowed to be oo.
(v) h is a smooth function on M.
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Define the cone TCR™ by I'=P~Y(T'). Observe that P maps I',, into T',. It is then
easy to see that the function f= f o P:T'— R satisfies exactly the same conditions as f . In
particular, some of the results of [34] can be applied to the equation F(A)=h. We need
the following definition (see [34, Remark 8] to see the equivalence with the definition

there), which is a modification of a notion introduced by Guan [14].

Definition 2.1. We say that u is a C-subsolution for the equation F(A)=h if the
following holds. Let g;; be defined as in (2.1). We require that for every point x€ M,
if A=(A1,...,\,) denote the eigenvalues of the endomorphism a?g;; at z, then for all
i=1,...,n we have

tlgglo f(A+te;) > h(z).
Here e; denotes the ith standard basis vector. Note that part of the requirement is that
A+te; €T for sufficiently large ¢, for the limit to be defined.

With this background, our main estimate is the following, analogous to the main

result in [34]. We will give the proof in §3.

THEOREM 2.2. Suppose that u is a C-subsolution for the equation F(A)=h, and
u s a smooth solution, normalized by sup,; u=0. Suppose that F and h satisfy the
assumptions above, including the assumption for the gradient term W. Then, for each
k=0,1,2,..., we have an estimate ||ullcr(nrr,a)<Cr, with constant Cy depending on k,
on the background data M, «, x, F, h, the coefficients of W and the subsolution u.

The case of primary interest for us is equation (1.7), which corresponds to the

symmetric function

f(ula-~-aﬂn):10g(ﬂl Mn) (2.10)

on the positive orthant f:F,L. It is straightforward to check that f satisfies the conditions
above. Indeed, f converges to —oco on the boundary T, so (iii) is satisfied, and for (iv)
it is enough to note that f(tu)=f(u)+nlogt, which converges to co as t—oco.

In addition, if pel’,, then we also have

Jim fe) =ox
for all . This means that for a function u to be a C-subsolution for this equation, the
only requirement is that, at each point, the eigenvalues X of a'Pg;; satisfy P(\)€T,. In

other words, the requirement is that g,;, defined in (2.2), is positive definite.
Note that, if u is a C-subsolution, then replacing x by

Xij = Xij Hu5+Wiz(Vu),

we may assume that u=0. The important consequence of 0 being a C-subsolution is the
following, which follows from [34, Proposition 6 and Lemma 9].
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PROPOSITION 2.3. Suppose that 0 is a C-subsolution for the equation F(A)=h, and
u is a solution. Define g;; as in (2.1). There are constants R, x>0, independent of wu,
with the following property. Let x€M, and choose orthonormal coordinates for a at z,
such that g is diagonal, with eigenvalues A=(\1,...,\n). If |A\>R, then there are two
possibilities:

(a) we either have

M=kl > 2D f(),
i i

(b) or fu(N)>s>", fi(A) for all k.

In addition ), fr(X)>z.

We collect some other basic properties of the functions f and f . Suppose that \eT’
with Ay >...2\,,. Then p; <...<py, and so, by property (ii), fiz..>f.>0 (see e.g. [34,
p.12]). We have

1 -
fr=—— Zf (2.11)
i#£k
which implies that 0< f <...< f,. Also, for k>1,
o< L <<, (2.12)
n—1

i.e. the fx for k>1 are all comparable, while f; may be relatively small. In addition,
from (2.11) with k=1, we obtain

fi<(n—=1)f1, fori>1. (2.13)
Proposition 2.3 is easy to verify directly in the case of equation (1.7), where

f()‘) = log(:ul Mn)v

with py defined as in (2.9). Indeed, in this case

~ 1
fi(p) =—
(k) i
and ) )
A)=—— —.
== Z "
i#k
The function 0 being a C-subsolution means that X in (2.3) is positive definite. We
have

PSS i%ﬁ>72 ui =7y fi(V),
k i i k
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for some 7>0 depending on a lower bound for . We also have
Z Ak fe(A) =n.
k

It follows that we have the alternative (a) in Proposition 2.3 whenever there is one
sufficiently small p;, which by the equation f(A)=h is equivalent to having at least one

large p;, i.e. at least one large A;. In addition,

n

1
S =) 2l 1)V = e,
k 1

i=1

so that the final claim in Proposition 2.3 also holds.

3. Proof of the main estimate

In this section, we give the proof of Theorem 2.2.

