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NOTES ON UNIPOTENT CLASSES* 

G. LUSZTIGt 

0. Introduction and statement of results. 

0.1. Let G be a semisimple, almost simple algebraic group over C. Let W be 
the Weyl group of G. For any unipotent class C of G, let pc be the irreducible 
representation of W attached by Springer's correspondence to the pair consisting of C 
and the local system C on C. We say that C is special if pc is a special representation 
of W (that is, a representation in the class Sw introduced in [LI]). It is known that 
C i-» pc is a bijection between the set of special unipotent classes of G and the set of 
special representations (up to isomorphism) of W. 

The special unipotent classes play a key role in several problems in representation 
theory, such as the classification of irreducible complex representations of a reductive 
group over a finite field, and the classification of primitive ideals in the enveloping 
algebra of a semisimple Lie algebra. Unfortunately, their definition is totally un- 
geometrical. For this reason, special unipotent classes are often regarded as rather 
mysterious objects. To partially remedy this situation, we have felt the need to try 
to unveil some of the purely geometrical properties of special unipotent classes, or 
rather, of the closely connected special pieces (defined below); this has led to the 
present paper. 

For any special unipotent class C in G, let C be the subset of the unipotent 
variety U of G consisting of all elements in the closure C of C which are not in the 
closure of any special unipotent class C" ^ (7, C' C C; this definition appeared in [Sp]. 
Clearly, the sets C (for various special unipotent classes C) are irreducible,locally 
closed subvarieties of U\ Spaltenstein [Sp] has shown that they in fact form a partition 
of U. The subvarieties C will be called special pieces. Note that each special piece is 
a union of a special class (which is open dense in the special piece) and of a certain 
number (possibly zero) of non-special classes. Let 7(C) be the set of unipotent classes 
that are contained in the special piece C. 

One of the results of this paper is: 
THEOREM 0.2. Two unipotent classes Ci,C'2 of G belong to the same special 

piece if and only if PCDPCQ. belong to the same two-sided cell ofW. 

0.3. Now let c be a two-sided cell of W and let Wc be the set of irreducible 
representations of W (up to isomorphism) that belong to c. To c we attach, as in 
[L3], a finite group Qc and an imbedding 

(a) Wc -+ M(Gc); 
here M(QC) is the set of pairs (g, r) where g is an element of Qc defined up to conjugacy 
and r is an irreducible representation of the centralizer of g in Qc defined up to 
isomorphism. 

THEOREM 0.4. Let C be a special unipotent class of G and let c be the two sided 
cell ofW such that pc belongs to c. For any Ci G jiC), the image under 0.3(a) of pd 
(which belongs to Wc by 0.2) is of the form (#, 1) where g is an element of Qc defined 
up to conjugacy. Let Gf

c be the subgroup ofQc generated by the conjugacy classes of the 
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elements g attached to various Ci G 7(C). Then Ci *-} g is an imbedding ofj(C) into 
the set of conjugacy classes of Qc and a bijection of 7(C) onto the set of conjugacy 
classes of Q'c. 

0.5. In [L2] it was conjectured that (in the setup of 0.4), C is a rational homology 
manifold. This is now known to be true: it has been proved for the classical groups 
in [KP], and has been checked for groups of type En in [BS]; for type F4 it can be 
checked from [Sh] and for G2 it was already known at the time of [L2]. The argument 
in [KP] exhibits C (for a classical group) as a quotient of a smooth irreducible variety 
by the action of a finite group, which we can now interpret as the group Q^ in 0.4. 

0.6. Assume now that G is adjoint of exceptional type. Since the group Q^ is 
now defined in general, it seems likely that even in this case, C should be the quotient 
of a smooth irreducible variety C^ by an action of Q'c. 

If C — C, this is of course trivial: we take C^ — C. Assume now that C ^ C. 
In this case, Q'c = Qc is a symmetric group 5r where 2 < r < 5. To each Ci G 7(C) 
corresponds a conjugacy class g G Sr of cycle type given by the partition ni +712 H = 
r and to this we associate a subgroup of 5r of the form Hc1 = SVu x Sn2 x ... which 
is well defined up to conjugacy. 

We expect that the action of Qc — Sr on C* has the property that C\ is precisely 
the set of orbits of points of C* whose isotropy group in 5r is conjugate to Hc1 - 

This is consistent with the following result on the intersection cohomology of C. 
(For a unipotent class C of G we denote by Ac the group of connected components 
of the centralizer in G of an element of C.) 

PROPOSITION 0.7. Assume that G is as in 0.6, C, c are as in 0.4, and C ^ C. 
(a) We have Ac = Qc except if C is the class of type ^(^e) (notation of [Ca]) 

when Ac = Ss^Gc = S-z- 
(b) Let Ci £ 7(C), Ci / C. Then Ac^ may be identified with N{Hc1)lHc1 where 

Nffld) is the normalizer of Hd in Qc. 
(c) Let C be an irreducible local system on C coming from an irreducible rep- 

resentation E of Qc (which is naturally a quotient of Ac, see (a).) Then the in- 
tersection cohomology complex /C(C, C) is a constructible sheaf; its restriction to a 
unipotent class Ci C C, Ci / C is the local system associated to the representation of 
Ac1 — N(Hc1)/Hc1 obtained by taking the space of Hc^ -invariant vectors in E and 
regarding it as a representation of N(Hcl)/Hc1 in a natural way. 

