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ON THE REDUCTIVE BOREL-SERRE
COMPACTIFICATION, III: MIXED HODGE STRUCTURES∗

STEVEN ZUCKER†

Abstract. We establish a procedure for constructing compatible mixed Hodge structures for
the cohomology of various topological compactifications of locally symmetric varieties, notably ones
that are not algebraic varieties. This is carried out in full for the case of the reductive Borel-Serre
compactification, and conditionally for the excentric compactifications.

Introduction. In [BS], Borel and Serre gave a construction that compactified
the arithmetic quotient X of a symmetric space (also certain more general locally
homogeneous spaces) to a manifold-with-corners X . With its faces fibered by nilman-
ifolds, it was both an easy and a useful little construction to collapse each fiber to a

point, producing what is now called the reductive Borel-Serre compactification X
red

of X . For some of the uses of this space, see [Z1:§4], [GHM], [GT], [Z3].
The construction applies, in particular, to the Hermitian cases (i.e., locally sym-

metric varieties). Even there, the boundary faces are often of odd real dimension,

which rules out the idea that X
red

, like X , be an algebraic variety over C or even a
complex space.

Still, Mark Goresky once made a casual remark concerning X
red

in the Hermitian
case. I forget his exact words, but it was something like, “It thinks it’s an algebraic
variety.” As a Hodge-theorist, I had the inevitable reaction: there should be a mixed
Hodge structure on its cohomology. That was the impetus for this work. Here, we
must remind the reader that the existence of a mixed Hodge structure on a vector
space is not a significant statement; the selecting of one is.

In this article, after eight largely expository sections, we construct in §9 mixed

Hodge structures for H•(X
red

) when X is Hermitian. We also sketch a construction
of mixed Hodge structures for the cohomology of related compactifications of X . This
includes first, in §10, X

exc
(the excentric Borel-Serre compactification), which is a

quotient of X that maps to X
red

. As there are mappings (see [Z2], [GT], [Z4])

X
exc
→ X

red
→ X∗,

where the last space is the projective algebraic Baily-Borel compactification [BB],

we show that we get a morphism of mixed Hodge structure H•(X∗) → H•(X
red

),

and conditionally also H•(X
red

) → H•(X
exc

). The condition here is completing the

construction of the mixed Hodge structure on H•(X
exc

); that seems to be obstructed
by our inability to show that two mixed Hodge structures, on a cohomology group that
enters, coincide (see (8.17)). In §12, we mention a possible resolution: generalizing
the notion of mixed Hodge modules to spaces more general than complex varieties.

In a different direction are the smooth projective toroidal compactifications Xtor

of [AMRT], which lie in the realm of classical Hodge theory. However, these too
have an excentric quotient Xtor,exc, which is generally not a complex space. On its

∗ Received June 27, 2004; accepted for publication November 30, 2004.
† Department of Mathematics, Johns Hopkins University, Baltimore, MD 21218, USA (zucker@

jhu.edu).

881



882 s. zucker

cohomology we also sketch the construction of a mixed Hodge structure in §11, such
that

H•(X∗)→ H•(Xtor,exc)→ H•(Xtor)

would be morphisms of mixed Hodge structures (the same difficulty as for X
exc

arises

here). Since X
exc

and Xtor,exc are homotopy equivalent [Z4], hence have isomorphic

cohomology, it is natural to expect that the mixed Hodge structures for H•(X
exc

) and
H•(Xtor,exc) will coincide.

The basic theme in our construction is to note that all of the above spaces have
closed boundary strata that are of lower rank, but involve the same sort of compacti-
fication. Thereby, we can produce the mixed Hodge structure recursively.

The results of this article were treated provisionally in a talk given at the con-
ference Algebraic Geometry 2000, held in July of that year in Azumino, Japan.1 The
title of the talk was “The reductive Borel-Serre as an algebraic variety.” I can picture
how Borel would have reacted to that title in the absence of the backdrop, and I
dedicate this work to his memory with respect and affection.

Acknowledgments. I am grateful to Les Saper for helpful correspondence. The
referee is to be commended for careful and critical readings of earlier versions of the
article, which led to great improvement in the exposition.

1. Topological preliminaries. Let X be a locally compact Hausdorff space,

and let X̂ be a compactification of X (as a Hausdorff topological space.) Also, let

ĵ : X →֒ X̂ be the associated embedding, via which we identify X with ĵ(X). We put

∂X̂ = X̂ −X , the boundary of X in X̂, and let î : ∂X̂ →֒ X̂ denote the inclusion.

If N̂ denotes an open neighborhood of ∂X̂ in X̂ , we have the Mayer-Vietoris
sequence for (say) rational cohomology:

(1.1) · · · → H•(X̂, Q)→ H•(X, Q)⊕H•(N̂ , Q)→ H•(N, Q)→ . . . ,

where N = N̂ ∩X . Under the hypothesis (rather mild in practice) that ∂X̂ is locally
contractible, and has a fundamental system of neighborhoods that admit a deformation

retraction onto ∂X̂, (1.1) yields the exact sequence:

(1.2) · · · → H•(X̂, Q)→ H•(X, Q)⊕H•(∂X̂, Q)→ H•
dn(∂X̂, Q)→ . . . ,

where H•
dn denotes the so-called deleted neighborhood cohomology (the hypercohomol-

ogy of the sheaf of nearby cycles). This can be expressed at the level of sheaves in
terms of the standard functors: there is a canonical quasi-isomorphism

(1.3) Q bX ≈ {Rĵ∗QX ⊕ î∗Q bX → î∗Rĵ∗QX};

of course, we have by assumption that î∗Q bX = Q
∂ bX . Here, Q bX and QX denote the

constant sheaves on X̂ and X with stalk Q. We note that the hypercohomology of

both Rĵ∗QX and î∗Rĵ∗QX are independent of the compactification X̂, so one may

work with them on any convenient choice of X̂ .

1 At the end of the talk, Morihiko Saito pointed out that the sort of notion of morphism of
mixed Hodge complexes was the same one that A. Beilinson used in his fundamental article [Be]. In
writing this article, I have discovered there is more than incidental relevance of that work.
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2. Hodge-theoretic preliminaries. We develop in some detail the fundamen-
tal Hodge theoretic notions.

In [De:III], Deligne introduced the notion of a mixed Hodge complex. Its definition
was based on the means by which a mixed Hodge structure is typically determined on
topologically-defined cohomology groups on algebraic varieties. It will be convenient
to relax the notion of a morphism of mixed Hodge complexes in the way dictated by
the principles of Hodge theory (cf. [Be]). We begin with a version that is easy to state,
but is actually too loose:

(2.1) Definition. A (relaxed) mixed Hodge complex C• is a triple of complexes
(C•

Z, C•
W , C•

W,F ), where

i) C•
Z is a complex of free Z-modules with finitely generated cohomology;

ii) C•
W is a complex of Q vectorspaces with increasing filtration W .

iii) C•
W,F is a complex of C vectorspaces with increasing filtration, also

denoted W , and decreasing filtration F ,
together with quasi-isomorphisms a) C•

Z ⊗Z Q → C•
W , and b) C•

W ⊗Q C → C•
W,F

(respecting W ), such that the filtrations induced by W and F define a mixed Hodge
structure on

H•(C•
W,F ) ≃ H•(C•

Z)⊗Z C.

In the mixed Hodge structure, F pH•(C•) is the image of H•(F pC•) in H•(C•), the
set of cohomology classes represented by an element of F pC•; this defines the Hodge
filtration. The weight filtration on Hi(C•) is given with the usual shift:

WkHi(C•) = im{Hi(DkC•)→ Hi(C•)},

with D as in (2.2, ii) below (in effect, one counts the degree i as a contribution to the
total weight). For the fundamental notion of a mixed Hodge structure, see [De:II, 2.3];
it expresses a certain type of relation between F and W on cohomology.

There are two essential ingredients that must be added to (2.1) in order to recover
Deligne’s definition:

(2.2) Definition. i) The differential d in a complex C• is said to be strictly
compatible with a filtration F if the inclusion

F pC• + ker d ⊆ d−1(F pC•)

is an equality.

ii) If W is an increasing filtration of C•, the filtration D = Dec(W ) [De:II, 1.3.3]
is the convolved (amalgamated) filtration W ∗ δ, where δ is the filtration given by
truncation from below (made increasing). Said another way, DℓC

i ⊆ Wℓ−iC
i, and

DℓC
• is the largest subcomplex of C• with that property.

We can now formulate the definition from [De:III, 8.1] as follows:

(2.3) Definition. A mixed Hodge complex C• will be called strict if for each k,

GrW
k C•, with the filtration induced by F , is a Hodge complex of weight k; i.e., if for

each j, F is strictly compatible with d on GrW
k C•, and the filtration induced by F on

Hj(GrW
k C•) gives the latter a Hodge structure of weight j + k. Here, GrW

k denotes
the successive quotient functor Wk/Wk−1.
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It follows from (2.3) that on the complex C• itself, d is strictly compatible with both
F and Dec(W ) [De:III,(8.1.9)].

(2.4) Remarks. i) In the pure case, i.e., when W is trivial, the notions of a Hodge
filtration and a Hodge decomposition are equivalent.

ii) If one is willing to dispense with Z-cohomology and work over Q, one can
simply suppress C•

Z in (2.1), and thus in (2.3). We shall do this throughout.

iii) Any mixed Hodge structure, viewed as a bifiltered complex with trivial dif-
ferential, is a strict mixed Hodge complex. This observation will be used later.

We will not be so strict about morphisms:

(2.5) Definition. A (relaxed) morphism of mixed Hodge complexes:

(C•
Z, C•

W , C•
W,F ) = C• → K• = (K•

Z, K•
W , K•

W,F )

is a triple of morphisms of complexes φ = (φZ, φW , φW,F ), with φZ : C•
Z → K•

Z,
etc., such that φW and φW,F respect the corresponding filtrations, and also the quasi-
isomorphisms a) and b) in (2.1).

The main reason we use strict mixed Hodge complexes here is the following fact:

(2.6) Proposition. The collection of strict mixed Hodge complexes is closed
under the following constructions:

i) The total complex of a double complex (C•)•, where the second differential gives
morphisms of mixed Hodge complexes, as in (2.5), with filtrations: F p(C•)j = (F pC•)j

and W̃k(C•)j = (Wk+jC
•)j.

ii) The complex of equivariant cochains C• = C•(Γ; K•), where Γ is a group that
acts on the strict mixed Hodge complex K•, respecting the filtrations. The filtrations

of C• are given by F pCj = Cj(Γ; F pK•) and W̃kCj = Cj(Γ; Wk+jK
•).

Proof. We observe that i) is just [De:III,(8.1.15, i)], and the proof of ii) is similar;
we give the latter. Let S denote the increasing filtration by degree, i.e., the one for
which GrS

−jC
• = Cj [−j]; here [−j] says that degrees have been lowered by j. Then

the weight filtration on C• can be described as W̃ = W ∗ S, so Gr
fW C• is naturally

isomorphic to

(2.6.1)
⊕

−j+ℓ=k

GrS
−jGrW

ℓ C• =
⊕

ℓ−j=k

GrW
ℓ Cj(Γ; K•)[−j].

