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LUTZ TWIST AND CONTACT SURGERY∗

FAN DING† , HANSJÖRG GEIGES‡ , AND ANDRÁS I. STIPSICZ§

Abstract. For any knot T transverse to a given contact structure on a 3-manifold, we exhibit
a Legendrian two-component link L = L1 ⊔ L2 such that T equals the transverse push-off of L1 and
contact (+1)-surgery on L has the same effect as a Lutz twist along T .
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1. Introduction. The theorem of Lutz and Martinet [12] asserts that any closed,
oriented 3-manifold Y admits a contact structure in each homotopy class of tangent
2-plane fields. Here 2-plane fields are understood to be cooriented; a contact structure
is understood to be cooriented and positive, that is, a 2-plane field ξ defined as the
kernel of a global 1-form α on Y such that α ∧ dα is a positive volume form.

The cited paper by Martinet only covers the existence of some contact structure
on a given Y ; for a proof of the existence of such a structure in every homotopy class
of 2-plane fields see [9], which gives a proof of that result along the lines of the original
(and never fully published) argument by Lutz.

The key to that second step is what is nowadays known as a Lutz twist, a surgery
on a knot T in a given contact manifold (Y, ξ) — with T transverse to ξ — that is
topologically trivial (i.e., does not change Y ), but transforms ξ to a contact structure
ξ′ in a different homotopy class of 2-plane fields.

In a series of papers [1, 2, 3] we described a notion of contact r-surgery on Le-
gendrian knots in a contact manifold (that is, knots tangent to the given contact
structure), where r ∈ Q∗ ∪ {∞} denotes the framing of the surgery relative to the
natural contact framing of the Legendrian knot. This generalises the contact surgery
introduced by Eliashberg [5] and Weinstein [14], which in our language is a contact
(−1)-surgery. Amongst other things, we discussed explicit surgery diagrams for var-
ious contact manifolds and gave an alternative proof of the Lutz-Martinet theorem
via such Legendrian surgeries. We did not, however, fully elucidate the relation be-
tween our surgery diagrams and the Lutz twist (although the principal connection
was described in [2], cf. [8]). The intention of the present note is to give an explicit
Legendrian surgery diagram for the Lutz twist. In particular, this yields surgery rep-
resentations for all contact structures on S3 analogous to [3] and provides concrete
realisations for the considerations in Section 6 of [2].

We shall henceforth assume that the reader is familiar with the basics of this
notion of contact surgery; if not, the best place to start may well be [3], cf. also [13].
One fact from [1, 2] we should like to recall here is that contact (+1)-surgery is the
inverse of contact (−1)-surgery.
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2. The Lutz twist. We briefly recall the definition of the Lutz twist, cf. [9].
Let T be a knot transverse to a contact structure ξ on a 3-manifold Y . Then there is
a tubular neighbourhood νT of T that is contactomorphic to the solid torus S1 ×D2

δ

(with D2
δ denoting the 2-disc of radius δ) for some suitable δ > 0, with contact

structure ζ = ker(dθ + r2 dϕ), where θ denotes the S1-coordinate, and r, ϕ are polar
coordinates on D2

δ . For ease of notation we identify (νT, ξ) with (S1 × D2

δ , ζ).
A simple Lutz twist along T is the operation that replaces the contact structure

ξ on Y by the one that coincides with ξ outside νT , and on S1 × D2

δ is given by

ζ′ = ker
(

h1(r) dθ + h2(r) dϕ
)

,

where h1, h2 : [0, δ] → R are smooth functions satisfying the following conditions:
(i) h1(r) = −1 and h2(r) = −r2 for r near 0,
(ii) h1(r) = 1 and h2(r) = r2 for r near δ,
(iii) (h1(r), h2(r)) is never parallel to (h′

1(r), h
′
2(r)) — in particular, neither of

them is ever equal to (0,0) —,
(iv) h1 has exactly one zero on the interval [0, δ].
The boundary conditions (i) and (ii) ensure that ζ′ is defined around r = 0 and

coincides with ζ near r = δ; (iii) is the condition for ζ′ to be a contact structure;
condition (iv) fixes the homotopy class (as 2-plane field) of the new contact structure.