(d) IfCijC'z € 7(C), then Ci is contained in the closure of C2 if and only if Hc2 

is conjugate to a subgroup of Hc1 - 
This is verified case by case; for (c), we make use of the tables of [BS],[Sp],[Sh]. 
The only G-equivariant local system on C not covered by (c) above is the local 

system £ on the class C of type E^bo) coming from the two-dimensional irreducible 
representation of Ac — S3. But in this case, again /C(C, £) is a constructible sheaf 
(equal to C) on C. 

If we drop the assumption that G is adjoint, and assume that C is an irreducible 
G-equivariant local system on C, then it is very likely that /C(C,£) is again a con- 
structible sheaf on C. (I have verified this in type EQ and it can be probably verified 
also in the only remaining case, Ej). Note that, in the case where C = C, the fact 
that /C(C, C) is a constructible sheaf on C is obvious. 

Note also that the constructibility of /C(C, C) remains valid in the case of classical 
groups, where it can be deduced from the results of [KP]. 
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0.8. Now let Q be a linear algebraic group over C. Let X be an algebraic variety 
over C with an algebraic action of Q. For j G Z, we write Hf(X) for the equivariant 

homology space Hf(X,C) defined in [L5, §1]. This is a finite dimensional C-vector 
space and is 0 for j < 0. 

THEOREM 0.9. Let G = Sp2r(C), G' = S02r+i(C). Lei W 6e the J^e?// ^ro^ o/ 
G and of G*. Let C be a special unipotent class of G and let C' be a special unipotent 
class ofG' such that pc = Pc ■  Then 6xmHf{C) = AimHf' {&) for allj. 

The theorem above is equivalent to the last assertion of the Conjecture 3 in [L2]. 

0.10. Notation. For two integers x,y we write x<^yiix<y — 2 and x <gC y 
if x < y — 3; we write [x,y] = {z £ Z\x < z < y}. 

If A, i? are multisets of integers, we write A < B if each number in A is < than 
each number in B. 

For a finite set X we denote by |X| the cardinal of X. Let ?P(X) be the set of 
subsets of X and let $Pev be the set of subsets of even cardinal of X. Then Vp(X) is 
naturally a vector space over F2 and ^Pev is a vector subspace. 

1. Combinatorics: type Cr. 

1.1. We fix an integer r > 2. For any n > 0 we define ^rjn to be the set of all 
sequences of integers a = (ao < ai < 02 < • • • < a2n) such that 

ao > 0; ai > 1; ap < 0^+2 for p G [0, 2n - 2]; r = Z)p6[o,2n] % ~ (2n2 + n)- 
There is a natural map ^^n -> ^r2r,n-f-i given by 

(ao <ai <02 < ••■ <a2n) ^ (6 < 1 < ao 4- 2 < ai +2 < 02 +2 < • • • <a2nH-2). 
This is a bijection if n is large enough (compared to r). We will denote by \I>2r the 
limit of ^r2r,n as n -> 00 (with respect to the maps above); we will fix n large enough 
so that ^2r,n —> ^r2r and we identify the last two sets. We may also assume that 
ao = 0, ai = 1 for any a G ^f2r- Let 

£(a) = Eo<t<i<2n inf (a^ ai) - n(4n2 - ^Z3- 

1.2. A ladder of a G ^r is a non-empty subset [k,l] of [0,2n] such that 
(aife,aA.+i,aib+2,...,a/) = (a, a + l,a + 2, a + 3,...) 

and dk-i < dk (if k > 0), a/ < a^+i (if Z < 2n). 
A staircase of a G ^r2r is a non-empty subset [k,l] of [0,2n] with I — A: + 1 even 

such that 
(afc,afc+i,afc+2, - -. ,a/) = (a, a,a 4- 2,a H- 2,a + 4,a 4- 4,...) 

and ak-'2 «: ak (if A; > 2), a/ <^: a/+2 (if I + 2 < 2n). 
It is easy to see that [0,2n] is a disjoint union of subsets that are either ladders 

or staircases. 
Let z be an indeterminate. For any integer s > 0 we set 

#2*) = #2s+i) = n;=i(i-s2o. 
Let 

n(a)=z-2ra+2B(a)ni^(|i|)~1- 
Here i runs over the set of subsets of [0,2n] that are ladders (not containing 0) or 
staircases. 

1.3. We say that a, a' in ^r2r are congruent if 

{ao, ai — 1, a2 — 1, as — 2,04 — 2,..., a2n — n} 

= {a0> ai - !> a2 - 1> a3 - 2? a4 - ^J ■ • • J 
a2n " n} 
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LEMMA 1.4. For a, a' € ^r, the conditions (a),(b), (c) below are equivalent: 
(a) a ~ a'; 
(b) {a2p -p, a2p+i -p -1} = {af2p -p, af2p+1 - p -1} /or p £ [0, n -1] as multisets 

and a2n = a^; 

fcj a2n = af2n anrf; /or any p € [0, n - 1], ( ^ a^) ) w of the form (i) (* '), or 

(n)L-isli),or(iii)(^^). 
Assume that (a) holds. We show that (b) holds. This follows from 
{ao, ai - 1} < {02 - 1, as - 2} < • • • < {a2n-2 - (n - 1), avn-i ~ n} < {a,2n - ^} 

and the analogous fact for a'. 
Assume now that (b) holds. We show that (c) holds. Fix p G [0,n — 1]. We have 

{a2p,a2p+i - 1} = {a2p5
a2p+i - !}• If ^ = a2p,a2p+i = a2p+i5 

then we are in case 

(i). Assume now that a2p = a^+i — 1, a2p+i = a'^ +1. We have Q!<IV+\ — 1 < ^p +1 ^ 
a2p+i + 1- H^nce either a^ = a^^j and we are in case (iii) or dlv = o!2vjrl - 1 and 
we are in case (i) or a^ = af^+i — 2 and we are in case (ii). 