First of all, a uniform bound ||u|| . 3y <C' can be obtained by a simple modification
of the argument in [34, Proposition 10 and Remark 12], which is itself inspired by Blocki’s
proof of the L estimate in Yau’s theorem [2]. In the setting of equation (1.7), the L
estimate of u was first proved in [40], using a different method more analogous to the
arguments in [4], [37], [39], [43].

Our main goal is the following estimate:
sup|\/—185u|a<C(sup|Vu|i—|—1), (3.1)
M M

for a constant C' depending only on the fixed data of Theorem 2.2. We remark that an
estimate of this form was proved in the context of the complex Hessian equations by Hou—
Ma~Wu [20], making use of ideas of Chou—Wang [5]. For the (n—1)-plurisubharmonic
equation (namely, equation (1.7) without the linear term in Ju), an estimate of this
type was proved in [39], [40]. This was then generalized much further in [34], where
the estimate was shown to hold for a large class of equations. Our proof begins along
similar lines to these papers. The new difficulty comes from the linear term in Qu, which,
fortunately, has a special structure that we can exploit.

In fact, the estimate (3.1) is equivalent to the bound
)\1 < CKa

where K=1+sup,, |VulZ and ) is the largest eigenvalue of A=(A%)=(a’g;;). Indeed,
our assumption on the cone I" implies that ), A; >0 (see Caffarelli-Nirenberg-Spruck [3]).
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Then, if A1 is bounded from above by CK, so is |\;| for all 4, giving the same bound for
supy, |vV—100u| 4.

We consider the function
H =log M +¢(|Vul2)+(u),

where ¢ is defined by

1 t
o) =z 1ox(1- 3¢ ).
so that ¢(|Vul2)€ [0, 5 log2] satisfies

and 1 is defined by
Y(t) = Dye P2, (3.2)

for sufficiently large uniform constants D;, D2 >0 to be chosen later. By the L* bound
on u, the quantity v (u) is uniformly bounded.

We remark that we follow [34] by computing with the largest eigenvalue A; instead
of the analogous quantity in [40], but in fact either quantity works, at least in the case
of equation (1.7). Also note that, while the function ¢ here coincides with that in [20]
(and also in [39], [40]), our choice of 1 is crucially different.

We work at a point where H achieves its maximum, in orthonormal complex coordi-
nates for a centered at this point, such that g is diagonal and A\;=¢;7. The quantity H
need not be smooth at this maximum point, because the largest eigenvalue of A may have
eigenspace of dimension larger than 1. To take care of this, we carry out a perturbation
argument as in [34], choosing local coordinates such that H achieves its maximum at
the origin, where A is diagonal with eigenvalues A\; >...2\,, as before. We fix a diag-
onal matrix B, with Bl =0 and 0<B3<...<B”, and we define A=A— B, denoting its
eigenvalues by Ay ooy An

At the origin, we have

;\12/\1 and S\i:/\i—B;, i>1,

and A\;>Xo>...>\,. As discussed above, our assumption on the cone I' implies that
>; Ai>0, and we fix the matrix B small enough so that

ZS\¢>—1.
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We can choose this matrix B in such a way that, in addition,

1
— <C, (3.3)
M=y

p>1
for some fixed constant C' depending on the dimension n. Now, after possibly shrinking

the chart, the quantity
H=log M +6(|Vul3)+4(u)

is smooth on the chart and achieves its maximum at the origin. We will apply the
maximum principle to H. Our goal is to obtain the bound M <CK at the origin, which
will give us the required estimate (3.1). Hence, we may and do assume that M>K at
this point.

We now differentiate H at the origin and, as before, we use subscripts k and ¢ to
denote the partial derivatives 9/0z% and 9/9z°. We have

Ak

H, < +¢' (0P Tupugr +aPTuppug+ (0P9) gupug) +10 g
1
k ) (3.4)
_ )‘Lk / pg A A1k / /
=3 +¢" (upupk +uprus+ () pupug) +9'uy = 3 +o' Vi +9 ug,
1 1

where Vj:=u,upp +uprus+ (aP?)uyug. Differentiating once more,

= 5‘1 kk |5\1 k|2
S VI v +¢/ <upupkk+upupkk+2|upk2+Z|upk|2
1 p p

+(aPT) gupugr + (o) puprtig+ (o) upug+ (o) i (uptigy +Upwq)>
+¢//|Vk|2+w//|uk|2+w/u1€E7

where we use the convention that we sum in all repeated indices except the free index k.
Since 1/4K<¢'<1/2K, we can absorb all the terms involving « into the squared

terms up to a constant, i.e. we have

7 5‘1 kk |5\1 k|2 7 1 2 2
S 5 _ > - _ _ _
DY v +¢ (upupkk+upupkk)+5K Ep (lupr|* +|upe|”) 55