The contact structure ζ′ is a so-called overtwisted contact structure in the sense
of Eliashberg [4], and as shown in that paper (specifically, Theorem 3.1.1), the classi-
fication of such overtwisted contact structures up to isotopy fixed near the boundary
coincides with the classification of 2-plane fields up to homotopy rel boundary. An
immediate consequence of that classification is that the contact structure on Y ob-
tained from ξ by a Lutz twist along T is (up to isotopy) independent of any of the
choices in the construction described above.

3. The surgery diagram for a Lutz twist. Let (Y, ξ) be a given contact 3-
manifold and T a knot in Y transverse to ξ. We want to describe a Legendrian link L

in Y such that (+1)-contact surgery on L has the same effect as a Lutz twist along T .
By [2] we may assume that (Y, ξ) has been obtained from S3 with its standard contact
structure ξst by contact (±1)-surgery on a Legendrian link in (S3, ξst). Thus, (Y, ξ)
can be represented by the front projection (to the yz-plane) of this Legendrian link,
considered as a link in R3 with its standard contact structure ξst = ker(dz + xdy),
which is contactomorphic to (S3, ξst) with a point removed. Then L can be represented
in the same front projection diagram.

For the representation of Legendrian and transverse knots via their front pro-
jection we refer to [6, 7, 10]. Beware that these three papers use three different
conventions for writing the standard contact structure on R3. We follow the one from
[10] (which is also that of [9]). The positive transversality condition ż + xẏ > 0 for
a curve t 7→ (x(t), y(t), z(t)) implies that in the front projection of a positively trans-
verse knot there can be no vertical tangencies going downwards (ẏ = 0, ż < 0), and
all but the crossing shown in Figure 1 are possible.

From these front projections it is easy to describe the positive transverse push-off
of an oriented Legendrian knot: smooth the up-cusps and replace the down-cusps by
kinks (there is only one possibility for the sign of the crossing in this kink). Similarly,
one can easily describe an oriented Legendrian knot whose positive transverse push-off
is a given transverse knot, cf. [6]:

(i) In the front projection of the given transverse knot (oriented positively),
replace vertical (upwards) tangencies by cusps.
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Fig. 1. Impossible front projections of positively transverse curve.

(ii) By Figure 1, in those crossings of a positively transverse knot that cannot be
interpreted as the front projection of a Legendrian knot, at least one of the
strands is pointing up (ż > 0). If one adds a zigzag to that strand (if both
are going up, either can be chosen), it is possible to realise the given crossing
by the front projection of a Legendrian curve.

Therefore, the following theorem gives a complete surgery description of Lutz
twists.

Theorem. Let L1 be an oriented Legendrian knot in (Y, ξ), represented by the
front projection of a Legendrian knot in (R3, ξst) disjoint from the link describing
(Y, ξ). Let L2 be the Legendrian push-off of L1 with two additional up-zigzags (see
Figure 2). Let ξ′ be the contact structure on Y obtained from ξ by contact (+1)-
surgery on both L1 and L2, and ξ′′ the contact structure obtained from ξ by a simple
Lutz twist along the positive transverse push-off T of L1. Then ξ′ and ξ′′ are isotopic
via an isotopy fixed outside a tubular neighbourhood of L1.

L1

L2

K

Fig. 2. Surgery diagram for Lutz twist.

The proof of this theorem proceeds as follows: First of all, we verify that the
described surgeries on L1 and L2 taken together do not change the manifold Y . Sec-
ondly, we check that the resulting contact structure is overtwisted by exhibiting an
explicit overtwisted disc. Then, again by Eliashberg’s classification of overtwisted
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contact structures, and thanks to the fact that the two surgeries only change the con-
tact structure in a tubular neighbourhood of L1 (which contains the overtwisted disc
just mentioned), it suffices to show that the described surgeries and the correspond-
ing Lutz twist have the same effect on the homotopy class of the contact structure,
regarded as a mere plane field.

