
ASIAN J. MATH. c© 2018 International Press
Vol. 22, No. 6, pp. 981–1004, December 2018 001

ON THE CONNECTEDNESS OF THE STANDARD WEB OF
CALABI-YAU 3-FOLDS AND SMALL TRANSITIONS∗

SZ-SHENG WANG†

Abstract. We supply a detailed proof of the result by P.S. Green and T. Hübsch that all com-
plete intersection Calabi–Yau 3-folds in product of projective spaces are connected through projective
conifold transitions (known as the standard web). We also introduce a subclass of small transitions
which we call primitive small transitions and study such subclass. More precisely, given a small pro-
jective resolution π : X̂ → X of a Calabi–Yau 3-fold X, we show that if the natural closed immersion
Def(X̂) ↪→ Def(X) is an isomorphism then X has only ODPs as singularities.
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1. Introduction. Calabi–Yau conifolds, i.e., Calabi–Yau 3-folds with only ordi-
nary double points (ODPs), arise naturally in algebraic geometry and string theory,
where a Calabi–Yau 3-fold X is a projective Gorenstein 3-fold with at worst terminal
singularities such that KX ∼ 0 and H1(OX) = 0. For example, every Calabi–Yau
3-fold can be deformed to a smooth one or to a conifold [7, 21]. M. Reid [27] had
proposed to study the moduli spaces of simply connected smooth Calabi–Yau 3-folds
through conifold transitions, by which we mean there is a small projective contraction
from a smooth Calabi–Yau to a Calabi–Yau conifold so that the conifold is smooth-
able. This is usually referred as the Reid’s fantasy. While non-projective conifold
transitions are also considered in the literature, in this paper we stick on the projec-
tive ones.

In 1988, P.S. Green and T. Hübsch [10] discovered the remarkable connectedness
phenomenon: The moduli spaces of complete intersection Calabi–Yau 3-folds (CICYs)
in product of projective spaces are connected with each other by a sequence of conifold
transitions. In [10, §3 p.435], the authors deferred the proof of the existence of conifold
transitions to a forthcoming paper, which unfortunately has not yet been available.
This result had since then been used again and again in the literature on Calabi–
Yau geometry and string theory. While there is no doubt on its significance and
correctness, a detailed complete proof to it is still long awaited. The first goal of this
paper is to supply such a rigorous proof:

Theorem 1.1 (= Theorem 5.6). Any two (parameter spaces of) complete in-
tersection Calabi–Yau 3-folds in product of projective spaces are connected by a finite
sequence of conifold transitions.

In order to connect these parameter spaces of CICY 3-folds, the major idea is to
use the determinantal contractions introduced in [1].

Let us recall a standard example to explain the process. Consider the smooth
CICY 3-fold X̂ in P1 × P4 defined by p0

j (z)t0 + p1
j (z)t1 = 0 for j = 1, 2, where t0, t1

are homogeneous coordinates on P1, p0
1(z), p1

1(z) are two general quartic polynomials
and p0

2(z), p1
2(z) are two linear polynomials on P4. Since ti’s can not both vanish, it
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must be the case that the determinant

∆(z) := det(pij(z))

resulting from the projection along P1 vanishes (cf. §5). If we take pi2(z) = zi for
i = 0, 1 and suitable quartic polynomials p0

1(z), p1
1(z), then the quintic X defined

by ∆(z) has 16 ODPs, where pij(z)’s vanish simultaneously, along a projective plane

in P4. Let X̃ be a smooth quintic in P4. Note that all quintic hypersurfaces in P4

are deformation equivalent inside a flat family (cf. Proposition 3.1). Thus we get a

conifold transition X̂ → X  X̃ which connects parameter spaces of X̂ and X.
In general, the task is to verify that the determinantal contraction is a small

resolution of a Calabi–Yau conifold. The tool used in this paper is the following well
known criterion (involved topological constraints) for ODPs.

Proposition 1.2 (= Proposition 2.3). Let X̂ → X be a small resolution of a

Gorenstein terminal 3-fold X and X̃ a smoothing of X. Then the difference of the
topological Euler numbers e(X̂) − e(X̃) equals the number 2 |Sing(X)| if and only if
the singularities of X are ODPs.