The implications (c) => (b) => (a) are obvious. The lemma is proved. 

1.5. We say that b = (&o < 6i < • • • < &2n) ^ ^r2r is special if 62p < &2p+i for all 
p £ [0,n — 1]. Let ^^r be ^e set 0f special elements of ^r- 

LEMMA 1.6.  Given a G ^r2r; ttere is a unique b £ ^r suc^ that h ~ a.   P^e 

^2p = a2p,62p+i = a2p+i, ifp € [0,n - l],a2p < a2p+i; 
&2p = a2p - l,62p+i = a2p+i + 1; ifp G [0,n - l],a2p = flfep+i; 
62n = «2n- 
The proof is immediate (using Lemma 1.4). 

1.7. Let b G ^r- A segment of b is a non-empty subset [k, I] of [0,2n] such that 
A: is even, Z is odd, 

= (a, a + 2,a-|-2,a + 4, a + 4, ...,a + Z — fc — l,a + Z — A; — l,a-f-i — fc + 1) 

and such that fejfe_i < && (if A: > 2), bi < 6/+i. Let Sb be the set of segments of b. 
Clearly, the segments of b are disjoint subsets of [0,2n]. 

PROPOSITION 1.8. Let h G ^r- There is a 1-1 correspondence between ^P(5b) 
and the set {a G ^r2r|a ~ b}: to a subset K of Sb corresponds the sequence a = 
3.(K) G ^r2r defined by 

(ak,ak+i,ak+2,-- -^i) = (a4-l,a + l,aH-3,aH-3,a + 5, a+5,.. .,a+Z — A:, a -I-1- k) 
if [k,l] G K and at = btift$. U^^M]- 

This follows easily from Lemmas 1.4, 1.6. 

1.9. We fix b G ^^r- An integer k G [0,2n] is said to be isolated (for b) if either: 
(a) k = 2n and &2n-i < &2n, or 
(b) A: is even, 0 < A: < 2n and 6^-1 < 6^ <C fyb+i, or 
(c) k is odd and bk-i < 6AJ < fyfc+i • 
LEMMA 1.10. (a) {k G [0,2n]|A: isolated] = {k0 < ki < -•' < k2f} where fa = t 

mod 2 /or te [0,2/]. 
("tj Assume that t G [0,2/— 1] is even. Then [kt +1, A;t+i — 1] i5 a (possibly empty) 

union of staircases. 
(c) Assume that t G [0,2/] is odd.  Then [A:t,A:t+i] is a union of ladders. 
(d) The set [fo/ 4- Ijfen] w fl (possibly empty) union of staircases. 
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(e) The set [0, ko] is a union of ladders. 
(f) Assume that t G [1,2/]. Then either the unique ladder containing kt has an 

odd cardinal, or else it equals [kt-i^kt] (if t is even) or [kt,kt+i] (if t is odd). 
(g) The unique ladder containing ko has an odd cardinal. 
The proof is routine; it will be omitted. 

1.11. Let I = lb be the subset of ^P([0,2n]) consisting of those subsets of form 
[ko, fci], [fci, fe], - - - , [k2f-l,k2f] 

that are either ladders or segments for b. All segments of b appear in I; they form 
the subset S = 5b of I. The ladders in I form a subset L = Lb of I. Note that 
I = S U L. We say that ii G 5,1*2 £ L are adjacent if they have a non-empty 
intersection (necessarily one of the A^). 

1.12. Let K be a subset of S and let a = a.(K) be as in 1.8. We want to compare 
the products defining n(b),n(a). From the definitions we see that 

z-2r2+2£(a)  = z-2r2+2B(b) fl z^. 

For any [kt,kt+i] G L, the factor 0(|[/^ -f 1,^+1 — 1]|)_1 in n(b) is replaced in n(a) 
by the factor ^(\[kuk^)-1 = 0(|[A* + 1, kt+l - l}])-1^ - z*'^-*^1)"1; moreover, 
if the ladder of b containing kt (resp. kt+\) has even cardinal, necessarily kt — h-i +1 
(resp. kt+2 — kt+i 4-1) then in a it becomes a ladder of cardinal kt — kt-i or kt — kt-i — 1 
(resp. kt+2 — kt+i or kt+2 — fa+i — 1) and the corresponding factor <f)(kt — kt-i 4-1)-1 

(resp. (j){kt+2 — kt+i 4-1)-1) of n(b) would be replaced in n(a) by the factor 
<i>(kt - h-i)-1 = ttkt - h-! - i)-1 = Hh - h-i + ij-^i - z**-*'-^1) 