By assumption, GrW
ℓ Cj is a Hodge complex of weight ℓ. The effect of the shift is

to lower the weight by j, so (2.6.1) is the sum of Hodge complexes of weight k, as
required.

The following is standard:

(2.7) Proposition. Let φ : C• → K• be a morphism of mixed Hodge complexes.
Then the induced mapping on cohomology,

H•(φ) : H•(C•)→ H•(K•)

is a morphism of mixed Hodge structures. In particular, H•(φ) is strictly compatible
with the filtrations induced by D = Dec(W ) and F .
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(2.8) Corollary. If φ : C• → K• is a morphism of mixed Hodge complexes
that induces an isomorphism on cohomology, then H•(φ) is an isomorphism of mixed
Hodge structures.

We are led to call a morphism φ as in (2.8) a quasi-isomorphism of mixed Hodge
complexes (a quasi-isomorphism of certain bifiltered complexes), as distinguished from

the stricter bifiltered quasi-isomorphism that requires GrW
k Grp

F C• → GrW
k Grp

F K• to
be a quasi-isomorphism. We will work in the setting of strict mixed Hodge complexes
and their relaxed morphisms.

Because (2.8) is true, one sees that bifiltered derived categories are too rigid a
setting for working with the Hodge theory. The following examples illustrate this
plainly.

(2.9) Examples. i) Let K• be any complex, with increasing filtration W ; forget

about F . Let K• I
−→ K• be the identity mapping of K•. We adopt the convention

that the underlying graded vector space of Cone(I) is

C• = K• ⊕K•[−1],

with differential
Ci = Ki ⊕ Ki−1

d

y d

y I ց
yd

Ci+1 = Ki+1 ⊕ Ki

By definition of the filtered cone, WkCi = WkKi ⊕ Wk+1K
i−1. The inclusion of

the zero complex in C• is a quasi-isomorphism respecting W . It is a filtered quasi-
isomorphism with respect to W only when K• is trivial, as

GrW
k C• ≃ GrW

k K• ⊕GrW
k+1K

•[−1].

ii) We point out that if C• and K• are complexes with decreasing filtration F
given by truncation from below (filtration bête), then a morphism C• → K• is a
filtered quasi-isomorphism with respect to F if and only if C• = K•.

The following result holds in the context of general bifiltered complexes:

(2.10) Lemma. Let C• be a bifiltered complex, with filtrations W (increasing)
and F (decreasing). Then the following two statements are equivalent:

i) The inclusion (F pWk)H•(C•)→ F pH•(C•) ∩WkH•(C•) is an isomorphism.

ii) For all k, p, there exists a bifiltered morphism H•(C•) → C• inducing the
identity on cohomology.

Moreover, they are satisfied by strict mixed Hodge complexes.

Proof. The subject in (i) is (F pWk)H•(C•) = im{H•((F p∩Wk)C•)→ H•(C•)}.
First, we note that if one of the filtrations, say W , is trivial, then (i) becomes a tautol-
ogy, and (ii) is automatic (just take a cohomology basis that is filtered with respect to
F ). In general, (ii) gives the existence of bifiltered cohomology representatives, which
clearly implies (i). One shows the converse recursively with respect to W . Start with
a basis for WminH•(C•), the lowest non-zero W -level, that is filtered with respect
to F . From the definition, the mapping WkH•(C•) → Wk+1H

•(C•) is injective.
Given a bifiltered basis of WkH•(C•), one uses (i) to extend it to a bifiltered basis of
Wk+1H

•(C•), etc.
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Finally, for a strict mixed Hodge complex, the conditions are clearly satisfied by
Dec(W ) and F . Since Dec(W ) and W differ only by a shift of degree on cocycles, the
conditions also hold for W and F .

We note that (2.10, ii) is not functorial, and is taken without regard to group actions
that might be present.

(2.11) Lemma (existence of good models). Let C•
1 and C•

2 be bifiltered complexes
with filtrations W and F , and suppose that (H•(C•

1 ); W, F ) ≃ (H•(C•
2 ); W, F ). If the

conditions of (2.10) hold for both C•
1 and C•

2 , then there are bifiltered complexes K•

and L• with sequences of quasi-isomorphisms of bifiltered complexes K• → C•
1 → L•

and K• → C•
2 → L•.

Proof. Clearly, we can take K• = (H•(C•
1 ); W, F ), as in (2.7). If we let

L• = Cone{K• → C•
1 ⊕ C•

2}[1],

the mixed cone on the diagonal embedding of K•, one sees rather easily that the
required properties hold.

We call K• and L• bifiltered models of C•
1 and C•

2 . The following variant of (2.11)
comes rather easily:

(2.12) Proposition (models compatible with a set of morphisms). For 1 ≤ j ≤
N+1, let C•

j be a bifiltered complex, such that their bifiltered cohomology (H•(C•
j ); W, F )

are all isomorphic. Assume that the conditions of (2.10) hold for each C•
j . Suppose

further that there are bifiltered morphisms B•
j → C•

j . Then there is a bifiltered model
L• of the C•

j ’s such that all B•
j map to L•.

Proof. Indeed, we may take

L• = Cone{(
⊕

1≤j≤N

K•)→ (
⊕

1≤j≤N+1

C•
j )}[1],

where the j-th factor of K• maps to C•
j ⊕ C•

j+1 as in (2.11). It is easy to see that
(H•(L•); W, F ) ≃ (H•(C•

j ); W, F ) and each B•
j maps to L•.

We conclude this section by introducing a notion that will be useful later (§12):

(2.13) Definition. A mixed Hodge complex C• is said to be of complete type,
when the weights in Hi(C•) are ≤ i; equivalently, it is of complete type when the
mapping H•(W0C

•)→ H•(C•) is surjective.

Clearly, a mixed Hodge complex with W0C
• = C• is of complete type. The

standard mixed Hodge complexes for complete algebraic varieties are, whence the
name. We give a feature of the class of mixed Hodge complexes of complete type:

(2.14) Proposition. Let A• and B• be mixed Hodge complexes, and let C• =
Cone{A• → B•} be the mixed cone. Then,

i) if A• and B• are of complete type, then so is C•;

ii) if C• and B• are of complete type, then so is A•.

Proof. The assertions follow directly from the properties of the mixed cone.
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3. The construction (basic ingredient). We return now to the setting of §1.

We further assume that H•(X) and H•
dn(∂X̂) come with distinguished mixed Hodge

structures, e.g., when X is an algebraic variety over C. There are two categories of
triples of mixed Hodge complexes that enter, and we describe them next.

(3.1) Definitions. i) The category A has as objects the set of triples C =

(C•
1 , C•

2 , C•
3 ), where C•

2 is a strict mixed Hodge complex with cohomology H•(∂X̂),
C•

1 is a strict mixed Hodge complex yielding the distinguished mixed Hodge structure
on H•(X), and C•

3 is a strict mixed Hodge complex yielding the distinguished mixed

Hodge structure on H•
dn(∂X̂); furthermore, there are morphisms of mixed Hodge com-

plexes C•
2 → C•

3 and C•
1 → C•

3 inducing the natural mappings H•(∂X̂) → H•
dn(∂X̂)

and H•(X) → H•
dn(∂X̂) respectively. A morphism C → D in A is a morphism of

triples such that the diagrams

C•
1 −→ C•

3y
y

D•
1 −→ D•

3

and

C•
2 −→ C•

3y
y

D•
2 −→ D•

3

commute.

ii) The category B has as objects the set of triples K = (C•
1 , K•

2 , C•
3 ), where K•

2

is a strict mixed Hodge complex with cohomology H•(X̂), C•
1 and C•

3 are as in (i)
above; furthermore, there are morphisms of mixed Hodge complexes K•

2 → C•
1 → C•

3

inducing the canonical mappings H•(X̂)→ H•(X)→ H•
dn(∂X̂). A morphism K → L

in B is defined analogously to that in A.

Then we have:

(3.2) Proposition. The formula K•
2 = Cone{C•

1 ⊕ C•
2 → C•

3} determines a
functor from A to B.

In effect, we can determine a mixed Hodge structure on H•(X̂) by doing the same

for H•(∂X̂) in a “sensible” manner.

4. Locally symmetric varieties and their toroidal compactifications. Let
X now be a locally symmetric variety. As an analytic space, it is of the form Γ\D,
where D is a bounded symmetric domain and Γ is an arithmetically-defined subgroup
of the isometry group G. The latter means that there is an algebraic group G defined
over Q with G(R) ≃ G (up to compact factors), such that Γ is commensurable with
a(ny) determination of G(Z). The relevant constructions of compactifications of X
are all based on G. It is also convenient to regard Γ as a functor on the the set of
algebraic subquotients of G:

Γ(H1/H2) = (Γ ∩H1(Q))/(Γ ∩H2(Q)).

When Γ is neat [Bo:§17], the above is torsion-free and depends only on the quotient
H1/H2, not the pair (H1,H2).

We shall be brief here, referring the reader to the literature for details. The
toroidal compactifications Xtor of X are a class of compactifications defined by an
elaborate construction with toroidal embeddings [AMRT]. That construction is deter-
mined from a collection Σ of compatible simplicial cone complexes ΣP for the centers
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UP of the unipotent radicals WP of maximal Q-parabolic subgroups P of G.2 For Γ
sufficiently small and Σ suitably chosen, Xtor will be a smooth projective variety. We
will always assume that this holds.

The boundary Z = ∂Xtor thus constructed is a divisor with normal crossings on
Xtor. It is the union of closed subdivisors Z(P ) (ZP in [HZ1]) with normal crossings,
where P indexes the finite set of Γ-conjugacy classes of maximal Q-parabolic subgroups
of G (or representatives thereof). These are the closed maximal boundary strata. The
actual boundary P -stratum of Xtor, which arises from UP , is denoted ◦Z(P ), for which
we remove from Z(P ) all points lying in some Z(Q) with Q not conjugate to P .3 (A
hint of the construction of the P -stratum is present below.) Taking P from a standard
lattice of parabolic subgroups, we take the closed covering of Z with elements4

(4.1) Ž(P ) =
⊔
{Z(gP ) : g ∈ G(Q)},

and let N tor be its nerve. For general reasons, Z is homotopy equivalent to N tor.
For R an arbitrary Q-parabolic subgroup of G, i.e., not necessarily maximal,

taken again modulo Γ-conjugacy, one defines Z(R) and ◦Z(R) in a parallel manner.
Then Z(R) enters into N tor in the following way. Write

(4.2) R =
⋂
{P : P maximal, P ⊇ R}.