+¢”|Vk|2+¢”|uk\2+¢/uk1}—G

The constant C' denotes a constant that may change from line to line, but it does not
depend on the parameters D; and Dy that we are yet to choose.
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e Calculation of 5\1,,6,;

Let us now compute the derivatives of Ai. We have the following general formulas for
the derivatives of the eigenvalue \; of complex nxn matrices at a diagonal matrix with
distinct real eigenvalues (see for instance Spruck [31] in the case of matrices with real
entries):

NPT = 5,55,

Ouadirdps | () 5 disdigdra (3.6)

prq,rs __ _ 5.
M= (10n) Xi—Ap Ai—Ar

where AP? denotes the derivative with respect to the (p, q)-entry AP of the matrix A, as
a complex variable.
Denoting by A1 the largest eigenvalue of the endomorphism A again, we have, using
(3.6),
5\1,k = S\Ifqvk(jlp) Vk(A )=Vikgi1— VkB% :glik‘f'(aﬂ)kglia (3.7)

since Vi B{=0 at the origin. Here we computed using covariant derivatives with respect
to the Chern connection of «, which makes the positivity of certain terms more apparent

when we take second derivatives:
Ak = MIVEVRAD N (VL AD) (VAL = ViV + 77 (VAR (V3 AD),  (3.8)

where we used (3.6) and the fact that V; V. B{ =0 at the origin. To rewrite this in terms

of partial derivatives, note first that

Vig11 = 911k — k1 9m1
ViVigit = 911k — O3 9m1 =Tt 9mir — Ui 91ak + T Thli 9ma (3.9)

=gikr 0 (Z |91mk|+/\1> :

m

In addition, we have

(ViAD) (VEA)) + +(Vidy)(VEAD)

P

NPT (VR ADY(VEAD) =D

p>1 )‘1_ D
3 (Vig1p+T 5 BE)(Vigp1) +(Vigp —Thy BE) (Vig1p) (3.10)
=1 A=A

Z |Vk91p| ‘Hvkgpl‘ )

p>1 A= Ap
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where we used (3.3) and (3.6). Recall that, due to our choice of B, we have }, Ai>—1,
which implies 1/(A; —A,)>1/(nA1+1) for p>1, and so

1
> (IVrgis*+IVrgyil*) -C

0 (A (T AT > L
)\1 (Vk q)(vk 5) 2(n>\1+1) p

To rewrite this in terms of partial derivatives, note that

Vigip = Gipk —Lh19ep = 9156 +O(\1),

where we made use of the fact that )", A\; >0 to conclude that |\;|<(n—1)A; for all i. It

follows, since we assume A >1, that

)\qus(v Ap)(vaT) 4 )\ Z glpk| +|gp1k| ) CA.
p>1

Combining this with (3.8) and (3.9), we obtain

ALkk 2 gllkk+4 " Z (lgipn*+lgp1l®) - (Z lg1me|+A1 )

(3.11)

29111@%4‘877 Z(|glﬁk\2+\gpik|2)—0(|g1ik|+)\1>-

1 p>1
Rewriting ¢ in terms of u, we have
G11kk = Xa1kk T U1iek T Witkk = X11kk T ki1 + Witk (3.12)
= Xa1kk — Xek11 T 96r11 — Wit + Witk
and so
Fkk)\l,kfc = Fkkgk’ﬁ+Fkk(W1ikE*WkE1i)

(3.13)

sm ZFkk (91502 +1gprel*) — C(F* gy 14|+ M F),

where FP? denotes the partial derivative of the function F'(A) with respect to the (p, q)-
entry of the matrix A (as explained earlier), and we have set F=)_, F¥*. Observe that,
due to (2.7) and (3.6), at the origin we have that FP? vanishes whenever p#¢q, while on
the other hand F**= f,, using the notation from §2. Recall from the last assertion of
Proposition 2.3 that

F>n>0, (3.14)

for a uniform s>0.
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e The term F**g,; 1

We now differentiate the equation F'(A)=h, using covariant derivatives to simplify a term

that appears below. Applying V;, we obtain
F"Vig45=hi,

namely,
F g+ FM™ () igy = hi.