(resp. 
(l>(kt+2-kt+i)-1 = ^+2-^+i-I)"1 - cl>(kt+2-kt+i-hl)-1a-^t+2-kt+1'h1))- 

On the other hand, if the ladder of b containing kt (resp. fa+i) has odd cardinal, then 
it becomes a ladder for b shorter by one, and the contributions to n(b),n(a) would 
be the same (since (j)(2s) = </>(2s 4- 1)). The factors of n(b),n(a) other than those 
mentioned above are the same. We see that 

n(a) = n(b) nil€K TT^IT ni2€£-K»(i - s"21)- 
Here K$ denotes the set of all elements of L that are not adjacent to any element of 
K. We can rewrite this as follows: 

n(.> = n(b)n<.-*->nT^n^b^ 

izEL hZK heK* 

The last product can be expanded into a sum: 

z rr   ^ ■i21 =   nia€^ ^|i21   = Sz;zc^ nia6z('"|lal -1) 

^ ni2^-z(^-|i21 -1)  Y£Kt UbeYi*-™ -1)' Z;ZcKt AAiafe/iM-^v / Y;YCKV 

Hence 

n(a) = n(b)n(i—w)  E  n bwrry 
heL Y;YcKt 
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We now compute 

£ n(a) =  £ IIWJO) = n(b) fl (i - -|i21)    E    n b^T) ■ 

Using the definitions and Lemma 1.10, we see that 

nw n,aeL(i - z{hl)=z-^+^w n,6i Mil - 2)-1 n, ^(UD-
1 

where j runs over the subsets of [0,2n] - U^:i]ei[k + 1,1 -1] that are ladders of b (not 
containing 0) or staircases of b. 

1.13. Let Ab,i be the subspace of 9($ev({ko,ki,..., fe/}) spanned by the sets 
{k>2g,k2g+i} with g € [0,/ — 1]. (These form a basis £b,i.) Let Ab,2 be the subspace 
of $Pev({fco> fci,..., k-zf}) spanned by the sets {fep-i, k2g} with g £ [1, /]. (These form 
a basis -Bb,2-) We define an (injective) map Sb *->' 5b,i by (6^,6^+1,6^+2,... ,6/) i-»> 
{A:,?}. This extends uniquely to an (injective) linear map of i^-vector spaces T : 
qj(Sb)^Ab>i. 

2. Combinatorics: type By.. 

2.1. We fix an integer r > 2. For any n > 0 we define ^r+i-.n to be the set of 
all sequences of integers a = (ao < CLI < ^2 < • • • < a2n) such that 

ao > 0; ap < ap+2 for p e [0,2n - 2]; r = £p€[o,2n] a^ - 2n2. 

There is a natural map ^2r+i,n "^ ^r+i^+i &Yen by 
(ao <ai <a2 < ••• < a2n) •-> (0 < o'< ao + 2 < ai 4-2 < 02 + 2 < ••• <a2n+2). 

This is a bijection if n is large enough (compared to r). We will denote by ^2r+i 
the limit of ^r+i n as n —> 00 (with respect to the maps above); we will fix n large 

enough so that ^2r+i,n ~* ^'ir+i an(l we identify the last two sets. We may also 
assume that ao = 0,ai = 0 for any a E ^2r+i- Let 

£(a) = Eo<i<j<2n infCai,^) - n(n - l)(4n + l)/3. 

2.2. The ladders and staircases of of a £ ^r+i are defined exactly as in 1.2. 
Again, [0,2n] is a disjoint union of subsets that are either ladders or staircases. We 
set 

n(a)=z-2'-2+2B(a)ni^(|i|)-1. 
Here i runs over the set of subsets of [0,2n] that are staircases (not containing 0) or 
ladders; </> is as in 1.2. 

2.3. We say that a, a' in ^r+i are congruent if 

{ao, ai, a2 - 1, as - 1,04 - 2,..., a2n - ^} 

as multisets. We then write a ~ a'. 
LEMMA 2.4. For a, a' e ^^r+i; ^e conditions (a),(b),(c) below are equivalent: 
(a) a ~ a'; 
W {a2p-i — (p— 1), a2p — p} = {o2p-i — (P~ I)? a2p —

P} /or P ^ [1>n] as multisets 
and ao = ag/ 

^ ao = aj, and, for any p <E [l,n], (^^ ^) «5 0/ tte /0?TO ("*>> (H)^ or ^ 

(s:ls:1)J-^(s;ls:1)- 
The proof is similar to that of 1.4. 
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2.5. We say that b = (bo <bi < ... b'Zn) G ^2r+i ^s special if 62P-1 < &2p for all 
p G [l,n]. Let ^^r+i b6 ^e set 0^ sPecial elements of ^r+i- 

LEMMA 2.6. Given a £ ^^r+i; there is a unique b E ^r+i such that b ~ a. We 
have 

b'2p-i = CL2p-.i,b2p = a2p; z/p E [l,n],a2p-i < a2p; 
b2p-i = 02p-i — l3&2p = a2p + 1, 2/p € [l,n],a2p-i = a2p; 
bo = ao. 
The proof is immediate (using Lemma 2.4). 