Then Z(R) is one connected component of
⋂

Z(P ) (P as above), and there are finitely
many other components associated to certain G(Q)-conjugates of R. As we allow R
to vary over all G(Q)-conjugates, we get that N tor consists of the sets

(4.3) Ž(R) =
⋂
{Ž(P ) : P maximal, P ⊇ R} =

⊔
{Z(gR) : g ∈ G(Q)}.

The association of R to the “smallest”—with respect to the usual order relation
“≺” that also relates boundary components (see [AMRT:p.240])—P in (4.2) is the
relation of subordinacy, written as P = Π(R). Said another, though related, way:
for P as above, there is a standard decomposition P red = P/WP ≃ Gℓ,P · Gh,P (see
[AMRT: p.209]), and one selects from (4.2) the P for which Gh,P is smallest. Then
◦Z(R) is constructed over MP , a locally symmetric variety for the so-called boundary
component DP of D normalized by P (homogeneous under Gh,P ), from the mixed
Shimura variety M ′

P associated to P (see, e.g., [HZ1:1.2.5]). Indeed, there is a diagram

(4.4)

◦Z(R)
jR

→֒ Z(R)

πP

y
yπP

MP

κP

→֒ (MP )tor

with the left-hand column given by the construction of Xtor. Every irreducible com-
ponent of ◦Z(R) maps onto MP . The existence of a suitable toroidal compactification
(MP )tor of the lower-dimensional MP is provided by [P]; this falls in the setting of
toroidal compactification of mixed Shimura varieties.

2 Borel disliked the use of “parabolic” as a noun. I therefore use it only as an adjective.
3 Designating as strata what we would call <Z(P ) here (<ZP in [HZ1]) is adapted only to the

mapping Xtor → X∗.
4 On the right-hand side, we have committed the abuse of notation that the union is disjoint in

the sense that pairwise the indicated strata either coincide (by the Γ-action) or do not intersect.
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Each Z(R) (equivalently, ◦Z(R)) has a combinatorial structure of its own, coming
from Σ. We present a quick description. When R = P (i.e., when R is maximal), the
irreducible components of Z(P ) are smooth divisors, denoted Zσ, that are created by
a one-dimensional cone (ray) σ in the interior of ΣP . Such σ generate the subcomplex
Σc

P of ΣP . In the compactification of X , this gets taken modulo the action of Γ(Gℓ,P ):
the torus TP = UP (C)/Γ(UP ) acts on M ′

P and the P -stratum is produced from a
Γ(Gℓ,P )-equivariant torus embedding TP,Σ. For general R, put Q = Π(R). Then
the other maximal P that occur in (4.2) have UP ⊂ UQ (so TP ⊂ TQ), and ΣP

is contained in the Satake boundary (see [HZ2:(2.1)]) of ΣQ. By taking joins, one
obtains subcomplexes Σc

R ⊂ ΣR of ΣQ.
The following discussion takes place in ΣQ. The set Zσ is defined for all σ ∈ ΣQ,

with intersections given by the rule

Zσ ∩ Zσ′ = Zτ ,

where τ is the cone generated by σ and σ′ (when τ ∈ ΣQ; the intersection is empty
otherwise). We can now assert:

(4.5) Proposition. The irreducible components of Z(R) are of the form

Zτ =
⋂
{Zσ(P ) : σ(P ) is an interior ray of ΣP , and these generate a cone τ ∈ ΣQ}.

In the above, P is as in (4.2). As one might expect, τ must be taken modulo Γ(Gℓ,R),
where Gℓ,R = R ∩Gℓ,P .

5. Deleted neighborhood cohomology for locally symmetric varieties:
topological considerations. We return again to the setting of §1 when X is a

locally symmetric variety. It is convenient to start by taking X̂ = Xtor, for there the
complexes of sheaves Rĵ∗QX and î∗Rĵ∗QX underlie known cohomological mixed Hodge
complexes (terminology of [De:III, 8.1.6]). We will drop the “hats” when working on
the toroidal compactification.

Our purpose in this section is to give an account of the determination from
[HZ2:§5]. Associated to the nerve N tor, we have a quasi-isomorphism

(5.1) i∗Rj∗QX ≈
⊕

R

TR[1− r(R)],

where TR = i∗RRj∗QX , r(R) denotes the parabolic Q-rank of R, and the right-hand
side comes with a second differential given by restriction from Z(R) to Z(R′) whenever
R′ ⊂ R with r(R′) = r(R)+1. (When we write such direct sums, we always understand
the presence of the restriction mappings.) For that, we note the simplification due to
the nature of Z(R):

(5.2) Proposition. The sheaf TR, which is supported on Z(R), is quasi-isomor-
phic to R(jR)∗(j

∗
RTR). Thus, TR is determined by total direct image from its restriction

to ◦Z(R).

From (4.4) and (5.2) follows immediately:

(5.3) Corollary. Let P = Π(R). Then the natural morphism

R(πP )∗TR → R(κP )∗R(πP )∗(j
∗
RTR)
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is a quasi-isomorphism.

Let iτ : Zτ →֒ Xtor be the inclusion. Taking the direct image by πP , one obtains
as τ varies the Γ(Gℓ,R)-equivariant collection of isomorphisms

(5.4) Rπ∗j
∗
Ri∗τRj∗QX

∼
←− H•(wP , Q),

where H•(wP , Q) denotes the local system on MP associated to the representation of
Gh,P on the Lie algebra cohomology H•(wP , Q).5 Let Σo

R be the collection of simplices
that contain some τ (as in (4.5)) as a face. Combining (5.3) with (5.4), we obtain a
quasi-isomorphism

(5.5) Rπ∗j
∗
Ri∗RRj∗QX ≈

⊕

τ∈Γ(Gℓ,R)\Σo
R

H•(wP , Q)

≈ C•(Γ(Gℓ,R), H•(wP , Q)),

as Σo
R is contractible (for it admits a simplicial collapse onto the contractible space

Σo
P , where P is the largest maximal parabolic subgroup entering in (4.2)). When we

apply (5.3) to this, we get:

(5.6) Proposition. Let P = Π(R). There is a canonical quasi-isomorphism:

TR = i∗RRj∗QX ≈ R(κP )∗ C•(Γ(Gℓ,R), H•(wP , Q)).

Because the relevant spectral sequence degenerates (see [HZ2:§5]), we obtain:6

(5.7) Corollary. On hypercohomology, the quasi-isomorphism in (5.6) induces
an isomorphism

Hk
dn(Z(R), Q) ≃

⊕

i+j=k

Hi
Γ(Gℓ,R)(MP , Hj(wP , Q)).

(5.8) Remark. Using (5.6) in conjunction with (5.1), we also have:

i∗Rj∗QX ≈
⊕

R

R(κΠ(R))∗C
•(Γ(Gℓ,R), H•(wP , Q))[1− r(R)].

6. The Borel-Serre boundary nerves. Given the direct relationship with
the deleted neighborhood nerve for the boundary, it is convenient give a thorough

treatment of the Borel-Serre spaces, X, X
exc

and X
red

. These are successively quotient
compactifications of X :

(6.1) X → X
exc
→ X

red
.

The R-strata (R as in §4) of their respective boundaries are correspondingly related:

(6.2) e′(R)→ e′(R)exc → e′(R)red.

5 More suggestively, the underlying cochain complex, C•(wP , Q), is a representation of P . It
gives a variation of mixed Hodge structure on the mixed Shimura variety M ′

P , whose restriction to
MP (as determined by the choice of Levi subgroup) is quasi-isomorphic to its cohomology, H•(wP , Q).
[Ko]

6 See also (8.1) below for more on this.
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For the closed (compact) boundary strata one has likewise, and analogous to (6.1):

(6.3) e′(R)→ e′(R)
exc
→ e′(R)

red
;

these are, in fact, just Borel-Serre spaces for e′(R).
In the above and throughout, a “prime” on an “e” always denotes an arithmetic

quotient, as in [BS]. That is, there are spaces with boundary attached to D,

(6.4) D → D
exc
→ D

red
,

with G(Q)-action, such that (6.1) is the Γ-quotient of (6.4); moreover, (6.2) and (6.3)
are the Γ(R)-quotients of the R-strata of (6.4), and these are given by

(6.5) e(R)→ e(R)exc = e(R)/UP (R)→ e(R)red = e(R)/WR(R),

where P = Π(R) (as in §4);

(6.6) e(R)→ e(R)
exc
→ e(R)

red
,

which is (6.4) for e(R). We will start to suppress the “(R)”, the indicator of real points
of a group, and we hope this causes no confusion. The first mapping in (6.6) factors

through e(R)/UP . For the purpose of determining (6.3), it is enough do the same for
(6.6), as the arithmetic quotients can be taken afterwards.

Here is a quick description of the incidence relations in ∂D (see [BS:§5] for details).
The inclusion of e(R) in X is by means of limits of geodesic projection: X → X/AR =
e(R), where AR denotes the split factor of the Langlands decomposition of R. The

structure of e(R) is given by7

e(R) ≃ DR ×WR, and then e(R) ≃ DR ×WR;

here, DR is a contractible space, homogeneous under Rred = R/WR.

Replacing X by e(R), one has the analogous inclusion of e(R′) in e(R) whenever
R′ ⊂ R, in a way that is compatible with the inclusion e(R′) ⊂ X. Taking the union

as R′ varies, this gives e(R) ⊂ X; analogously, e(R′) ⊂ e(R). When R′ = R ∩ Q,
where Q is maximal and does not contain R, we have e(R′) = e(R)/AQ; because Q is
maximal parabolic, AQ is of dimension one.

For the excentric case, we need to bring in P = Π(R), viewing e(R) as a subset

of e(P ). First, we assert:

(6.7) Proposition. We have for the spaces in (6.5), e(R) ≃ Dℓ,R ×DP ×WP ,

e(R)
exc ≃ Dℓ,R × DP × VP , and e(R)

red ≃ Dℓ,R × DP . Here, Dℓ,R is homogeneous

under Gℓ,R, and VP = WP /UP . In particular, e(R), e(R)
exc

and e(R)
red

are all
contractible.

This yields:

7 The splitting off of the unipotent radical is something I had regarded as “well-known”, whose
truth I started to question. A proof of this appears in the appendix (6.A) to this Section.
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(6.8) Proposition. We have for the spaces in (6.6),

i) e(R) ≃ Dℓ,R ×DP ×WP ,

ii) e(R)
exc
≃ Dℓ,R ×DP

exc
× VP ,

iii) e(R)
red
≃ Dℓ,R

red
×DP

red
. 8

Of course, there are analogous assertions for R′. We describe the inclusion e(R′) ⊂

e(R)—the descent to the excentric and reductive quotients will be apparent—in terms
of (6.8). With R′ = R ∩ Q as above, either Π(R′) = P or Π(R′) = Q. The first

case is very easy to handle: e(R′) ⊂ e(R) is induced by the inclusion Dℓ,R′ ⊂ Dℓ,R.
The second (i.e., where Q ≺ P ) requires more explanation. Using (6.7) and writing
P (Q) = Gh,P ∩Q (notation as in [HZ3:1.5]), we obtain the decomposition

(6.9) e(R′) = e(R)/AQ = Dℓ,R × (DP /AQ)×WP = Dℓ,R × e(P (Q))×WP

The inclusion e(R′) ⊂ e(R) is now seen to be induced by the identity mapping of Dℓ,R

and the inclusion of the Borel-Serre boundary face:

Dℓ,P (Q) ×DQ ×WP (Q) = e(P (Q)) ⊂ DP .