Applying V; and setting i=1,
FPUN 194V i1gor + FH*N1V1gys, = b1
To rewrite this using partial derivatives, note that
ViVigii = 9kin1 — (0010 9mi =L Tedmir — L 1phar + 1 Tk gimg
= gre11 —2Re(T']grq1) + O ().
By rewriting ¢ in terms of u, we have

Ikql = 91gk+ Xkq1 — X1gk +Wigt —Wigk,

and hence

ViVt = geini —2 Re(T, (Wit = Wigr ) +0 (Z |91k +>\1) -

q

Returning to (3.16), and making use of (3.14), we obtain

F* i1 = —FP" V1905 Vigs—CF* > |g1ge| —CF M
q

+2 Re(Fkkﬁk(qu1 —Wigk))-

To bound the term involving W14k, we observe that

|FRR W | < C (]—')\1 +>° Fkk|upk|) .
p

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)

To see (3.19), we use the fact that A\; > K to bound the terms involving the gradient of u
that arise from Wig, when taking the 0/0z" derivative of Wig=(tra2)a1g—(n—1)Z15.

For the term involving Wi, note that

ViViWiie = ViWir =TT, Wor)

=Wigi1 T W =T Wor1 — (T )1 W +15, T . Wop.

q
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In particular,
2Re(Tf, Wig1) = Wi = ViVi Wi+ O(K'2).
Using this (and that we may assume A1 >K), we have
2FFE Re(T9, Wig1) = F¥ W01 — F* V1V W +O(FA). (3.20)
Combining (3.18)—(3.20) gives
F* a1 2 —FP9" V19 Viger + F*Wigar — FF V1 ViWg
3.21
—C(Fkk > gl +FHFY upk|+}'>\1>. (3.21)
a P
Going back to (3.13), using the square terms there to control the terms in (3.21) involving
|g1gk| for g#1, we obtain

FX i = = FP9™V 1905 Vigsr+ FF (Wi — ViViWig)

3.22
—C(Fkk|guk|+z Fkk|upk|+/\1]-"). (3:22)
p
e The term FF*V;V W,
Using (2.5) and (2.11), we have
1 o~
FH VWi = 1 Z Z F*ViViWig
Lo N (3.23)
=— D F'Y ViViWg=F"ViViZ;
i ki

Recall from (2.12) and (2.13) that F*=f; is “large”, equivalent to F**= f, for any k>1,
while Fii= fl for i>1, is “small”, bounded by F''=f;. We also recall that, as explained
earlier, the crucial assumption on Z;; implies that V1V1Z;1 does not contain the terms
U117, w11 or their complex conjugates.

Hence, using the fact that sup, ; [u;;|<CA; and A, > K,

F*Y VW < O(ﬁ“ > (k| +lug )+ F Z(Uk1|+|uk11|)+/\1]:)
k>1 k

<O(F“<|uu+|um|>+2 F’“’“<um|+|um|>+w) (3.24)

k>1

<O P a4 el 07 )
p
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We also have
U1T = G911k — X1k — Witk;
and so
¥ < P ¥ +C (3 P+ 07 ).

p

From (3.24), we then obtain

P01 Wi <C( D2 F™ gl + P gyip| + 0 F). (3.25)

p

e The term F**W, 3,z
Let us write W3 =WPu,+WPu;. We have
(WPup) e = (W) up+ (W) ki + (W) i+ WPty

and so, since we may assume that A\; > K, it follows that

FF (WPuy ) = WPFM ., —C (Z Fkk|upk+)\1]-'>. (3.26)
p

Using (3.15), we have

|Fkkukicp| = |Fkk(9k15p—incp—kacp)| < CFkk|9kE|+C]:+|FkkaEp|
< COF™ g |+ CKV2F +|FH Wy |

To deal with this last term, note that, due to (2.5), as in (3.23) we have
FY¥W, 0 = FYV W +O(KY2F) = F'V , Z; + O(K/2 F),

and using the crucial assumption on Z;;, as explained earlier, we see that V,Z;7 is
independent of uy; and u;7. It follows that these Hessian terms can appear only with
the “small” coefficients F* with i>1. We obtain