2.7. Let b € ^r+i- A segment of b is a non-empty subset [&,£] of [0,2n] such 
that k is odd, Z is even, 

(6jb,6jfe+i,frjb+2,- •■jft/) 

= (a, a + 2,a-h2,aH-4, a + 4,..., a + i — A; — 1, a + Z — A: — 1, a + i — A: + 1) 

and such that bk-i < bk, h < 6/+i (if I < 2n). Let 5b be the set of segments of b. 
Clearly, the segments of b are disjoint subsets of [0,2n]. 

PROPOSITION 2.8. Letb e *2r+i- There is a 1-1 correspondence between ^(Sh) 
and the set {a G ^r+il21 ~ ^)}; to a subset K of Sh corresponds the sequence a = 
a(K) G %r+1 defined by 

(ak,ak+i,ak+2i- ■ ^i) = (a + l,a + l,a + 3,o + 3,a + 5,a+5,.. .,a+l-k,a + l-k) 
if [k,l] G K and at = bt if t $ U^^e^fA;,/]. 

This follows easily from Lemmas 2.4, 2.6. 

2.9. We fix b G ^Sr+i- ^n integer k G [0,2n] is said to be isolated (for b) if 
either: 

(a) k = 2n and &2n-i < fen? or 
(b) A: is even, 0 < A: < 2n and fe^-i <C 6^ < 6fe+i, or 
(c) A: is odd and bk-i < bk < 6ife+i. 
LEMMA 2.10. fa) {A: G [0,2n]|A: isolated} = {ko < fa < - • < k2f} where fa = t 

mod 2 fort £ [0,2/]. 
fa) Assume that t G [0,2/ — 1] zs odd. Then [fa 4-1, A:t+i — 1] zs a (possibly empty) 

union of staircases. 
(c) Assume that t G [0,2/] z's even.  Then [fa,fa+i\ is a union of ladders. 
(d) The set [k2f 4- l,A;2n] is a union of ladders. 
(e) The set [0, fa] is a (possibly empty) union of staircases. 
(f) Assume that t G [0,2/ — 1]. Then either the unique ladder containing fa has 

an odd cardinal, or else it equals [fa-i,fa} (ift is odd) or [fajfa+i] (ift is even). 
(g) The unique ladder containing k2f has an odd cardinal. 
The proof is routine; it will be omitted. 

2.11. Let I = lb be the subset of $P([0,2n]) consisting of those subsets of form 
[fo, fa], [fa,fa], -•, [faf-i, faf] 

that are either ladders or segments for b. All segments of b appear in I; they form 
the subset 5 = 5b of I.   The ladders in I form a subset L = Lb of I.   Note that 
I = S U L.   We say that ii  e S/12  £ L are adjacent if they have a non-empty 
intersection (necessarily one of the fa). 

2.12. Let K be a subset of S and let a = a(iiT) be as in 2.8. As in 1.12, we see 
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that 

E n(a) = n(b) 11 a -zli21)       E       n hwrvi- 

and that 
n(b) ni26L(i - zM)=z-^+^w ni€i ^lii - 2)-1 n, ^IJI)-

1 

where j runs over the subsets of [0,2n] — U[kj]€i[k + 1,1 — 1] that are staircases of b 
(not containing 0) or ladders of b. (K$ is defined as in 1.12.) 

2.13. Let Ab,i,£b,i? Ab,2j£b,2 ^ defined as in 1.13. We define an (injective) 
map 5b ^ £b,2 ky (6fc,6ife+i,6ib+2,-•• j6/) ^ {^JO- T^8 extends uniquely to an 
(injective) linear map of i^-vector spaces T : ^(Sb) ^ Ab2. 

3. Combinatorics: type Dr. 

3.1. We fix an integer r > 4. For any n > 0 we define \p2r;n ^0 be the set of all 
sequences of integers a = (ao < ai < a2 < • • • < a2n+i) such that 

ao > 0; a^ < ap+2 for p G [0,2n - 1]; r = £pe[o,2n+i] ap - (2n2 + 2n). 

There is a natural map ^2r,n "^ *2r,n+i given by 

(ao < ai < a2 < • • • < a2n+i) ^ 

(0<0<ao-f2<ai+2<a24-2<---< a2n+i 4- 2.) 

This is a bijection if n is large enough (compared to r). We will denote by ^r t*16 

limit of ^^ n as n —» oo (with respect to the maps above); we will fix n large enough 

so that ^^n "^ ^'ir and we identify the last two sets. We may also assume that 
ao = 0> oi = 0 for any a G ^y,. 

3.2. The ladders and staircases of a E ^r are defined as in 2.2 (replacing 2n 
by 2n 4-1). Again, [0,2n + 1] is a disjoint union of subsets that are either ladders or 
staircases. 

3.3. We say that a, a' in ^r are congruent if 

{ao,ai,a2 - l,a3 — l,a4 — 2,... ,a2n+i - ^} 

= {aojfli,^ - 1^3 --1»a4-2,...,02n+i -n} 

as multisets. We then write a ~ a'. 
LEMMA 3.4. For a, a7 £ ^r? the conditions (a),(b),(c) below are equivalent: 
(a) a ~ a'; 
r&J {a2jP-i-(p-l),a2p-p} = {^p-i -(p-l),a2p-p} /orp G [l,n] as multisets 

and ao = a^, a2n+i = a^+i; 

^ ao = Oo,a2n+1 = ^n+l   an^ /0r any P e i1'71]'  (aipli o^ )   «5 0/ *e for™> (*) 

(::)>or(ii)(s:is
s

+1),or(ni)(°-si^). 
The proof is similar to that of 1.4. 