One can verify directly (it is also contained in (8.12) below) that

(6.10) WP (Q) ×WP = WQ(P ) ×WQ.

Continuing (6.9), we have

(6.11) e(R′) = Dℓ,R × (Dℓ,P (Q) ×DQ)×WP (Q) ×WP .

We use (6.10) to rearrange the factors above to recover the analogue of (6.7) for R′:

(6.12) e(R′) ≃ Dℓ,R′ ×DQ ×WQ, with Dℓ,R′ ≃ Dℓ,R ×Dℓ,P (Q) ×WQ(P ).

There is no problem passing to the closures, i.e., e(R′) ⊂ e(R), and then to the
excentric and reductive quotients. We summarize the outcome:

(6.13) Proposition. Let R′ = R ∩Q, with Q ≺ P = Π(R). Then:

i) The inclusion of e(R′) in e(R) is induced by the inclusion of e(P (Q)) in DP .

ii) The inclusion of e(R′)
exc

in e(R)
exc

is induced by the inclusion of e(P (Q))
exc

in D
exc

P .

iii) The inclusion of e(R′)
red

in e(R)
red

is induced by the inclusion of e(P (Q))
red

in D
red

P .

Proof. These are straightforward. We note that for the case of the excentric
quotients, we get from (6.10) that VP (Q)×VP = WQ(P )×VQ, and this equality is used
to manipulate the unipotent radicals.

One can easily determine from (6.8) the boundary strata of the arithmetic quo-
tients in (6.1), as well as the quotient mappings in (6.2). The group Γ(R) acts on the

8 Arithmetic quotients Xℓ,R of Dℓ,R appear in §9. Because Gℓ,R is not a reductive group when

R 6= P , (Xℓ,R)red is then not a compactification of Xℓ,R, for one also collapses out the unipotent
factor of Dℓ,R. For the same reason, mixed Shimura varieties can fail to have reductive or excentric
Borel-Serre compactifications; this distinction comes up again in §10 and §11.
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tower (6.5) to produce (6.2) Because both WR and UP are normalized by R, the tower
(6.2) is a tower of fibrations over e′(R)red, with fibers

(6.14) Γ(WR)\WR → Γ(VR)\VR → {pt},

where VR = UP \WR. We claim that the same holds for the closed strata:

(6.15) Proposition. The tower (6.3) is a tower of fibrations over e′(R)
red

, with
fibers as in (6.14).

Proof. We split

e(R) ≃ DR ×WR → DR = e(R)
red

in accordance with (6.A.1) below. This induces a splitting

e(R)
exc
≃ DR × VR,

which lies between those of e(R) and e(R)
red

in the above. By definition, the geodesic
action of Rred is the ordinary action of a Levi subgroup LR along a corresponding LR-
orbit. We choose LR to be defined over Q, which is always possible (see [BT:(0.8)]).

Then the action of Γ(R) on e(R) decomposes as expected under the above splitting,

likewise for e(R)
exc

. The argument proceeds as for (6.2).

At this point, we describe the boundary nerves for X, X
exc

and X
red

. This goes
basically the same way as the toroidal nerve in §4. Let P be a maximal Q-parabolic
subgroup taken from a fixed standard lattice. We have

(6.16)

S(P ) =:
⊔
{ e′(gP ) : g ∈ G(Q)}y

y
S(P )exc =:

⊔
{ e′(gP )

exc
: g ∈ G(Q)}y

y

S(P )red =:
⊔
{ e′(gP )

red
: g ∈ G(Q)};

on the right-hand side, we commit the same abuse of notation as in (4.1). Then
{S(P ) : P is maximal} is a closed covering of ∂X, whose nerve we denote by N ; we

do likewise to obtain nerves N
exc

for ∂X
exc

and N
red

for ∂X
red

. For any R in the
lattice, we have

(6.17) S(R) =
⋂
{S(P ) : P maximal, P ⊇ R} =

⊔
{e′(gR) : g ∈ G(Q)},

The analogous holds for S(R)exc and S(R)red.

From (6.15) we obtain, for instance, that e′(R) is an Eilenberg-Maclane space
K(Γ(R), 1), and its cohomology is given by the right-hand side of (5.7). The latter is
no coincidence; as X is a manifold-with-corners, one can identify

H•(e′(R), Q)
∼
−→H•

dn(e′(R), Q),

so the previous assertion concerning H•(e′(R), Q) is about an isomorphism of deleted
neighborhood cohomology. While it is true that H•

dn for the total boundary is au-
tomatically independent of the compactification (as in §1), it is non-trivial that this
remains true at the level of nerves for X and Xtor, for there is seldom a morphism of
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compactifications from one to the other. Nonetheless, the correspondence of nerves is
proved in [HZ2:§2]. We thereby obtain:

(6.18) Proposition. There are canonical mappings

H•(e′(R)
red

, Q)→ H•(e′(R)
exc

, Q)→ H•(e′(R), Q) ≃ H•
dn(Z(R), Q).

(The determination of the rightmost member in (6.18) is given by (5.7).)
The space AP (see [HZ1:(1.2.5)]) over MP that enters in the toroidal construction

is an arithmetic quotient of DP × VP . As such, it admits a Borel-Serre compactifica-
tion AP , which maps to MP . The excentric quotient AP

exc
can be taken, and that

is an arithmetic quotient of DP
exc
× VP . (On the other hand, there is no compactifi-

cation “AP
red

” unless VP is trivial; recall (6.8).) We observe that (6.8, ii) yields the

description of e′(R)
exc

as the free Γ(Gℓ,R)-quotient of Dℓ,R × AP
exc

, for the action

of Γ(Gℓ,R) on Dℓ,R is already free. On the other hand, the action of Γ(Gℓ,R) on AP

is not nice. This is the realm of the Borel construction and equivariant cohomology,
a quick account of which can be found in [HZ1: 2.9]. At issue is replacing AP by a
homotopy-equivalent space Q on which the action of Γ(Gℓ,R) is free. We denote by
〈Γ(Gℓ,R), AP 〉 the common homotopy type of the spaces Γ(Gℓ,R)\Q, any of which we
call a model for the Borel construction.

Because Dℓ,R, being a manifold-with-corners whose interior Dℓ,R is contractible,
is itself contractible, we obtain:

(6.19) Proposition. The excentric boundary stratum e′(R)
exc

is a model for
the Borel construction 〈Γ(Gℓ,R), AP 〉 for the action of Γ(Gℓ,R) on AP . Likewise, the

closed excentric boundary stratum e′(R)
exc

is a model for 〈Γ(Gℓ,R), AP
exc
〉.

(6.20) Corollary. There are canonical isomorphisms

H•(e′(R)
exc

) ≃ H•
Γ(Gℓ,R)(AP ), and H•(e′(R)

exc
) ≃ H•

Γ(Gℓ,R)(AP
exc

).

(6.21) Remark. Likewise, (6.8, i) gives the more elementary fact that e′(R) is a

model for 〈Γ(Gℓ,R), M ′
P 〉, where P = Π(R). Furthermore, the inclusion e′(R′) ⊂ e′(R)

is given by

〈Γ(Gℓ,R), 〈Γ(Gℓ,P (Q) ·WQ(P )), M ′
Q〉 〉 → 〈Γ(Gℓ,R), M ′

P 〉,

if Π(R′) = Q ≺ P .

(6.A) Appendix. For our construction, the following fact is essential. The proof
we give is basically due to L. Saper.

(6.A.1) Proposition. Let D be a homogeneous space for the real points of an
algebraic group G that satisfies the conditions of [BS:§2]. Let W be the unipotent
radical of G, and D′ = W (R)\D =: W\D. Then:

i) The parabolic subgroups Q̂ of W\G are in one-to-one correspondence with the

parabolic subgroups Q of G, by the formula Q̂ = W\Q.

ii) The geodesic action of AQ on D projects onto the geodesic action of A bQ on

D′.
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iii) D splits as D′ ×W with respect to the geodesic actions, such that the action
on W is trivial.

iv) The above induces a splitting D ≃ D
′
×W .

Proof. While the argument that follows holds in general, and we even need to
use that, we will treat for simplicity of notation only the case where D is a symmetric
space, viewed as a homogeneous space for P , where P is a parabolic subgroup of G.
As before, write P red for P/WP and note that D′ is homogeneous under P red.

First, i) and ii) are in Borel-Serre [BS: 5.2]. Then, according to [S:§1], the geodesic
action of AP on D extends to a geodesic action of P red, one that commutes with
the usual action of WP . Taking quotients by these actions, we obtain a canonical
(P red ×WP )-equivariant diffeomorphism

(6.A.2) D
∼
−→(WP \D)× (P red\D)

that separates the actions of P red and WP . One identifies WP \D with D′, and W =
P red\D is a principal homogeneous space for WP . Thus D ≃ D′ × W . To get the
same for the Borel-Serre construction, we again use [BS: 5.2] and note that the geodesic
action is trivial on W . Finally, to identify W and WP , we need a section D′ → D for
(6.A.2). Any point of W corresponds to an orbit of the geodesic action of P red on D,
and gives a section. This yields both iii) and iv).

7. The excentric toroidal boundary nerve. The strata of the boundary of
Xtor are, of course, the spaces ◦Z(R), where R is Q-parabolic, and the closed strata
are the Z(R) (see §4). The excentric toroidal compactifications Xtor,exc are defined as
the quotients of the toroidal compactifications Xtor for which the boundary strata are
the spaces ◦Z(R)exc = ◦Z(R)/UP , with P = Π(R). Their closures Z(R)exc comprise
the boundary nerve N tor,exc for Xtor,exc (cf. N tor; recall (4.1) and (4.3)), so we need
to understand their structure.

The space AP , introduced after (6.18), is actually a (connected) mixed Shimura
variety (cf. §4), so admits toroidal compactifications (AP )tor [P] and then their ex-
centric quotients (AP )tor,exc; these are related in the same way as Xtor and Xtor,exc.
There is a Γ(Gℓ,R)-equivariant structure diagram (refining the excentric version of
(4.4)):

(7.1)

◦Z̃(R)exc →֒ Z̃(R)exc

πR

y
yπR

AP →֒ (AP )tor,exc

Then ◦Z(R)exc ≃ Γ(Gℓ,R)\◦Z̃(R)exc, and Z(R)exc is defined analogously. We have the
toroidal analogue of (6.19):

(7.2) Proposition. Let Π(R) = P . Then ◦Z(R)exc is a model for 〈Γ(Gℓ,R), AP 〉,
and Z(R)exc is a model for 〈Γ(Gℓ,R), (AP )tor,exc〉.