For 3-dimensional complete intersection varieties in a product of a projective space
and a smooth projective variety, we give the formulas of the difference of the Euler
numbers and the number of singularities involving Chern classes of vector bundles
(see Proposition 3.4 and Corollary 5.4).

Another ingredient is a Bertini-type theorem for vector bundles (Theorem 2.1).
The necessity for such a result with weaker positivity assumptions comes from the fact
that the CICY 3-folds under consideration are not always cut out by ample divisors.
Combining with the original ideas in [1, 10], we prove that the singular Calabi–Yau X
defined by the determinantal equation (and other equations) has isolated singularities
and the determinantal contraction is a small resolution ofX (Theorem 5.2). According
to Proposition 1.2, it follows that the determinantal contraction is a small resolution
of a Calabi–Yau conifold as expected. We also give a formula of the second Betti
number of CICYs (Proposition 4.7).

In the final section, we discuss the relationship between small transitions and
conifold transitions. We introduce the primitive small transitions (Definition 6.3) and
prove the following result:

Theorem 1.3 (= Theorem 6.8). Let π : X̂ → X be a small projective resolution

of a Calabi–Yau 3-fold X. If the natural closed immersion Def(X̂) ↪→ Def(X) of
Kuranishi spaces is an isomorphism then the singularities of X are ODPs. Moreover,
the number of ODPs is equal to the relative Picard number ρ(X̂/X).

Theorem 1.3 is a generalization of the case of relative Picard number one which
has been studied in [7, (5.1)]. Using the deformation properties of X and X̂ and the
cone theorem, we prove it by induction on the relative Picard number.
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2. Preliminaries. Let σ : E → F be a morphism of bundles of ranks m and n
on a variety M . Note that there is a natural bijection between morphisms E → F
and global sections of E ∨ ⊗F .

For k 6 min(m,n), we define the k-th degeneracy locus of σ by

Dk(σ) = {x ∈M | rank(σ(x)) 6 k}.

Its ideal is locally generated by (k + 1)-minors of a matrix for σ. We can show that
the codimension of Dk(σ) in M is less than or equal to (m − k)(n − k) [5, Theorem
14.4 (b)], which is called its expected codimension. Notice that the 0-th degeneracy
locus of σ is the zero scheme Z(σ).

Now we state a Bertini-type theorem for vector bundles. The following statement
is taken from [24, (2.8)].

Theorem 2.1 ([24]). Let E and F be vector bundles of ranks m and n on a
smooth variety M and let E ∨ ⊗F be generated by global sections. If σ : E → F is a
general morphism, then one of the following holds:

(1) Dk(σ) is empty;
(2) Dk(σ) has expected codimension (m − k)(n − k) and the singular locus of

Dk(σ) is Dk−1(σ).

Here the ”general” means that there is a Zariski open set in the vector space
H0(E ∨ ⊗F ) such that either (1) or (2) in Theorem 2.1 holds for each σ in the open
set.

Remark 2.2. Let D be a Cartier divisor on M . Assume that the linear system
Λ := |O(D)| is base point free. Since the (−1)-th degeneracy locus is empty, the
classical Bertini’s second theorem follows from Theorem 2.1 by taking k = 0, E = O
and F = O(D), i.e., a general member of Λ is smooth. We also know, by the
Bertini’s first theorem, that if Λ is not composed of a pencil then its general member
is irreducible. However, the general degeneracy locus Dk(σ) may not be connected.

For the case that E is a trivial line bundle, σ : OM → F corresponds to a global
section of F . The wedge product by the section gives rise to a complex

OM → F → ∧2F → · · · → ∧n−1F → ∧nF .