MW | < C(ﬁ“ S (gl +ugy )+ Z<|ukp|+|ukp>+f<l/2f)
k>1 k

<C (Z F¥ g+ Fkk|upk|+K1/2f> ,
p

p

and so

|F | < c(Z F e+ Fkk|up,;|—|—K1/2]-'). (3.27)
P P
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From (3.26), we then have (using A1 > K)

Fkk(T/Vpup)kjc >-C (Z Fkk|upk|+z Fkk|upk+)\1]:> .
p

p

A similar argument gives the same estimate for F**(WPuz),z, and this completes the

required estimate for F**W 1.5
FFRW e > —C (Z Fkkupk|+)\1]:>.
P
Putting together this last inequality and (3.25) into (3.22), we obtain
FFRA > qu’mvlgqpvwsrC<Fkk|911k+z Fkk|upk|+>\1]:>-
P

We now use this in equation (3.5) to give

FrirsvigepViger  FM A
A A2

FM™Hyp > — + P (upuppg+uptippg)

Fkk
+> = (kP4 e ) 6" FH Vi 2+ F™ g |+ F oy
P
C’<F’“’“/\1_1|gllk|+z Fkk/\l_1|upk|+]-").
P
We can use (3.27) and the fact that ¢'<1/2K to bound the terms involving ugj
and u,,x:

1 1
> F fupupg| < C(;(m > F M gkl + 573 ZF'”“Iukarf),
p P

p

which in turn can be controlled by the good squared terms |uy|*+|u,z|? at the cost
of an extra multiple of F. In addition, since we assume A;>>K, we can control the
F*eXTupk| term in the same way. We therefore have

0> F*H ;> — FParsVygo5Vigse  FP A il
= =

A A2
FkE
3 g g )+ 6 FH Vi (3.28)
p

" P [ug |+ FM up — C(FM AT gy1y, |+ F).
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We now deal with two cases separately, as was done in Hou—-Ma—~Wu [20], depending
on a small constant §=6p, p, >0 to be determined shortly, and which will depend on the

constants D; and D.

Case 1. Assume 0\ >—)\,,. Define the set
I={i:F">s'F!}.

From (3.4) and the fact that Hy=0 at the maximum, we get

_Z)\i

=N F ¢ Vi un |

kel 1 kel
> —2(¢")? ZFk’“|Vk|2—2(¢’)2 ZFkk|uk|2 (3.29)
k¢l k¢l
> QS/IZFkk'V |2 ( ) lFllK
k¢l

For kel we have, in the same way,
A
Y priutis ‘ il ST PRV 452 Y PR (3.30)
kel At kel kel

We wish to use some of the good 9" F**|u;|? term in (3.28) to control the last term in
(3.30). For this, we assume that § is chosen so small (depending on ¥, i.e. on Dy, Do

and the maximum of |u|), such that
45(y')% < Sy (3.31)

Since 1" is strictly positive, such a §>0 exists.
Using this together with (3.29) and (3.30) in (3.28), we have

FPTsN 1 905V 1gsr —(1-25) Z Fkk|:\1,k|2

0>—
A A2

kel

F*k 1 3.32
+Z67(|upk“2+‘upl_g|2)+§¢NFkk|uk|2+w/Fkkukl_c ( )
p

—2(¢")26 T PN K —C(F™ A grig] + F).

To deal with the first two terms, note that (as in [34, equation (67)]) the concavity
of the operator F' implies that

Fkk _Fll
— P g0y Vg 2 Y
A1 — Ak

kel

|V19k1|2» (3~33)
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where note that the denominator involves A, instead of S\k because we are evaluating
F at A. We also remark that the denominator on the right-hand side does not vanish,
because the assumption k€I implies that F**>F'! which in turn implies that Ap <X;
because f is symmetric. By definition, for k€I we have F1' <§F¥* and the assumption

0A1>=—N, implies that

1-6 1-26
> .
A=Ak A1
It follows that
F’“k F11 1-26
|V19k1|2>z |V19k1\2 Z N Fkk|vlgki|2- (3.34)
kel kel L ker

Combining this with (3.32) and (3.33), we then obtain

kk 121y 2
0>(1-26) ) F <|v19k;l [A1kl®)
kel 1

FRE 1 3.35
L N e B e UL e (3:3)
p

=2(¢" )26 K —C(FM A guag |+ F).

We wish to obtain a lower bound for the first term in (3.35). We make the following
claim.