Proof. We need to show that:

i) ◦Z̃(R)exc and Z̃(R)exc are homotopy equivalent to AP and (AP )tor,exc resp.;

ii) the action of Γ(Gℓ,R) on Z̃(R)exc is free.
We start with the second assertion. To justify (ii), we must go a little deeper into the
toroidal construction that underlies §4. This begins with writing D as a Siegel domain
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relative to P , and then taking the quotient by (the real points of) UP :

D/UP ≃ (DP × VP )× CP ,

where CP is a cone homogeneous under Gℓ,P (see [AMRT: p. 250]). Though the quo-
tients by the UP ’s are actually taken only at the corresponding toroidal boundary faces
in making Xtor,exc from Xtor, we find it more convenient to indicate the quotient in
the interior as well, intending to undo it later.

The excentric toroidal construction (prior to the arithmetic quotients) gives

◦Z̃(R)exc →֒ (DP × VP )× Σ̂P

ց ↓
DP × VP

where Σ̂P denotes ΣP − {0} modulo dilations, etc., and ◦Z̃(R)exc is contained in

Z̃(P )exc. Let Q be the smallest maximal parabolic subgroup in some standard lattice

containing P . The closure of ◦Z̃(R)exc is fibered over DQ × VQ with fiber equal to

a Γ(Gℓ,R)-equivariant regular neighborhood of Σ̂c
R in Σ̂Q. Then Σ̂c

R admits a free
Γ(Gℓ,R)-action, as does its regular neighborhood. This holds for all such Q, so (ii) is
true.9

Next, the fibers of πP are real torus embeddings (see [HZ1:2.1]) for TP , thus

contractible, so ◦Z̃(R)exc ∼ AP . We must then look at the boundary fibers over
(.AP )tor,exc. For all Q ≺ P , the torus TP splits off as a factor of TQ. Since the

two factors commute, it follows that for all Q, the fibers over the Gh,Q-stratum of

(AP )tor,exc are also real torus embeddings for TP . Thus, Z̃(R)exc ∼ (AP )tor,exc.

8. The deleted neighborhood cohomology: Hodge-theoretic consider-
ations. We return to the setting of §5. We want to summarize the known Hodge-
theoretic facts that comprise the backdrop of this article. The main one is:

(8.1) Theorem [HZ2:§5]. The isomorphism in (5.7) is an isomorphism of mixed
Hodge structures over Q:

(8.1.1) Hk
dn(Z(R), Q) ≃

⊕

i+j=k

Hi
Γ(Gℓ,R)(MP , Hj(wP , Q)).

In particular, this gives a Hodge-theoretic direct sum decomposition of H•
dn(Z(R), Q).

Also, as was mentioned in (6.18), (8.1.1) is naturally isomorphic to Hk(e′(R), Q).
Through this isomorphism, one gets mixed Hodge structures for the Borel-Serre bound-
ary faces. (These enter in §9 below.)

We clarify the content of (8.1) by describing the mixed Hodge structures on the
two sides. One way to do that is via the mixed Hodge modules of Saito [Sa1]. In
the present setting, Saito’s construction proves more tractable than in general [BW],
where (8.1.1) is shown to be a consequence of a determination in a derived category
of mixed Hodge modules.

On the other hand, it is possible to specify the mixed Hodge structure of
Hk

dn(Z(R)) entirely by “classical” mixed Hodge theory [NA] (i.e., without the Hodge

9 Note that the features are like those of e(Gℓ,R) ⊂ Dℓ,Q (combine §6 above with [Z4:(3.3)]).
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modules), for we are considering (at least initially) cohomology with trivial coeffi-
cients, and we do so here. This is most easily treated when R is maximal, or even
better, for the full boundary divisor Z, and we describe only the latter case now. It
begins with “turning” (1.3) to yield the quasi-isomorphism:

(8.2) i∗Rj∗QX ≈ Cone{QXtor → Rj∗QX ⊕QZ}[1].

The mixed Hodge theory for each term of this mapping cone is well-known. One
can take C•

W,F = RΓC•
W,F using the cohomological Hodge complexes C•

W,F , given

respectively by Ω•
Xtor for QXtor , Ω•

Xtor(log Z) for Rj∗QX , and Ω•
Z from the nerve of

its irreducible components:

(8.3) Ω•
Z ≈

⊕

R

⊕
{Ω•

Zσ
: σ ∈ (Γ(Gℓ,R)\Σo

R)}[1− r(R)]

for QZ . These are equipped with their usual weight and Hodge filtrations W : trivial,
by number of poles, and S (as in the proof of (2.5)), resp.; and F by filtration bête
(from (2.9, ii)) in all three instances. The mixed cone construction (see [E:0, 2.6]) then
tells us to use

(8.4) C
•
W,F = Cone{Ω•

Xtor → Ω•
Xtor(log Z)⊕ Ω•

Z}

in the cohomological mixed Hodge complex for i∗Rj∗QX , with filtrations induced by
the convolved filtration W ∗ S (here S is as in the proof of (2.5)) and F .

The mixed Hodge structure on the right-hand side in (8.1.1) can be seen to come
from (2.5, ii). It was introduced in a somewhat ad hoc way in [HZ2:(5.6)], via the
right-hand side of (5.5) above. We give a sketch: through the action of AP Gh,P , the
local system H•(wP , Q) also underlies a locally homogeneous variation of mixed Hodge
structure on MP , on which Gℓ,P , a fortiori Γ(Gℓ,R) whenever R is subordinate to P ,
acts. This variation of mixed Hodge structure splits as a direct sum of pure variations
of varying weight. Then

(8.5)
⊕

σ∈Γ(Gℓ,R)\Σo
R

H•(wP , Q)

underlies a cosimplicial object of that sort. It is necessary to do the following little
exercise concerning the forgetting of the filtration S:

(8.6) Proposition. For the constant bifiltered sheaf K• = H•(wP , Q) on the
finite-dimensional simplicial complex (from (8.5)),

⊕

σ

K• → (
⊕

σ

Q)⊗K•,

where
⊕

σ Q on the right-hand side is viewed as a complex with trivial filtrations,
induces the same variation of mixed Hodge structure.

Proof. We need only observe that the mapping above is compatible with W and
F , and the filtrations induce variations of mixed Hodge structure on both sides. We
then invoke (2.8) for the stalks.

Assembling (5.5), (8.6) and standard Hodge theory, we get that a mixed Hodge
complex B•(R) for i∗RRj∗QX is obtained from

(8.7) B
•
Q(R) = C•(Γ(Gℓ,R), R(κP )∗H

•(wP , Q))
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on (MP )tor, with B•
Q(R) = RΓ((MP )tor, B•

Q(R)), and

(8.8) B•
W,F (R) = C•(Γ(Gℓ,R), RΓ((MP )tor, Ω•

(MP )tor(log YP )⊗H•(wP , C)can);

here, P = Π(R) again, and YP denotes the total boundary divisor of the toroidal
compactification (MP )tor of MP (the choice of which is immaterial), and “can” indi-
cates the canonical bundle-extension to (MP )tor (see, e.g., [Z4:(4.2)]). The Hodge and
weight filtrations in (8.8) come from the de Rham complex and coefficients, as given
in [Sa2]. One deduces a mixed Hodge complex B• for i∗Rj∗QX that is decomposed
according to the toroidal boundary nerve N tor.

To complete the picture, we make explicit the restriction mappings B•(R) →
B•(R′) for r(R′) = r(R)+1, for they enter into the total differential of B•. We give a
treatment vaguely parallel to that in §6. The easy case is when Π(R′) = Π(R); there,
the restriction is induced by the inclusion

(8.9) Γ(Gℓ,R′) →֒ Γ(Gℓ,R)

in the obvious way. When Π(R′) = Q ≺ P = Π(R), the description is similar, though
a little more complicated. We present it at the level of B•

Q, but the Hodge theory

virtually “takes care of itself” ([HZ2], [BW]).
We first note that MQ is a boundary component of MP , corresponding to the

maximal parabolic subgroup P (Q) of Gh,P . Let πP (Q) : (MP )tor 99K (MQ)tor be the
associated projection (we will not go into the details here of the extent to which πP (Q)

is defined; see, e.g., [HZ1:1.2.5], but it is analogous to πP , which one uses to arrive at
(8.7)). Taking the total direct image of (8.7) under πP (Q) yields the complex on MQ:

(8.10) B̂
•
Q(R) = R(κQ)∗C

•(Γ(Gℓ,R), H•(wP (Q), H
•(wP , Q))).

This will be shown to admit a canonical mapping to

(8.11) B
•
Q(R′) = C•(Γ(Gℓ,R′), R(κQ)∗H

•(wP , Q)),

which is (8.7) for R′ instead of R.
In order to reconcile (8.10) and (8.11), we first need some equations in algebraic

groups:

(8.12) Proposition. For Q ≺ P , let P (Q) = Q ∩Gh,P , Q(P ) = P ∩ Gℓ,Q and
R′ = R ∩Q. Then there are decompositions:

i) WP ·WP (Q) = WP∩Q = WQ ·WQ(P ),

ii) Gℓ,R′ = Gℓ,R ·Gℓ,P (Q) ·WQ(P ),

iii) Gℓ,R′ ·WQ = Gℓ,R ·Gℓ,P (Q) ·WP∩Q.

Proof. We verify only the first equality in (i), which suffices because of symmetry,
and then (ii). (From these, (iii) follows.) We want to show first that

(8.12.1) WP∩Q = WP · (WQ ∩Gh,P ).

At the level of Lie algebras, this is saying that wP∩Q = wP ⊕ wP (Q); a positive root
involving at least one of βP and βQ is either a root involving βP or a root involving
βQ but not βP . This gives (i).
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As for (ii), it is correct on Levi factors, so it suffices to compare the unipotent
radicals of both sides, i.e., show:

(8.12.2) WGℓ,R′
= WGℓ,R

·WQ(P ),

or equivalently

(8.12.3) (WR′ ∩Gℓ,Q) = (WR ∩Gℓ,Q) = (WR ∩Gℓ,P ) · (WP ∩Gℓ,Q)

But this holds for basically the same reason that (8.12.1) does.

The other ingredient is the abundance of cohomology isomorphisms. In our set-
ting, the cohomology of a free arithmetic quotient is canonically isomorphic to the
group cohomology of the arithmetic group; moreover, in the case of a unipotent al-
gebraic group, the cohomology is also isomorphic (by Nomizu’s theorem [No]) to the
corresponding Lie algebra cohomology group. Thus we have, for instance, quasi-
isomorphisms

RΓ(MP , Q) ≈ C•(Γ(Gh,P ), Q) and C•(wP , Q) ≈ C•(Γ(WP ), Q).

Thus, from (8.12), we see that (8.10) is quasi-isomorphic to

(8.13) R(κQ)∗C
•(Γ(Gℓ,R), H•(wP∩Q, Q)).