The dual complex

K•(σ) : ∧nF∨ → ∧n−1F∨ → · · · → ∧2F∨ → F∨
σ∨−−→ OM (2.1)

is called the Koszul complex of Z(σ). Note that the image of σ∨ is the ideal sheaf of
Z(σ). We say that Z(σ) is a complete intersection if the sequence

0→ K•(σ)→ OZ(σ) → 0.

is exact, i.e., the Koszul complex (2.1) is a resolution of OZ(σ). In particular, the
conormal bundle of Z(σ) in M is isomorphic to F∨|Z(σ). If M is Cohen-Macaulay,
then Z(σ) is complete intersection if and only if its codimension in M is equal to the
rank n of F [5, p.431].
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If M is a projective variety, endowed with an ample divisor O(1), then the Hilbert
polynomial of a complete intersection Z(σ) can be computed by the Koszul complex
(2.1), that is, for l ∈ Z

χ(OZ(σ) ⊗ O(l)) =

n∑
i=0

(−1)iχ(∧iF∨ ⊗ O(l)). (2.2)

A birational morphism is called small if the exceptional set has codimension at
least two. The following is a simple criterion of ODPs for a small resolution X̂ → X
if X admits a smoothing.

Proposition 2.3. Let X̂ → X be a small resolution of a Gorenstein terminal 3-
fold X and X̃ a smoothing of X. Then the difference of the topological Euler numbers
e(X̂) − e(X̃) equals the number 2 |Sing(X)| if and only if the singularities of X are
ODPs.

For the convenience of the reader, we supply a proof here.

Proof. Let Ci be the exceptional curve over an isolated hypersurface singularity pi.
We have the identity of the topological Euler numbers (for a proof see [28, Theorem
7])

e(X̂)− e(X̃) =
∑

m(pi) +
∑

(e(Ci)− 1) ,

where m(pi) is the Milnor number of pi. According to [25, Proposition 1], the ex-
ceptional curve Ci is a union of smooth rational curves which meet transversally
and thus the number e(Ci) − 1 is equal to ni the number of irreducible compo-
nents of Ci. Observe that m(pi) and ni are greater than or equal to one. Then∑
m(pi) +

∑
ni > 2 |Sing(X)|, and the equality holds if and only if ni = m(pi) = 1

for all i.

The following lemma is used in Remark 3.3 and the proof of Theorem 5.2.

Lemma 2.4. The product Zariski topology on Cn × Cm is strictly coarser than
the Zariski topology on Cn+m.

Sketch of proof. Let I and J be ideals of C[x1, · · · , xn] and C[y1, · · · , ym], and
let Ie and Je be ideals generated by I and J in C[x1, · · · , xn, y1, · · · , ym] respectively.
Let V (I) and V (J) denote Zariski closed subsets defined by I and J respectively.
Then the standard open subset (Cn \ V (I)) × (Cm \ V (J)) of the product topology
is the complement set of the Zariski closed subset V (Ie) ∩ V (Je) of Cn+m. Remark
that not every open subset in the Zariski topology on Cn+m is open in the product
Zariski topology.

We conclude this section with an elementary lemma, which is used in the proof
of Theorem 6.8.

Lemma 2.5. Let C =
⋃
Ci be a curve in a smooth 3-fold Y such that the irre-

ducible components Ci meet in a finite set of points. Then there exists an injection⊕
iH

2
Ci

(Y,Ω2
Y ) ↪→ H2

C(Y,Ω2
Y ). Moreover, it is an isomorphism if Ci are mutually

disjoint.

Proof. By induction on the number of components of C, we may assume that
C = C1 ∪ C2. From the Mayer–Vietoris sequence, we get

H2
C1∩C2

(Ω2
Y )→ H2

C1
(Ω2

Y )⊕H2
C2

(Ω2
Y )→ H2

C(Ω2
Y ).
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Since Ω2
Y is locally free and depthC1∩C2

OY = 3, the local cohomology group
H2
C1∩C2

(Ω2
Y ) vanishes (cf. [12, III Ex.3.4]), which completes the proof.

3. Configurations and Parameter Spaces. We start by introducing the con-
figuration of complete intersection varieties of dimension d and constructing their
parameter spaces.

A configuration of dimension d is a pair [V ‖L] of a smooth projective variety V
with dimV = m+ d and a sequence of line bundles L = (L1, · · · ,Lm), where Lj is
generated by global sections. Let X be a d-dimensional variety. The variety X is said
to be a member of the configuration, denoted by X ∈ [V ‖L], if it is defined by global
sections σj of Lj for 1 6 j 6 m.