CLAM. For any >0 there exists a constant C. such that

|V19 2 |>\1 Kl FME
S gl s S e e )
kel kel p (3.36)

+ng’Fkk|uk|2+st’}'—C]:,

as long as A\ /K is sufficiently large compared to ¢’ (the constants D1 and Do of ¢ will

be chosen uniformly later).

Proof. First, we compare Vg, to 5\1,1@- We have

Vigk1 = k11— p9p1 = Xoe11 Hurt1 Wit +O (A1) = X1 Hua 1+ Wit +O (M)
= i1k~ Witk + Wit +O(A1) = Ak — Wi + Wi +0(A1),

absorbing bounded terms into O(A;) and using (3.7). It follows that for any k, without

summing,

CUALI(Wage] Wit )+ As,

IVigril® = +Win > +A7). (3.37)
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e The terms in (3.37) involving W
Note that if k€I then k#1, and so from (2.5) we have

Wit = (tra Z)agqr — (n—1) Zp11.-

Our basic assumption for Z implies that Z,1,=V1Z,1+0(Z) does not contain the Hes-
sian terms w17 and wij. It follows that Wi, and its complex conjugate do not contain
these Hessian terms. The term W3, and its complex conjugate also do not contain the
Hessian terms wy1; and wuji, since each Hessian term must contain a k-derivative. To

simplify the formulas, let us write

U:Z |Upql-

p>1
g1

It follows that
Wit [+ Wi < C(A+U), (3.38)

and so the terms |Wyi;|?+|Wi1|? in (3.37) can be bounded by C(\2+U?).
We now use these to estimate the negative terms in (3.37). Using H;,=0 together
with (3.38), we have

Al ((Waze] + Wit |)
= M| (upusp+urpus+ (@) pupus) + o we | (Wi |+ Wi |)

o (3.39)
<3E (Z s+ |“rk|+K1/2)(A1+U)+C>\1|1//| Jur| (M +0).
We have
C)q 1/2 C)‘l 1 )
SK1/2 (Z fure| + D k| + K2 ) < 257 Z \urk\+2K1/2U+OA (3.40)
r T
and
CAi 1/2 N CAi
SK1/2 (Z|urk|+zu7-k+[( 2\U < Ut U oMU
' " (3.41)
CA} O\,
K1/2U K1/2U :

Next, for any £>0, there exists a constant C. such that

MY | Jug|\ < —eXFy = N2C Jug|?, (3.42)
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where we have used the fact that ' <0. Also,
MW fur|U < =Md' U2 =X Jug .

Combining (3.39) with (3.40)—(3.43), we obtain

A1
sl (Ware +Werl) <€ (7 S ol + iU+ iU+

X a2 — N2 — A A¢W)

Using H,=0 again,

ALl
A1

= |¢/(upuﬁk Fuprup+(aP?) pupug) +10 up|

S oK1 2K1/2 Z |“P’f‘+2K1/2U Cet)'Jup|* —ey/+C.

We then obtain

Vigiil® o Al 1 1
A2 > \2 -C K172 Z|UPE|+K1/2U
)

1
/\ K1/2

Summing over k€I, we have

\V19k1|2 Fkk|)\1 k|2 1 kk 1
Z > Uz ZF ‘“p1§|+K1/2}—U

kel kel

1
g FUPH F—eFy' — ’Fkk| K| )\¢’_7—‘U2>
1

)\ K1/2
+Coyp PP |y .

First, we use

c kk 1 kk 2
K12 ZF |UPE‘<ﬁZF |upr|"+CF.
p p
Note that all F¥*, with k>1, are comparable to F. It follows that

C kk 2
KW?U 5OKZF [upk|>+CF

and

C 2 C kk 2 1 Kk )
w77 U S s LT el < g5 3P

1
U%15w1MWHMwWﬁ+QWWﬁ.

203

(3.43)

(3.44)

(3.45)

(3.46)

(3.47)

(3.48)

(3.49)



204 G. SZEKELYHIDI, V. TOSATTI AND B. WEINKOVE

As long as A\1/K is sufficiently large depending on ¢’ (i.e. depending on D; and D,

which will be chosen later), we have

C 1
)\—lz/;’FUQ <soxm > Ry 2. (3.50)
p

and using (3.47)—(3.50) in (3.46), we finally obtain

Fkk|vlgki|2 Fkk|:\1 k|2 Fkk
> S Dl L SR

A2 7 12K
kel kel P
+C ) FF* |uy |2 4-eCyy/ F—CF.
This completes the proof of the claim. O

We now use the claim in (3.35) to obtain

Fkk 1
0> Z ﬁ(|upk|2+ |Upfc\2)+§¢/,Fkk\uk|2+¢/FkkukE (350)
p .