Consider the diagram

(8.14)

ZR′

i
→֒ ZRbπP

y
yπP

YP (Q) →֒
ǫP (Q)

(MP )tor

(cf. (4.4)). The quasi-isomorphism

R(π̂P )∗i
∗S ≈ ǫ∗P (Q)R(πP )∗S

yields, when S = i∗RRj∗Q:

(8.15) R(π̂P )∗i
∗
R′Rj∗Q ≈ C•(Γ(Gℓ,R), ǫ∗P (Q)R(κP )∗H•(wP , Q)).

This has basically the same format as (8.7), viz., deleted neighborhood cohomology
on (MP )tor with coefficients in a local system on MP . Moreover, there is an obvious
mapping from (8.7) to (8.15). We therefore apply R(πP (Q))∗ to (8.15), which yields

(8.16) R(πQ)∗i
∗
R′Rj∗Q

≈ R(κQ)∗C
•(Γ(Gℓ,R), C•(Γ(Gℓ,P (Q)), H

•(wP (Q), H
•(wP , Q)))

≈ R(κQ)∗C
•(Γ(Gℓ,R), C•(Γ(Gℓ,P (Q)), H

•(wP∩Q, Q)))

≈ C•(Γ(Gℓ,R′), R(κQ)∗H•(wQ, Q)),

recovering (8.11). Moreover, from (8.10) and the above, the restriction mapping
H•

dn(Z(R), Q) → H•
dn(Z(R′), Q) is seen to be induced by the inclusion

{1} → Γ(Gℓ,P (Q)).

Because there is a mixed Hodge module on Xtor underlying the above calculations,
the two different-looking mixed Hodge complexes for H•(ZR′), which follow respec-
tively from (8.15) and (8.16), actually determine the same mixed Hodge structure.
This leads us to make the following:
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(8.17) Definition. In any situation where there is a diagram analogous to
(8.14), and (8.15) and (8.16) determine mixed Hodge structures on cohomology, we
say that the change of base from MP to MQ (or between P and Q) is Hodge theoret-
ical when the two mixed Hodge structures coincide.

9. Mixed Hodge structures in the reductive Borel-Serre case. To stan-
dardize the notation, we use the set-up of §3. We start with one specification of mixed
Hodge complexes A• and C• for which:

A•
Q := C•

1,Q ≈ RΓ(Xtor, Rj∗QX),(9.1)

Ĉ•
Q := Ĉ•

3,Q ≈ RΓ(Xtor, i∗Rj∗QX), with decomposed version

C•
Q := C•

3,Q =
⊕

R

C•(R)Q, where

C•(R)Q ≈ RΓ(Xtor, i∗RRj∗QX) ≈ C•(Γ(Gℓ,R), RΓ((MP )tor, R(κP )∗H•(wP , Q))). Note

that we have morphisms A•
Q −→ Ĉ•

Q

≈
←− C•

Q. Of course, we have to provide the rest

of the items in (2.1) to complete (9.1) to mixed Hodge complexes.
To produce an element of category A (3.1, i), we need mixed Hodge complexes

B• (denoted C•
2 in §3) that map to C•. They will usually be decomposed as B• =⊕

R B•(R), with B• → C• given as the direct sum of morphisms B•(R) → C•(R)
commuting with restriction mappings. Ultimately we will specify that the cohomology

of B• is H•(∂X̂, Q), where X̂ is some given compactification of X , for we want to

produce mixed Hodge complexes for H•(X̂, Q).

(9.2) Remark. It may help to consider first the familiar “extreme” examples:

i) Setting B•(R) = 0 for all R gives a complex whose cohomology is H•
c (X, Q);

ii) B•(R) = C•(R) gives a complex whose cohomology is H•(X, Q)
∼
−→H•(X, Q).

The construction of the mixed Hodge complexes is recursive, i.e., by induction on
the Q-rank r (a non-negative integer), for the boundary of the compactifications that
we are considering is always composed of pieces that are the same sort of compacti-
fications of spaces of lower Q-rank. The induction starts with r = 0, where there is
nothing to do (X is compact).

We will be making extensive use of strictness, i.e. (2.7), throughout. Because
equivariant cochains enter in our other two constructions, the present case is the only
one where we can appeal to (2.10) and thereby work solely at the level of mixed Hodge
structures. Here and in the sequel, we write the subscript “h” on a cohomology group
to signify that it carries an existing mixed Hodge structure; cohomology without
the subscript “h” imparts a trivial Hodge theoretical contribution. Following the
principle from [HZ2] that Gh,P is Hodge-theoretically “active”, while Gℓ,P is Hodge-
theoretically inert (cf. §8), we now present:

(9.3) Theorem (mixed Hodge complexes for the reductive Borel-Serre). Let X
be a locally symmetric variety. Take

A• = H•(X)h ≃ H•(X)h,

C•(R) = H•(Γ(Gℓ,R), H•(M ′
P )h),

B•(R) = B•(R)red = H•((Xℓ,R)red)⊗H•(MP
red

)h,
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where H•((Xℓ,R)red) has trivial filtrations and H•((MP )red)h is the mixed Hodge struc-

ture for H•((MP )red) already constructed.
Let A• → C• be the given by the restriction mapping H•(X) → H•

dn(Z(R)) (see
(6.14)) for R maximal; the mapping B•(R)→ C•(R) is defined to be the composition

(9.3.1) H•((Xℓ,R)red)⊗H•(MP
red

)→ H•((Xℓ,R)⊗H•(MP ) ≃

H•(Γ(Gℓ,R), H•(MP )h)→ H•(Γ(Gℓ,R), H•(M ′
P )h).

Then the above data is in the category A and determines a mixed Hodge complex

C•(X
red

)h for H•(X
red

), such that the restrictions H•(X
red

) → H•(B•(R)red) to a

closed boundary stratum and H•(X
red

) → H•(X) ≃ H•(X) are morphisms of mixed
Hodge structure. Here, H•(X) is understood to have Deligne’s mixed Hodge structure
for the algebraic variety X.

Proof. From (6.8), we see that B•(R) ≃ H•(e′(R)
red

). Also, C•(R), as given
above, is consistent with (8.1.1) and (9.1); moreover it equals

H•(Xℓ,R ×MP , H•(wP )) ≃ H•(e′(R)).

To see that B• → C• is a morphism of mixed Hodge complexes, we must demonstrate
recursively that the following three statements hold:

i) For all R, B•(R)red → C•(R) is a morphism of strict mixed Hodge complexes.

This is the composition (9.3.1). By induction, H•(MP
red

)→ H•(MP ) is a morphism
of mixed Hodge structures, which implies that B•(R)red → C•(R) is.

ii) The canonical diagram

B•(R)red −→ C•(R)y
y

B•(R′)red −→ C•(R′),

where R′ = R ∩ Q with Q maximal (Q + R), is a commutative diagram of mixed
Hodge complexes. The diagram is explicitly

(9.3.2)

H•((Xℓ,R)red)⊗H•(MP
red

)h −→ H•(Γ(Gℓ,R), H•(M ′
P )h)y

y
H•((Xℓ,R′)red)⊗H•(MQ

red
)h −→ H•(Γ(Gℓ,R′), H•(M ′

Q)h)

In the case where Π(R′) = P , the assertion is evident, so we consider the other possi-
bility, where Π(R′) = Q ≺ P . Using (8.12, ii), we rewrite the underlying cohomology
groups in (9.3.2) relative to P :
(9.3.3)

H•((Xℓ,R)red)⊗H•(MP
red

)h −→ H•(Γ(Gℓ,R), H•(MP , H•(wP ))h)y
y

H•((Xℓ,R)red)⊗B•(P (Q))red −→ H•(Γ(Gℓ,R), H•
dn(e′(P (Q)), H•(wP ))h)

Then we see that (9.3.3) too is a diagram of mixed Hodge structures, and we need to
know that the mixed Hodge structures, and in particular the one in the lower right
corner, are the same as in (9.3.2). This is true by [Sa1].
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iii) Let R′′ = R ∩Q ∩Q′ (Q + R, Q′ + R). For both X
red

and X, the diagram
of complexes

B•(R) −→ B•(R ∩Q)y
y

B•(R ∩Q′) −→ B•(R′′)

commutes. This is to ensure that B• actually has a square-zero differential, and it is
not a Hodge theoretical issue. Since we are working at the level of cohomology, this
is not an issue here.

Finally, the restriction mappings to H•(X) and to the cohomology of a closed
boundary stratum are morphisms of mixed Hodge structure because they are induced
by the natural projection of Cone{A• ⊕B• → C•} onto A• ⊕B•.

(9.3.4) Remark. Using the B•(R)red’s is tantamount to giving a mixed Hodge

complex for the nerve N
red

(from (6.16)).

We henceforth understand by the mixed Hodge structure on H•(X
red

) to be the
one determined by (9.3). We state for emphasis that no ordering of boundary strata
needs to be specified beyond the instruction that the mixed Hodge structures are
constructed “from the boundary inward”, i.e., in the order of increasing Q-rank.

Because X
red

maps onto the Baily-Borel compactification X∗ of X , and X∗ is an
algebraic variety, it is natural to ask whether the mixed Hodge structure constructed
in (9.3) is compatible with Deligne’s mixed Hodge structure on the cohomology of X∗.
The answer is affirmative (as one should demand):

(9.4) Proposition. The mapping H•(X∗)→ H•(X
red

) is a morphism of mixed
Hodge structures.

Proof. As always, this is verified recursively. The algebraic variety X∗ has an

existing mixed Hodge structure on its cohomology. For comparing it to that of X
red

,
we want a construction of a mixed Hodge complex for H•(X∗)h that follows the lines
of §9, one for which we can appeal to (2.8).

We note that the compactification X∗ differs substantially from the other ones

we are considering in this article, in particular X
red

, in that the combinatorial nature
of its boundary is different. This can be explained prior to taking the Γ-quotient,

and we can work within a standard lattice of parabolic subgroups. For D
red

, the

maximal closed boundary faces are of the form e(P )
red

with P maximal (in the sense

of parabolic subgroups). The general face is of the form e(R)
red

, the intersection of
k of the maximal faces, corresponding to writing R as the intersection of k maximal
parabolic subgroups, as in (4.2). On the other hand, the role of the non-maximal
parabolic subgroups in D∗ is somewhat obscure, and we prefer to leave it that way. For
P maximal parabolic, the corresponding closed stratum is (DP )∗. However, these are
nested: (in the irreducible case) the maximal P are linearly ordered under the relation
≺ (§4), whereby P ′ ≺ P if and only if (DP ′)∗ ⊂ (DP )∗. It may seem redundant to
talk about intersections of these, but it is wise to do so.

We view the boundary strata of X
red

in clusters, as in N
red

. Recall that for each
maximal P in the lattice, S(P )red denotes the disjoint union of all closed boundary
strata associated to the conjugates of P . Then, let S(P )∗ be the image of S(P )red in
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∂X∗, a union (but not a disjoint union) of the (D gP )∗’s. If R is parabolic, with R =⋂
P again, then S(R)red =

⋂
S(P )red. Its image in ∂X∗ is S(R)∗ =:

⋂
S(P )∗, which

is an algebraic variety. The redundancy noted above gives us that S(R)∗ coincides
with S(Π(R))∗.