3.5. We say that b = (&o < h < ... 62n+i) € ^r is special if 62^-1 < ^p for all 
p E [l,n]. Let ^Jr ^e the set of special elements of ^r- 

LEMMA 3.6. Given a £ ty^r* there is a unique b £ ^r such that b ~ a. PFe 
have 

hp-i = a'ip-iib'Zp — a-zp, if p £ [l,n],a2p-i < 02^/ 
^2p-i = a2p_i — l,&2p = tt2p -hi, if p £ [l7n],a2p-i = a2p; 
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bo = ao; 
fan+l — Cl2n+1 - 
The proof is immediate (using Lemma 3.4). 

3.7. The segments of b G ^r are defined just as in 2.7 (replacing 2n by 2n + 1). 
Let Sb be the set of segments of b. Clearly, the segments of b are disjoint subsets of 
[0,2n + l]. 

PROPOSITION 3.8. Leth e ^,§r. There is a 1-1 correspondence between ^P(5b) 
and the set {a £ ^'-IA

3
- ~ ^}: to a subset K of Sh corresponds the sequence a = 

B.(K) e %r defined by 
(ak,ak+i,ak+2, ■• ■ ,cii) = (a+l,a4-l,a + 3,a+3,o + 5,a+5,.. .7a-\-l-k,a-\rl — k) 

if [k, I] G K and at = btift$ U[kii]eK[k, I]. 
This follows easily from Lemmas 3.4, 3.6. 

3.9. We fix b e *§}.. An integer k G [0,2n +1] is said to be isolated (for b) if 
either: 

(a) k = 2n + 1 and &2n < &2n+i, or 
(b) k is even, 0 < k and bk-i -C bk < &JH-I> 

or 

(c) A; is odd, k < 2n -f 1 and fc^-i < 6^ < ^+i. 
LEMMA 3.10. {A; e [0,2n + 1]|A; isolated} = {ko < fa < k2 < - - < A:2/+i} wAere 

A;t = t mod 2 for t € [0,2/ + 1]. 
The proof is routine; it will be omitted. 

3.11. Assume that / > 0 in the previous lemma. Let Ab be the quotient of the 
i<2-vector space $pev({&0j&ij-■■ j&2/-n}) by the line spanned by {A:o, fa,... ,A;2/+i}. 
Let Ab,2 be the subspace of Ab spanned by the images of the sets {A^-i, fag} with 
9 ^ [!>/]• (These form a basis 5b,2-) We define an (injective) map Sh c-^ #b,2 by 
(6fe,6fe+i, 6/fe+2j •■ ">bi) h-^ {/M}. This extends uniquely to an (injective) linear map of 
F2-vector spaces T : ?P(5b) <-> Aba- 

4. Comparison of types Cr and 5r. 

4.1. We fix r > 2. We will choose the same (large) n in 1.1, 2.1. There is a 1-1 
correspondence ^r ** ^2^+1 given by 

b = (60, 61, • • - , &2n) <+ b' = (&£,, 6i,..., 6^n) 
where bk = 6^, if A: is even, 6^ = b^ 4-1, if A; is odd. 

PROPOSITION 4.2. //b,b' are as above, then 

(a) £      n(a)= 2 n(a'). 

First note that the integers A:o < A:i < • • • < A:2/ in [0,2n] that are isolated for 
b (see 1.9) are the same as the corresponding integers for b' (see 2.9). Let us write 
L', S* for the sets denoted L, S in 1.11 (to distinguish them from the sets L, S in 2.11). 
It is clear that L' = 5 and S' = L. Moreover, if K C 5 = V and Y C L = 5' then 
the conditions Y <Z K^ and if C F^ are equivalent: they both are equivalent to the 
condition that any set in K is disjoint from any set in Y. Hence we have 

E 
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Let P = [0,2n] — U[kti]eLus[k +1,1 — 1]. We note that there is 1-1 correspondence 
between the set of ladders of cardinal > 2 of b contained in P (but not containing 
0) and the set of staircases of b' contained in P (but not containing 0); in this corre- 
spondence a ladder has cardinal equal or bigger by one than that of the corresponding 
staircase. Similarly, there is 1-1 correspondence between the set of staircases of b 
contained in P and the set of ladders of cardinal > 2 of b' contained in P; again, 
in this correspondence a ladder has cardinal equal or bigger by one than that of the 
corresponding staircase. 

Finally, one checks from the definitions that B(b) = Bib1) (where the left hand 
side is as in 1.1 and the right hand side is as in 2.1). 

We now use the results in 1.12 and 2.12, taking into account the arguments above. 
The proposition follows. 