—2(¢")26 T PN K — C(F™ A guig| +F) + Oty F¥* |y, > +-eCp' F.

e The terms involving |g7;| and F**u,z

From (3.7) we know that
grik = Ak +O(A),

and so using (3.45) we get

_ 1
F* AT g11el < K2 > P (|upk|+upk|) — Cett FF¥[uy [P —e/ F+CF. (3.52)
p

The terms involving |ugi| and |upyk| can be absorbed by the squared terms |u,z|* and

lupk|? in (3.51), and so we obtain

Fkk 1 )

02 37 S (g P+ g ) 50 F 0 Py

P (3.53)
—2(")20 P FU K —CF+C) FF* |ug, > +eCy' F.

As for the term involving u,z, we have

W P ue = F** (g0 — Xun = Wis)-
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As in (3.23), we have

S OFMW =Y FZ;.

k %

Recall that Z;7 does not contain u; and i, and F! i the only “large” coefficient of
order F** for k>1. It follows that

|FH* W5 S CF**|ug| < CoF* [ug P+ F,

and so
O FFu 0 > ¥ (g — xar) + Cetb F¥* [ug | +-ey)' F. (3.54)

From (3.53), we then finally obtain (if necessary replacing C. by another constant de-

pending only on ¢ and the allowed data), that
n( M N2 s—1 Lo 1\ k(2
0=F 407*2(1/’) 0K |+ 577/1 +C" | F* ug

—CoF+eCoth' F—' F** (X ot — 91k)»

(3.55)

for a uniform Cy. We have used the fact that |u;7[*> 1A} —CK.

Under the assumption that the function ©=0 is a C-subsolution, and that A\;>1, we
may apply Proposition 2.3 and see that there is a uniform positive number >0 such
that one of two possibilities occurs:

(a) We have F** (v, —g,r)>»F. In this case we have

AL 1
0>F" <40}{ 2(1//)2511() + <2¢”+CE¢/) F*¥|ug|? = CoF +eCotp F—/ s F.

We first choose £>0 such that 5C’0<%x. We then choose the parameter Ds in the
definition of 1 (t)=D1e~P2! to be large enough so that

L' > Cy').
At this point, we have

A2 1
S plt 1 n2s—1 _ =Y i
0=F (40K 2(¢)%6 K) CoF 2¢zf

We now choose D; so large that 7%77/1'%> Cy, which implies

)\% <2(’(/J/)26_1K.
40K
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Note that § is determined by the choices of D; and D,, according to (3.31), so we obtain
the required upper bound for A\;/K.
(b) We have F'1>3F. With the choices of constants made above, (3.55) implies

that
)\2
0> z]—"(4OK (¢’)251K) —CoF+eCo)! F+Crp F+4' F**g, 7,
for another uniform constant C;. Since F** g, <F\;, we can divide through by FK and
obtain
/\2 —C(1+K "+ M K™
> —
0 10K2 H(1+K "+ b,

for a uniform Cs. The required upper bound for A\; /K follows from this.

Case 2. We now assume that d\; <—X\,, with all the constants D, Dy and § fixed
as in the previous case. We first use that F"" >F /n, as well as A2 >822, to bound

Fhh Fro o F )
Z 6K (|upk| +|upk| ) 6K |unn| nK‘)‘n_Xnﬁ_Wnﬂ

F s, CF 52 5
> 10nK|>\n| —?(1—&-1() Ton K]—")\l—C’}'.
In (3.28) we now discard the positive first term and the term involving ¢, and use this
to obtain
Fkk 5\ 2 52
0=>-— | Ml FA 46" F¥ Vi P+ F¥ = C(FM AT g11i |+ F).

N T Tonk
To deal with the terms involving F**u,; and |g;1x|, we note that
F*¥ uz| < OFM

and, since gﬂkZS\Lk +0O(\),

CF* >\ ! < OFFR TN +C’f<1 kk|)\1k|2+075
911k 1 | 1k| 2,\7f ’
Then, we obtain
3 FFEIX )2 52
0>-2 |1k| 7_—/\2 Fkk¢”|‘/k\2 CFM. (3.56)

2 A2 1() K
Using H =0 we have, since ¢’ is fixed now and bounded,

3Fkk|)‘1k| kk 2 kk( /\2 2 kk(,11\2 2
SR v S MG Vi < 2F (2 Vil OFM ('

< F*¢"|\Vi|* +CFK.