Let N ∗ denote the corresponding nerve for ∂X∗. The mappings

(9.4.1) S(R)red → S(R)∗

are compatible with inclusions of parabolic subgroups, so they induce a mapping of

boundary nerves N
red
→ N ∗. We get a decomposed mixed Hodge complex

B•(X∗) ≃
⊕

R

B•(R)∗

with cohomology H•(X∗)h by taking B•(R)∗ = H•(S(R)∗)h, the Deligne mixed
Hodge structure of the algebraic variety S(R)∗. We want to see that we have compat-
ible morphisms of mixed Hodge complexes, B•(R)∗ → B•(R)red.

By (6.7), the connected components of S(R)red are of the form

e′(R)
red
≃ (Xℓ,R)red × (MP )red,

with P = Π(R). On the other hand, it is the algebro-geometric components of S(R)∗

that are of the form (MP )∗, the Baily-Borel compactification of the lower-rank MP .
We note that (9.4.1) factors through the disjoint union

(9.4.2) S̃(R)∗ =:
⊔

(MP )∗,

which is also an algebraic variety. Over (MP )∗, the mapping S(R)red → S̃(R)∗ is
given on connected components by the composition

(9.4.3) (Xℓ,R)red × (MP )red → (MP )red → (MP )∗,

where (MP )red → (MP )∗ is the corresponding (quotient) mapping for MP . Thus the
mapping on cohomology induced by (9.4.3):

(9.4.4) H•((MP )∗)→ H•((Xℓ,R)red)⊗H•((MP )red)

takes its values in H0((Xℓ,P )red)⊗H•((MP )red) ≃ H•((MP )red). We see that (9.4.4)
is induced by

(9.4.5) H•((MP )∗)→ H•((MP )red),

which we are assuming, by induction, is a morphism of mixed Hodge structures, com-
patible with restrictions. This gives that

H•(S̃(R)∗)→ H•(S(R)red)

is a morphism of mixed Hodge structures. On the other hand, it follows directly from
Deligne’s mixed Hodge theory that

H•(S(R)∗)→ H•(S̃(R)∗)

is a morphism of mixed Hodge structures. Combining these, we see that

B•(R)∗ → B•(R)red
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is a morphism of mixed Hodge complexes, compatible with restrictions, and we are
done.

10. Towards mixed Hodge structures in the excentric Borel-Serre case.

We would like to adapt the argument for H•(X
red

) in (9.3) to the excentric Borel-Serre

compactification X
exc

. However, we are no longer able to use (2.10, ii) to simplify the
discussion, for the following reason. Equivariant cohomology is a composite functor:

(10.1) H•
Γ(K•

h) = H•(C•(Γ, K•
h)),

and this does not generally coincide with H•(Γ, H•
h). Indeed, the latter is the E2-term

of a spectral sequence abutting to (10.1), so it is of limited Hodge theoretic use even
when the spectral sequence degenerates at E2; there are non-trivial extensions in the
category of mixed Hodge structures. What makes it work in the right-hand column
of (9.3.2), which one can write as

(10.2) H•
Γ(Gℓ,R)(M

′
P , Q) ≃ H•(Γ(Gℓ,R), H•(MP , H•(wP , Q))),

is the theorem of Kostant from [Ko]. We leave it to the reader to pursue this.

In this Section we seek to adapt the discussion for X
red

in (9.3) to X
exc

. As
suggested in §6, the original Borel-Serre construction [BS] applies to (connected) mixed
Shimura varieties.10 The latter have excentric Borel-Serre compactifications whenever
“W−2 is trivial” (see [P:2.1(v)]), for example, AP . These are compact torus (Abelian)
fibrations over a locally symmetric variety. To effect our induction, it is necessary to
extend the construction of mixed Hodge structures to such mixed Shimura varieties.11

Specifically,

(10.3) Construction (anticipated mixed Hodge complexes for the excentric
Borel-Serre). Let X be a locally symmetric variety, or more generally, a mixed Shimura

variety for which X
exc

is defined as a compactification of X. Take A• and C•(R) and
A• → C• as in (9.3), though without taking cohomology, and put

B•(R) = B•(R)exc = C•(Γ(Gℓ,R), C•((AP )exc)h),

where C•((AP )exc)h is the mixed Hodge complex for H•((AP )exc) already constructed.
Let B•(R)→ C•(R) be the composite mapping

(10.3.1) C•(Γ(Gℓ,R), C•((AP )exc)h)→ C•(Γ(Gℓ,R), C•((AP ))h)

→ C•(Γ(Gℓ,R), C•(M ′
P )h)

Then the above data is in the category A and moreover is expected to determine a
mixed Hodge complex C•(X

exc
)h for H•(X

exc
), such that the restriction H•(X

exc
)→

H•(B•(R)exc) to a closed boundary stratum and the natural mapping H•(X
red

) →

H•(X
exc

) are morphisms of mixed Hodge structures.

Explanation (incomplete). First, we note that the formula for B•(R)exc comes
from (6.20). The outline for verifying (10.3) is largely the same as that of (9.3).

10 We will make the following abuse of language. The standard usage, in the case of the mixed
Shimura variety associated to P , involves complexifying UP . However, we will decline to do that and
use UP (R) instead of UP (C). This yields a space of the same homotopy type.

11 Recall from §6 that there is no compactification “AP
red

” of AP unless VP is trivial, so we
do not have to extend (9.3).
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There is only one diagram that requires serious checking, namely the one obtained by
inserting a central column in item ii) from the proof of (9.3) and forgetting (2.10, ii):

(10.3.2)

B•(R)red −→ B•(R)exc −→ C•(R)y
y

y
B•(R′)red −→ B•(R′)exc −→ C•(R′) ;

it is to be a commutative diagram of mixed Hodge complexes. Explicitly, this is

(10.3.3)

C•((Xℓ,R)red) ⊗ C•(MP
red

)h −→ C•(Γ(Gℓ,R), C•((AP )exc)h) −→ C•(Γ(Gℓ,R), C•(M ′
P

)h)??y ??y ??y
C•((Xℓ,R′ )red) ⊗ C•(MQ

red
)h −→ C•(Γ(Gℓ,R′ ), C•((AQ)exc)h) −→ C•(Γ(Gℓ,R′ ), C•(M ′

Q
)h)

We may replace C•((Xℓ,R)red) ⊗ C•(MP
red

)h by C•(Γ(Gℓ,R), C•(MP
red

)h), etc., for
the former maps into this anyway. This gives, replacing (10.3.3),

(10.3.4)

C•(Γ(Gℓ,R), C•((MP )red)h) −→ C•(Γ(Gℓ,R), C•((AP )exc)h) −→ C•(Γ(Gℓ,R), C•(M ′
P

)h)??y ??y ??y
C•(Γ(Gℓ,R′ ), C•((MQ)red)h −→ C•(Γ(Gℓ,R′ ), C•((AQ)exc)h) −→ C•(Γ(Gℓ,R′ ), C•(M ′

Q
)h)

As before, the case Q = P is very easy, the rows being morphisms by induction,
and the columns are given by restriction to a subgroup. When Π(R′) = Q ≺ P , we
rewrite (10.3.4) relative to P , where we understand that we are taking Γ(Gℓ,R)-cochains
throughout:

(10.3.5)

C•(MP
red

)h −→ C•(AP
exc

)h −→ C•(M ′
P )hy

y
y

B•(P (Q))red −→ B•(P (Q)VP )exc −→ C•(P (Q)WP )

To obtain the bottom row here (in the unfiltered sense first) from that of (10.3.4), one
makes use of (8.12) and (6.A.1); the most interesting case is:

(10.3.6) C•(Γ(Gℓ,R′), C•((AQ)exc))

≈ C•(Γ(Gℓ,R), C•(Γ(WQ(P ))Γ(Gℓ,P (Q)), C
•(Γ(VQ), C•((MQ)exc)))

≈ C•(Γ(Gℓ,R), C•(Γ(VP )Γ(VP (Q)), C
•(Γ(Gℓ,P (Q)), C

•(MQ
exc

))))

≈ C•(Γ(Gℓ,R), C•(e′(P (Q)VP )
exc

))).

The rows of (10.3.5) are again morphisms of mixed Hodge complexes by induction,
and the columns are given by restriction to a boundary face, which is also a morphism
by induction.

What we need in order to continue is knowing that the induced morphisms of
mixed Hodge structure on cohomology are the same as those of (10.3.4); that is, that
the change of base between P and Q in (10.3.6) is Hodge theoretical (recall (8.17)).
I suspect that we lack sufficient methods to prove this now. (See §12 below for some
ideas.)
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Finally, since we have used for each Q a different mixed Hodge complex for each
P � Q, we would appeal to (2.12) to finish the construction.

We assert a consequence of the construction in (10.3), which is conditional upon
completing the argument:

(10.4) Assertion. Let X1 and X2 be mixed Shimura varieties of the type in
(10.3), and suppose there is a morphism of mixed Shimura varieties X1 → X2. Then

the induced morphism H•(X
exc

2 ) → H•(X
exc

1 ) is a morphism of mixed Hodge struc-
tures.

Proof (assuming (10.3)). It goes by induction. Let AP,1 and AP,2 be the respec-

tive mixed Shimura varieties in the description of X
exc

1 and X
exc

2 ; these are the ones
for which

B•(X2; R)exc = C•(Γ(Gℓ,R), C•((AP,2)
exc)h)

↓ ↓
B•(X1; R)exc = C•(Γ(Gℓ,R), C•((AP,1)

exc)h)

Because C•((AP,2)
exc)h → C•((AP,1)

exc)h is a morphism of mixed Hodge complexes
for all P , so is B•(X2)

exc → B•(X1)
exc.

(10.5) Remark. Note that we did not use for (10.4) that the change of base was
Hodge-theoretic beyond what was needed for (10.3).

Accepting (10.3) again, we obtain immediately from (9.4) that:

(10.6) Corollary. Assume that the construction in (10.3) is completed. Then

the mapping H•(X∗)→ H•(X
exc

) is a morphism of mixed Hodge structures.

11. Towards mixed Hodge structures in the excentric toroidal case. In
this section, the construction from §10 will get mimicked for the excentric toroidal
compactification. Since Xtor is (with our convention) a projective manifold, its co-
homology has classical Hodge theory. It is for the excentric toroidal compactification
Xtor,exc, again a space that usually has odd-dimensional boundary strata, that we
(conditionally) produce something new.