(1) Recall that contact r-surgery on a Legendrian knot L means that topologically
we perform surgery with coefficient r ∈ Q∗ ∪ {∞} relative to the contact framing of
L, which is determined by a vector field along L transverse to the contact structure.
In the front projection picture this corresponds to pushing L in the z-direction, and
it is this what we mean by the Legendrian push-off of L. As shown in [1], contact
(+1)-surgery along L and contact (−1)-surgery along its Legendrian push-off cancel
each other, and in particular do not change the underlying manifold. Since adding
two zigzags to a Legendrian knot adds two negative twists to its contact framing, we
see that topologically the two contact (+1)-surgeries on L1 and L2 are the same as a
contact (+1)-surgery along L1 and a (−1)-surgery along its Legendrian push-off, and
hence topologically trivial.

We can easily see this directly: Write t for the Thurston-Bennequin invariant of
L1, so that the linking number between L1 and its Legendrian push-off (or with L2) is
given by ℓk(L1, L2) = t. Then the topological framings (i.e., framings relative to the
surface framing) of the surgeries are n1 = t + 1 and n2 = t − 1. After a handle slide
(cf. [11, Chapter 5]) we may replace the link (L1, L2) by (L1, L2 − L1), with linking
number ℓk(L1, L2 − L1) = t − n1 = −1 and framing of L2 − L1 equal to

(L2 − L1)
2 = L2

2 + L2

1 − 2 ℓk(L2, L1) = n2 + n1 − 2t = 0.

By construction, L2 − L1 is an unknot, and the computation above shows that it is
a 0-framed meridian of L1, which proves the claim that the composition of the two
surgeries is topologically trivial.

(2) We next exhibit the overtwisted disc in the manifold obtained by the contact
surgeries along L1 and L2. Let K be the knot indicated in Figure 2, i.e., the Legen-
drian push-off of L1 with one additional zigzag and with one extra negative linking
with L2. Alternatively, L2 may be regarded as the Legendrian push-off of K with one
additional zigzag. The surface framing of L2 determined by the Seifert surface of the
oriented link (−L2) ⊔ K indicated in Figure 2 is equal to t − 1 (the contact framing
of K), hence equal to the topological framing used for the surgery on L2. So that
Seifert surface glued to the meridional disc used for the surgery on L2 defines a disc
with boundary K in the surgered manifold. The surface framing of K determined
by that disc equals the contact framing t − 1, which is exactly the condition for an
overtwisted disc.

The above verification that K is the boundary of an overtwisted disc in the
surgered manifold is completely straightforward. Nonetheless, it may be instructive
to see that K is not found by accident. Start with a meridian K ′ to both L1 and L2,
that is, an unknot with ℓk(K ′, L1) = ℓk(K ′, L2) = 1. If surgery along L1 and L2 has
any chance of being a Lutz twist, we expect K ′ to be isotopic to the boundary of an
overtwisted disc.

There is an obvious pair of pants with boundary the oriented link L1 ⊔ (−K ′) ⊔
(−L2) that gives K ′ the surface framing nK′ = 0 and L1, L2 the framing n1 =
t + 1, n2 = t − 1, respectively. Now perform a handle slide of −K ′ over the 2-handle
attached to L1 (corresponding to the surgery) to form, in the surgered manifold, the
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knot L1 − K ′, which is the knot K from above. We compute the linking numbers

ℓk(L1 − K ′, L1) = n1 − 1 = t,

ℓk(L1 − K ′, L2) = ℓk(L1, L2) − 1 = t − 1,

and the surface framing of L1 − K ′, now with respect to the annulus with boundary
(L1 − K ′) ⊔ (−L2):

(L1 − K ′)2 = n1 + nK′ − 2 ℓk(L1, K
′)

= (t + 1) + 0 − 2 · 1

= t − 1,

which is exactly what we had found for K before.

(3) It remains to be shown that the topological effect of the surgeries described
in the theorem has the same effect on the homotopy class of the contact structure
(regarded merely as a plane field) as a Lutz twist. By the neighbourhood theorem
for Legendrian submanifolds (cf. [9]), the particular nature of L1 is irrelevant for this
consideration. Therefore we can localise the problem in a tubular neighbourhood
of L1, and so it suffices to consider specific examples for L1, where the effect of the
surgeries on the obstruction classes determining the homotopy type of the plane field
can be computed explicitly.