GAUDUCHON METRICS WITH PRESCRIBED VOLUME FORM 207

Returning to (3.56), we obtain, since we may assume A\ > K,

5272
10nK

0> F—CMF.
Dividing by A1 F gives the required bound for \; /K.
Then, we immediately deduce the bound (3.1), namely

sup |v/—108ul, < 0(sup |vu|§+1>. (3.57)
M M

A blow-up argument as in [34, §6] combined with a Liouville theorem [34, §5] (see also
[8], [39], [40]), shows that sup,, |[Vu|><C, and so we get a uniform bound |Au|<C.
Here we remark that in the blow-up argument the only difference from the setup here
(compared to [34]) is the presence of the term W;;. However, this term is linear in Vu
and so converges to zero uniformly on compact sets under the rescaling procedure of [34]
(compare [40, §6]).

We can then apply the Evans—Krylov-type result in [36, Theorem 1.1] and deduce a

uniform bound

llullc2.8(ar,0) <C

for a uniform 0<f<1. Differentiating the equation and applying a standard bootstrap-

ping argument, we finally obtain uniform higher-order estimates.

4. Proof of Theorem 1.4

In this section, we explain how Theorem 1.4 follows from Theorem 2.2.
Write * for the Hodge star operator with respect to . This acts on real (n—1,n—1)-
forms as follows. Consider a real (n—1,n—1)-form O given by

O =(vV=1)"' 3 sen(i, §)0;dz' Adz A Adi AdZ A AdzP NZT A A" N,
i

with
1, if 1 <4,
-1, ifi>j.

sgn (i, j) :{

If we are computing at a point in coordinates so that a;;=4;;, then

*O=V-1) 0;d2 NdZ".

2]
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A basic property is that for any Hermitian metric w we have (see [39, §2], for example)

<w> (@™ )" _ (s )"

an - -

(x(am=1)m  ((n=1)la)™’

Then, taking w as in Theorem 1.4, we see that equation (1.7) is equivalent to

(x(wm~h)"

Dy = (4.1)

log
with h=(n—1)(F+b) being a smooth function. Recall that
W't =g /= 100una™ 2 +Re(v —10und(a™?)).

As in [39], we have

1
(n—1)

+(VT00uAa" ) = L (Au)a v~ 100u).

Define

7]

1 _
Zj= ((n_l)'*Re(\/—lﬁu/\a(anz))> . (4.2)
A straightforward but long calculation gives
1 S o S
7= 7(apqakeuqug,;aij —Oékéuiij}—OékeukTeﬁ

7 2(n—-1) (4.3)

pq kL, o ke, B kO o
+aP o ug Ty po; — o us Ty — o upTy5),

where we are writing Ti’;- for the torsion of «a, and T, ijnglfj-ozkg. An important point to

note is that, since the torsion is skew-symmetric (7;;;=—1};7), in orthonormal coordi-
nates for a we see that Z;; is independent of u; and wu;, and that V;Z;; is independent

of u;. Indeed, in local orthonormal coordinates for «, we have

O O LTS DI

pi ki pi ki
and, for i#£7,
1 _ _
Zi;= 1) (— Z(uiTjkTC +Ukaﬁ)_Z(UjTikk +ukaij)) )
(n—1) k#j ki

using the skew-symmetry of the torsion. Also,

1 _ _
ViZz;= 2n—1) ( Z Z(UpviTpkE +ViupTypr) +Z Z(uﬁviTpkE +ViUprkk)> ;

p#i k#i p#i k#i
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and the statement follows. We also define

%= (G ™) -

Given this, we see that (4.1) is equivalent to

log(pi1 ... pin) = h,

where y; are the eigenvalues of a'?g;;, for § given by

- - 1
9i5 = Xi5 T m((Au)aﬁ —U;)+ 2.

Since X,; is positive definite, we have that 0 is a C-subsolution. From the discussion in

82, it is now immediate to see that this equation falls into the setup of Theorem 2.2, and

so we obtain the uniform a-priori estimate (3.57). Therefore, Theorem 1.4 follows from
[40, Theorem 1.7].
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