5. Equivariant homology. 

5.1. Assume that X is an algebraic variety over C with an algebraic action of 
a linear algebraic group G over C, such that X is a union of finitely many ^-orbits 
Xi, X2, ■ • •, Xk • We can assume that the numbering is chosen so that Xi UX2 U • • • UXS 

is closed in X and has dimension equal to dimXs for s = !,...,&. Let xs E Xs and 
let Qs be the stabilizer of xs in Q for s — 1,..., k. Let Qs be the reductive quotient of 
Qs and let gs be its Lie algebra. Let 5J (Qs)gs be the space of ^-invariant elements 
on the j'-component of the symmetric algebra of gs if j

1 € N and 0, if j' fi N. 
LEMMA 5.2. For j odd we have H?(X) = 0. If z is an indeterminate, we have 

k 

^dimtff^Xy = ^^dim^(0,)^z^dimX-dim^. 
3>0 s=l j>0 

By [L5, 1.6,1.8(c),l.ll], we have 
(a) Hf(Xa) = Hf'(pt) = H^ipt) = S'/2(5.)fc 

Here pt denotes a point.  Using (a) and the long exact sequence [L5, 1.5] we see by 
induction on 5 that H?+2 6imXa (Xi UX2 U • • • UXS) is zero for odd j and is isomorphic 
to 

Hf+2^Xs_Mi U X2 U • • • U X,-!) 0 Hf+2d{mXs(X.) 
for 5 = 2,..., k. Applying this repeatedly, we see that 

^Hf+2dixaX(X) = £ti dimHf+2<iimXs(Xs). 
This, together with (a), implies the lemma. 

LEMMA 5.3. Let us fix s £ [!,&]. Assume that Gs = HpLi Hp where each Hp is 
one of the groups SONP(C) (Np odd), SpNp(C) (Np even), or ONP(C).  Then 

Po 

j>0 p=l 

where (l>(Np) is as in 1.2. 
This is well known. 

6. Comments on Theorems 0.2, 0.4 and 0.9. 

6.1. Let G be as in 0.1. The set of unipotent classes in G, assumed to be of type 
CV, Br or Dr, is in a natural 1-1 correspondence with the set ^r? ^r+i* ^r (respec- 
tively) except that in the case of Dr each sequence of ^^ without isolated elements 
should be considered twice.  (See [L4, Sec.ll].) That description is particularly well 
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suited to calculating the Springer correspondence in those cases. In this language, the 
problem of deciding when a unipotent classes Ci in G satisfy the condition that pci 
belongs to a given two-sided cell becomes the problem of deciding when an element of 
^r (or *2r+i or *2r)is congruent to a given element of *^r (or *20r+i or *20r)- This 

is described quite explicitly by 1.8, 2.8, 3.8 and yields Theorem 0.2 in these cases, since 
the condition that Ci belongs to a given special piece has been decribed explicitly in 
[Sp]. The maps Ci ^ g in Theorem 0.4 can in these cases be identified with the maps 
T in 1.13, 2.13, 3.11. Hence Theorem 0.4 also holds in our cases. Of course, when G 
is of type A, both 0.2 and 0.4 are trivial. 

In the case where G is of exceptional type, the proof of 0.2, 0.4 consists simply 
in analyzing existing tables. In the following five subsections we will indicate for each 
of the exceptional groups the map Ci t-J- g of 0.4 (from 7(C) to the set of conjugacy 
classes in a symmetric group Sr). We only consider the case where C ^ C. We shall 
use the notation of [Ca] for unipotent classes. We group together the unipotent classes 
in a fixed 7(C) and for each C\ in the group we specify g by a partition of r. (This 
determines in each case the value of r where Qc = Q'c = 5r.) The special class appears 
first in each group. 

6.2. Type E8. 

A2    (1,1); 3Ai    (2). 

A2 + A1    (1,1); 4A1    (2). 

2A2    (1,1);A2 + 3A1    (2). 

I>4(oi)    (1,1,1); ,43+Ax    (2,l);2A2 + A1    (3). 

DtiaJ + Ai    (1,1,1);    A3 + 2A1    (2,1);2A2 +2A1    (3). 

D4(a1) + A2    (l,iy,A3+A2+A1    (2). 

AsM    (1,1)', 0^ +A!    (2). 

A4+2A!    (1,1); 2A3    (2). 

E6(a3)    (1,1); A5    (2). 

f Es(ar)    (l,l>l,l,l);Sr(a5)    (2,1,1, l);^^) + Ai    (3,1, l);Z?6(a2)    (2,2,1); 

\D5(a1) + A2    (4,1);^+^!    (3,2)5^4 + ^3    (5). 

AsM    (l.lfcAs + A!    (2). 

E7(a3)    (1,1); D6    (2). 

E8(b6)    (1,1); A7    (2). 

E8(b5)    (1,1,1); E7(a2)    (2,1);E6 + A1    (3). 

Es(a5)    (1,1); D7    (2). 

E8(a3)    (1,1); E,    (2). 
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6.3. Type E7. 
A2    (1,1); (3^)'    (2). 

AixAt    (1,1); 4Ai    (2). 

2?4(oi)    (l,l,l);(As + Ai)'    (2,1);2A2+A1    (3). 

Di(a1) + A1    (l,l);^s+2Ai    (2). 

I>5(ai)    (1,1);D4 + A1    (2). 

Ee(a3)    (1,1); (^5)'    (2). 

E7(a5)    (l,l,l);L»6(a2)    (2,l);A5 + A1    (3). 

£7(03)    (1,1); 06    (2). 

6.4. Type £6. 
A2    (1,1); 3Ai    (2). 

234(00    (l,l,l);4, + Ai    (2,l);2A2 + A1    (3). 