The construction of toroidal compactifications extend to mixed Shimura varieties,
as is carried out in [P]. Their excentric toroidal compactifications are defined when

W−2 is trivial—precisely when X
exc

is. Making parallel use of that as part of the
induction, we get the toroidal analogue of (10.3):

(11.1) Construction (anticipated mixed Hodge complexes in the excentric
toroidal case). Let X be a locally symmetric variety, or more generally, a mixed
Shimura variety for which Xtor,exc is defined. Take A• and C•(R) as in (9.3), and
put

(11.1.1) B•(R) = B•(R)tor,exc := C•(Γ(Gℓ,R), C•((AP )tor,exc)h),

where C•((AP )tor,exc)h is the mixed Hodge complex for H•((AP )tor,exc) already con-
structed. Let B•(R)→ C•(R) be the composite mapping

(11.1.2) C•(Γ(Gℓ,R), C•((AP )tor,exc)h)→ C•(Γ(Gℓ,R), C•((AP )tor)h)

→ C•(Γ(Gℓ,R), C•(M ′
P )h)
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Then the above data is in the category A and moreover is expected to deter-
mine a mixed Hodge complex C•(Xtor,exc)h for H•(Xtor,exc), such that the restric-
tion H•(Xtor,exc) → H•(B•(R)tor,exc) to a closed boundary stratum and the natural
mapping H•(Xtor,exc) → H•(Xtor) are morphisms of mixed Hodge structures. Here,
H•(Xtor) is understood to have the classical pure Hodge structures for the smooth
projective variety Xtor.

Explanation (incomplete). We follow an argument analogous to the one for (10.3).
Here, we must first reconstitute the mixed Hodge structure on H•(Xtor) along the lines
of our construction; this is done by taking B•(R)tor to be C•(Z(R))h. The mapping
B•(R)tor,exc → B•(R)tor is defined as the canonical composition

(11.1.3) C•(Γ(Gℓ,R), C•(AP )tor,exc))→ C•(Γ(Gℓ,R), C•(Z̃(R)))→ C•(Z(R)).

In the present instance, the essential diagram to check (cf. (10.3.2)) is

B•(R)tor,exc −→ B•(R)tor −→ C•(R)y
y

y
B•(R′)tor,exc −→ B•(R′)tor −→ C•(R′),

Explicitly, this is
(11.1.4)

C•(Γ(Gℓ,R), C•((AP )tor,exc)h) −→ C•(Γ(Gℓ,R), C•( eZ(R))h) −→ C•(Γ(Gℓ,R), C•(M ′
P

)h)??y ??y ??y
C•(Γ(Gℓ,R′ ), C•((AQ)tor,exc)h) −→ C•(Γ(Gℓ,R′ ), C•( eZ(R′))h) −→ C•(Γ(Gℓ,R′ ), C•(M ′

Q
)h)

The case Q = P is again easy, with the rows assumed to be morphisms of mixed
Hodge structure by the proposed induction, and the columns given by restriction to
a subgroup. In the case where Π(R′) = Q ≺ P , we proceed a little differently from
(10.3.4). Concerning the interesting left-hand square, we note that the diagram (8.14)
factors, by the toroidal construction itself, through

(11.1.5)

ZR′ →֒ ZRy
y

Y A
P (Q) →֒ (AP )tor

where Y A
P (Q) is the boundary divisor in (AP )tor corresponding to P (Q)VP ⊂ Gh,P VP ;

Y A
P (Q) projects onto YP (Q) in (MP )tor. The excentric quotient of (11.1.5) can be taken.

This yields the diagram:
(11.1.6)
〈Γ(Gℓ,R), (Y A

P (Q))〉 ← ZR′ → ZR → 〈Γ(Gℓ,R), (AP )tor〉y
y

y
y

〈Γ(Gℓ,R), (Y A
P (Q))

exc〉
∼
←− Zexc

R′ → Zexc
R

∼
−→ 〈Γ(Gℓ,R), (AP )tor,exc〉

Furthermore, we have an analogue of (11.1.6) coming from (7.3):

(11.1.7)

(Y A
P (Q)) → 〈Γ(Gℓ,P (Q)VP

), (AP (Q)VP
)tor〉y

y
(Y A

P (Q))
exc ∼

−→ 〈Γ(Gℓ,P (Q)VP
), (AP (Q)VP

)tor,exc〉.
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When we take the cochain complexes for the spaces in (11.1.6) and (11.1.7), we would
have (by induction) morphisms of mixed Hodge complexes. As was the case for (10.3),
we would need that these morphisms of mixed Hodge structure are the same as those
in (11.1.4), i.e., that the change of base between P and Q here is Hodge theoretical
(8.17). Without that, the induction is, once again, stalled.

The next natural step is to give the analogue of (10.4), and that is conditional
upon completing the argument for (11.1):

(11.2) Assertion. Let X1 and X2 be mixed Shimura varieties of the type in
(10.3), and suppose there is a morphism of mixed Shimura varieties X1 → X2. Then

the induced morphism H•(Xtor,exc
2 ) → H•(Xtor,exc

1 ) should be a morphism of mixed
Hodge structures.

Proof (assuming the completion of the argument for (11.1)). We argue by induc-
tion. Let AP,1 and AP,2 be the respective mixed Shimura varieties in the description

of Xexc
1 and Xtor,exc

2 ; these are the ones for which

B•(X2; R)tor,exc = C•(Γ(Gℓ,R), C•((AP,2)
tor,exc)h)

↓ ↓
B•(X1; R)tor,exc = C•(Γ(Gℓ,R), C•((AP,1)

tor,exc)h)

Because C•((AP,2)
exc)h)→ C•((AP,1)

exc)h) is a morphism of mixed Hodge complexes
for all P , so is B•(X2)

exc → B•(X1)
exc.

The analogue of (10.6) should also hold in the toroidal case. To make the analogy
clear, we note that the proof of (9.4) comes down to the assertion that the mapping

MP
red
→ M∗

P induces a morphism of mixed Hodge structure on cohomology, and

(11.2) is about the corresponding statement for MP
exc
→M∗

P . Therefore, by compo-

sition with AP
exc
→MP

exc
, the mapping AP

exc
→M∗

P would also induce a morphism
of mixed Hodge structure on cohomology.

(11.3) Assertion. The mapping H•(X∗)→ H•(Xtor,exc) should be a morphism
of mixed Hodge structure.

Proof (assuming the completion of the argument for (11.1)). We must consider
the mappings

〈Γ(Gℓ,R), (AP )tor,exc〉 →M∗
P

for P maximal. This leads us to the more fundamental mapping (AP )tor,exc → M∗
P ,

which factors through (MP )tor,exc. The mapping (AP )tor,exc → (MP )tor,exc induces a
morphism of mixed Hodge structures by induction, as does (MP )tor,exc →M∗

P .

Next, there are continuous mappings k : Xtor,exc → X
exc

, defined in [Z4:(3.4)],
partly along the lines of [GT]. We showed that the two spaces are, thereby, homotopy
equivalent. It should be possible to reprove this result by a geometric recursion, using
(6.19), (7.3) and the correspondence of deleted neighborhoods of the boundary nerves
(from [HZ2:§2]; see also (6.14)). We expect that we will then be able to prove:

(11.4) Assertion. The isomorphism k∗ : H•(X
exc

) ≃ H•(Xtor,exc) is a morphism
of mixed Hodge structures.
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12. Additional features and hopes. In what follows, Hodge-theoretic state-
ments about the excentric compactifications are contingent upon completing the argu-
ments for the constructions in §10 and §11.

We will show first that the range of weights occurring in the mixed Hodge struc-
tures from §9–§11 will be the same as those of a complete algebraic variety. It is
convenient to give first a general feature of our construction. For compactifications Y
of X , we are considering mixed Hodge complexes of the form

(12.1) K•(Y ) = Cone{A•(X)⊕B•(∂Y )→ C•
dn(∂Y )},

with the understanding that the complexes C•(X) and C•
dn(∂Y ) are taken independent

of Y . We then have:

(12.2) Lemma. Let Y1 → Y2 be a morphism of compactifications of X. Let
B•(∂Y1) and B•(∂Y2) be mixed Hodge complexes for their respective boundaries with
a morphism of mixed Hodge complexes B•(∂Y2)→ B•(∂Y1). Finally, let K•(Y1) and
K•(Y2) be given by the mixed cone (12.1). Then:

i) this induces a morphism of mixed Hodge complexes K•(Y2)→ K•(Y1);

ii) the two mixed cones

Cone{K•(Y2)→ K•(Y1)} and Cone{B•(∂Y2)→ B•(∂Y1)}

are quasi-isomorphic, and their filtrations induce the same mixed Hodge structure on
cohomology.

Proof. This is quite straightforward. The existence of a bifiltered mapping K•(Y2)
→ K•(Y1) is automatic, giving i). Next, K•(Y1) and K•(Y2) differ only in the term
B•(∂Y ). Up to quasi-isomorphism, the other terms “cancel,” leaving the complex
Cone{B•(∂Y2)→ B•(∂Y1)}. Thus, we have verified ii).

(12.3) Proposition. The weights occurring in Hi(X
red

) are ≤ i, i.e., C•(X
red

)h

is of complete type. The same holds for Hi(X
exc

) and Hi(Xtor,exc) if the arguments
for (10.3) and (11.1) are completed.

Proof. We prove this by induction (of course). Since we are considering spaces
with a simplicial boundary structure, they all follow a single line. We apply (12.2, ii)

to the cases Xtor → Xtor,exc and X
exc
→ X

red
, using (11.4) to connect the two.

Then, the conclusion about weights passes from Hi(Xtor) to Hi(Xtor,exc) by (2.14),

and likewise from Hi(X
exc

) to Hi(X
red

).

It is natural to ask whether the analogue of [De:II,(3.2.17)] is true:

(12.4) Question. Is WiH
i(X) = im{Hi(X̂) → Hi(X)} for X̂ equaling X

red
,

X
exc

, and Xtor,exc?

Note, however, that the assertion is clearly false for X̂ = X .
Next, if E is a homogeneous vector bundle on X , it has canonical extensions

E
red

to X
red

(and then E
exc

to X
exc

), and also Etor,exc to Xtor,exc. It should not be

hard to show that the Chern classes of E
red

have the usual property: cp(E
red

) lies in

F pW2pH
2p(X

red
) and cp(E

tor,exc) lies in F pW2pH
2p(Xtor,exc).
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Last along these lines, we expect it is not hard to see that all of the mixed
Hodge structures we have constructed (to the extent that they have been) have natural
polarizations (in the usual graded sense).

The notion we called Hodge-theoretic change of base (8.17) was our only obstruc-
tion, though a serious one, to defining mixed Hodge structures on the cohomology of
the excentric Borel-Serre compactification and the excentric toroidal compactification.
A plausible idea would be to define a notion of mixed Hodge modules on such spaces
(or more generally). The decomposition theorem from algebraic geometry plays a
central role in the construction in [Sa1]. I used to daydream about generalizing the
decomposition theorem to a larger class of spaces than complex Kähler varieties. Fol-
lowing the lines suggested in this paragraph might be a good application of, hence
motivation for, an extended notion of mixed Hodge modules.
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