For the following considerations cf. [9]. The tangent bundle of the solid torus
S1×D2 being trivial, (cooriented) tangent 2-plane fields on S1×D2 can be identified
with maps S1 × D2 → S2. Thus, the obstructions to homotopy of 2-plane fields on
S1 × D2 rel boundary T 2 are in

H2(S1 × D2, T 2; π2(S
2)) ∼= Z

and

H3(S1 × D2, T 2; π3(S
2)) ∼= Z.

The first obstruction corresponds to the extension of a given 2-plane field along T 2 over
a meridional disc of the solid torus and is detected by the (relative) first Chern class
of the plane field (here the absence of 2-torsion is crucial). The second obstruction
relates to the extension of the plane field over the 3-cell one needs to attach to T 2∪
(meridional disc) to form the solid torus. This obstruction is captured by the Hopf
invariant.

(3a) In order to deal with the first obstruction, we consider Y = S1×S2 ⊂ S1×R3

with its standard tight contact structure ξ = ker(xdθ + y dz − z dy), in obvious
notation, and take L1 to be an oriented Legendrian knot in the homology class of
S1 × {pt.}. The contact manifold (S1 × S2, ξ) can be represented by contact (+1)-
surgery on a Legendrian unknot L0 with only two cusps, see [3]. For L1 we may then
take another such unknot linked once with L0, and for L2 its Legendrian push-off
with additional zigzags as in the theorem. Write ξ′ for the contact structure on Y
obtained by performing contact (+1)-surgery on L1 and L2.

The contact structure ξ has first Chern class c1(ξ) = 0. This follows from the
observation that the vector field

(z − y) ∂x + x∂y − x∂z + (y + z) ∂θ
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defines a trivialisation of ξ. Alternatively, this is a consequence of the homological
computations in Section 3 of [3], given the fact that the rotation number rot(L0)
(with any orientation on L0), which can be computed from the front projection as
(#(down-cusps) − #(up-cusps))/2, is equal to 0.

In the sequel we assume that the reader is familiar with those homological com-
putations. Write µ1, µ2 for the meridional circles to L1, L2, respectively, as well as
the homology classes they represent in the homology of the surgered manifold. Then,
with PD denoting the Poincaré duality isomorphism from cohomology to homology,

c1(ξ
′) = rot(L1)PD−1(µ1) + rot(L2)PD−1(µ2)

= −2PD−1(µ2).

(This would be true even if rot(L1) 6= 0, since µ1 + µ2 bounds a disc in Y also after
the surgery.)

Let L′
1 be a Legendrian push-off of L1. Then the surgery along L1 and L2 may

be assumed to occur in a tube containing L1 and L2, but not L′
1. This implies that

L′
1 represents the same homology class in H1(Y ) both before and after the surgery.

Since ℓk(L′
1, L2) = t and along L2 we perform surgery with topological framing t− 1,

we have that L′
1 − µ2 is homologically trivial in the surgered manifold. (With the

specific choice of L1 suggested above we would have t = −1.) Hence

µ2 = [L′
1] = [L1] ∈ H1(Y ),

so that

c1(ξ
′) = −2PD−1([L1]),

which is the same as for a Lutz twist along the positive transverse push-off of L1 (i.e.,
a transverse knot in the homology class of L1), see [9, Prop. 3.15].

Since [L1] generates H1(Y ) in this example, this fully determines the effect of the
surgery on the 2-dimensional obstruction class.

(3b) Finally, in order to see that the effect that the surgery on the link L = L1⊔L2

has on the 3-dimensional obstruction is the same as that of a Lutz twist along a positive
transverse push-off of L1, it is sufficient to consider an arbitrary oriented Legendrian
knot L1 in (S3, ξst). Set r = rot(L1), so that rot(L2) = r−2. As before we write t for
the Thurston-Bennequin invariant of L1, so that the Thurston-Bennequin invariant
of L2 equals t − 2. Let X be the handlebody obtained from D4 by attaching two
2-handles corresponding to the two surgeries. Let c ∈ H2(X) be the cohomology
class that evaluates to rot(Li) on the surface in X given by gluing a Seifert surface
(with induced orientation) of Li in D4 with the core disc of the corresponding handle,
i = 1, 2. Since we perform q = 2 contact (+1)-surgeries, Corollary 3.6 of [3] tells us
that the 3-dimensional invariant of the contact structure ξ′ obtained by these surgeries
is given by

d3(ξ
′) =

1

4

(

c2 − 3σ(X) − 2χ(X)
)

+ q

=
1

4
c2 −

3

4
σ(X) +

1

2
.