Eeias)    (1,1); A5    (2). 

6.5. Type F4. 

A1    (1,1); A1    (2). 

F4(a3)    (l,l,l,l);C3(o0    (2,1,1); A2 + Aj.    (3,1)', B2    (2,2);>12 + Ai    (4). 

6.6. Type G2. 

G2(a0    (l,l,l);ii    (2,1); Ax    (3). 

6.7. Proof of Theorem 0.9. Using 5.2, we see that Hf(C) = Hf' (&) = 0 for 

j odd. Using 5.2 and 5.3, we see that ^ •><, dim H^ (C) is equal to z2r -2B(b) times 
the left hand side of 4.2(a), where b S 'J'2r corresponds to the unipotent class C CG 
and B(h) is as in 1.1. Similarly, using 5.2 and 5.3, we see that ^j>o ^m ^2j (^") is 

equal to z2r -2B(b') times the left hand side of 4.2(a), where b' G *2r+i corresponds 
to the unipotent class C" C G' and -B(b') is as in 2.1. Using now 4.2 and the equality 
B(h) = B(b') we see that 

£,->o dim tfg.(C') - E^o dimHg'(C'). 
This proves Theorem 0.9. 

Theorem 0.9 shows that in the setup of 0.1, the equivariant homology Betti num- 
bers of the pieces C (with respect to the conjugation action of G) depend only on the 
Weyl group. 

6.8. Let us now replace the ground field C by the algebraic closure of a finite 
field Fq and assume that G has a fixed split structure over Fq. Then the special pieces 
C C G are again defined as in 0.1 (in small characteristics we must use the definition 
[L2] of the Springer representations). Now, following Mizuno [Mi] and Spaltenstein 
[Sp, III.5.2] there is a natural order preserving imbedding from the set of unipotent 
classes in the corresponding group over C, to the set of unipotent classes in G. Let 
us call MS-classes the classes in the image of this map. For any MS-class C of G let 
C be the subset of the unipotent variety of G consisting of elements in the closure of 
C which are not in the closure of any MS-class distinct from C and contained in the 
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closure of C. Prom the results in [Mi,Sp] one checks that the sets C form a partition 
of the unipotent variety (into locally closed subvarieties). (In good characteristic, the 
MS-pieces are the same as the unipotent classes.) One can also check that each special 
piece is a union of MS-pieces. We have the following result: 

(a) the number of Fq-rational points of an MS-piece is a polynomial in q that 
is independent of the characteristic (that is, it depends only on the corresponding 
unipotent class in the group over C). 
We will indicate the necessary calculations (based on Table 10 in [Mi]) in the case 
of Es. If we restrict ourselves to characteristic 7^ 2,3, there is nothing to prove. In 
characteristic p = 2 or p = 3 the MS-pieces consist of one or two unipotent classes 
and we use the identities: 

JSS- +  tf-!)^*   = 2^+1)^  + 2^-1)^ > 
1    ,        1        _       1        ,        1 

¥* "^  (<72-l)<Z34   ~~  2((7+l)<?33  "t" 2(<7-l)<?33 7 

2(<H-l)(a2-l)<?35   ^ 2(q-l)(q2-l)q35   ~  (q^-l)2q^ ' 
 I  4.  I  -  1    .   . 
(q2-l)q48  "T (q2-l)(q6-l)qA8   ~ '2(q2-l)(q^-l)q^  'r 2(q*-l)(q3 + l)q^ ' 

1 , 1  _  1  _, 1 ^ 
(92-l)(94-l)964  ^ («2-l)2(94-l)964   "  '2(q+l)(q*-l)(q*-l)q™  ^ 2(g-l)(^-l)(^-l)^ 

for p = 2, and 
JL4. 
•,30     r ^30 "T (^.ij^ao   — (ga.xj^s 

for p =  3.    Similar arguments apply for the other types.    (For classical types in 
characteristic 2 an MS-piece has a power of 2 unipotent classes.) 

6.9. In [L2, Conj. 3] it was conjectured that 
(a) the number of Fq -rational points of a special piece C is a polynomial in q that 

depends only on the Weyl group. 
We can now prove this as follows. Using 6.8(a), we are reduced to the case where the 
characteristic is large. In that case, we only have to compare the number of points 
in corresponding special pieces in type Br and Cr. But this follows from exactly the 
same computation as the one in 6.7. 

6.10. In view of 6.9(a), one can expect that the polynomials |C(i^)| have a 
meaning also when W is replaced by a finite non-crystallographic Coxeter group. 
(There should be one such polynomial for each two-sided cell of W.) There are obvious 
candidates for the polynomials attached to the two-sided cells of the trivial element 
or of the longest element wo, namely 

qei+ei+'-'+d-lfaa+l _ l)(gC2+l _ 1) . . . (gCi + l _ !) 

or 1. Here ei, 62,..., e/ are the exponents of W. On the other hand, the polynomial 
attached to the cell containing WQ times a simple reflection should be 

where h is the Coxeter number. (This is suggested by [L2, (3.1)].) In the case when W 
is a dihedral group, the three polynomials above are all we need since there are only 
three two-sided cells. The sum of the three polynomials is equal to qhl, as it should 
be. 
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