The signature σ(X) is the signature of the matrix

(

t + 1 t
t t − 1

)

, hence equal to

0. Moreover, by that same formula we have d3(ξst) = −1/2. So the change in the
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d3-invariant caused by the surgery is

d3(ξ
′) − d3(ξst) =

1

4
c2 + 1.

As shown in Section 3 of [3], c2 can be computed as ar + b(r − 2), where (a, b) is the
solution of

(

t + 1 t
t t − 1

) (

a
b

)

=

(

r
r − 2

)

.

This yields a = r − 2t and b = 2 − r + 2t, hence c2 = 4r − 4t − 4 and finally
d3(ξ

′) − d3(ξst) = r − t. This is exactly minus the so-called self-linking number l(T )
of the positive transverse push-off T of L1, cf. [7].

As shown in [9], the relative d3-invariant d3(ξ
′′, ξst), measuring the obstruction

to homotopy over the 3-skeleton between ξst and the contact structure ξ′′ obtained
by a Lutz twist along T , equals l(T ). Thus, to conclude the proof one would need to
verify that the absolute d3-invariant of [10] and the relative d3-invariant of [9] are, in
the case at hand, related by

d3(η1, η2) = d3(η2) − d3(η1). (3.1)

This can be done by looking at explicit geometric models, though, as always, it
is difficult to keep track of signs. So here is a more roundabout algebraic argument.
Let ξ±1 be the contact structure obtained from ξst by a Lutz twist along a transverse
knot T∓1 with self-linking number l(T∓1) = ∓1 (this sign convention will be explained
below); recall that the self-linking number is independent of the orientation of the
transverse knot. For any natural number n, write ξ±n for the contact structure on
S3 given by taking the connected sum of n copies of (S3, ξ±1). The additivity of the
relative d3-invariant implies d3(ξ±n, ξst) = ∓n, which means that we get a contact
structure on S3 in each homotopy class of tangent 2-plane fields.

The absolute d3-invariant — for 2-plane fields on S3 — takes all the values in
Z + 1/2, with d3(ξst) = −1/2. By [3, Lemma 4.2], it satisfies the additivity rule

d3(η1#η2) = d3(η1) + d3(η2) +
1

2
.

These observations imply that the absolute d3-invariant takes the value 1/2 for one
of the contact structures ξ1 and ξ−1, and the value −3/2 for the other. Equation (3.1)
follows up to sign. We conclude

d3(ξ
′′, ξst) = l(T ) = d3(ξst) − d3(ξ

′) = ±d3(ξ
′, ξst).

By the considerations in (3a), we know that the extension of the contact structure
over a meridional disc is the same, up to homotopy, for surgery on L or Lutz twist
along T . From the fact that there are standard models for the tubular neighbourhood
of a Legendrian or transverse knot, respectively, we infer that d3(ξ

′, ξst) and d3(ξ
′′, ξst)

can only differ by a constant term independent of the specific knot (corresponding to
a different extension of the 2-plane field over the 3-cell attached to T 2∪ (meridional
disc)). Hence, the equation above can only hold if that constant is zero and the sign
is the positive one. In turn, this yields equation (3.1) in full generality.

(Our definition of ξ±n then entails d3(ξ1) = 1/2 and d3(ξ−1) = −3/2, which
accords with our labelling of these structures in [3].)



64 F. DING, H. GEIGES AND A. I. STIPSICZ

This concludes the proof of the theorem.

Remark. If one defines L2 by adding two down-zigzags instead of up-zigzags, in
(3a) one obtains c1(ξ

′) = 2PD−1([L1]). This is the same as for a Lutz twist along
the negative transverse push-off T− of L1, since T− with the orientation that makes it
positively transverse to ξ represents the class −[L1]. Similarly, with this L2 we find in
(3b) that d3(ξ

′)−d3(ξst) is equal to minus the self-linking number t+r of the negative
transverse push-off of L1. Therefore, this choice of L2 amounts to performing a Lutz
twist along T−.
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