If
V =

∏k
i=1 Pni and Lj =

⊗k
i=1 pr

∗
iOPni (q

i
j),

where pri : V → Pni is the natural projection and qij > 0 for all i, j, then we rewrite
[V ‖L] as a configuration matrix

[n‖q] =

 n1 q1
1 · · · q1

m
...

...
. . .

...
nk qk1 · · · qkm

 . (3.1)

The (q1
j , · · · , qkj ) and q will be called the multidegree of the line bundle Lj and a

member X ∈ [n‖q] respectively. We may assume that∑k

i=1
qij > 2

for all 1 6 j 6 m (otherwise a hyperplane section of only one factor Pn reduces
the factor to Pn−1). Note that the global sections of Lj are multi-homogeneous
polynomials of multidegree (q1

j , · · · , qkj ).
Two configuration matrices are said to represent the same configuration if one

can go from one to the other by a permutation of the rows or of the columns other
than first. We say that [n1‖q1] is a sub-configuration matrix of [n‖q] if[

n1 q1 a
m 0 b

]
and [n‖q] represent the same configuration.

In the case V =
∏k
i=1 Pni , we can explain the meaning of a complete intersection

X ∈ [n‖q] precisely by defining a projective family for [n‖q] whose fibers are complete
intersections of multidegree q (cf. [31, §4.6.1]).

In the following we will write T i and u as a short form for indeterminates
Ti0, · · · , Tini and u1, · · · , ua respectively. Set R = C[T 1; · · · ;T k].

Let X be a complete intersection variety defined by a sequence of multi-
homogeneous polynomials σ = (σj) of multidegree q and of dimension d. Let

Φ(1), · · · ,Φ(a)

be a basis of
⊕m

j=1H
0(V,Lj) and write Φ(h) = (φ

(h)
j ) where φ

(h)
j ∈ R with multidegree

(q1
j , · · · , qkj ).

Let K• := K•(σ +
∑a
h=1 uhΦ(h)) be the Koszul complex (cf. (2.1)) and

D := Supp(H1(K•)) ⊆ Aa+N = Spec (C[u;T 1; · · · ;T k])
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where N =
∑
i ni + k.

Set q be the projection from Aa+N onto Aa. Then U := q(Aa+N \ D) is the
open set of points u ∈ Aa with K•(σ +

∑a
h=1 uhΦ(h)) being exact. According to that

X = Z(σ) is a complete intersection, it follows that U contains the origin. Let

I =

〈
σl +

∑
h

uhφ
(h)
l

∣∣∣∣∣ 1 6 l 6 m

〉

and X = Proj (R[u]/I) .

Consider the projection P : X ⊆ V × Aa → Aa and its restriction PU : XU →
U . Since the the Koszul complex K• is exact on U , all fibers of PU are complete
intersections of multidegree q and have the same Hilbert polynomial P (t) which is
computed by the Koszul resolution and depends on its multidegree (cf. (2.2)). Hence
PU is a flat family with the fiber X0 = X ([12, III Theorem 9.9]).

To summarize what we have proved, we get the following proposition:

Proposition 3.1. Let X be a variety. If X ∈ [n‖q] then there is a Zariski
open set U in H0(V,

⊕m
j=1 Lj), a closed point t0 ∈ U and a flat projective morphism

PU : XU → U with the fiber Xt0 = X such that all complete intersections in V of
multidegree q are parameterized by the pair (U,PU ).

Hence we may use the configuration [n‖q] to denote the parameter space of d-
dimensional complete intersections in V of multidegree q.

To point out what the fundamental cycle and the normal bundle of a smooth
complete intersection is, we state the following result by using Theorem 2.1.

Proposition 3.2. Let L = (L1, · · · ,Lm) be a sequence of globally generated line
bundles over a smooth projective variety V and [V ‖L] a configuration of dimension d.
Then there is a Zariski open subset U in H0(V,

⊕m
j=1 Lj) such that Z(σ) is smooth

and of dimension d for every element σ in U . Moreover, the normal bundle of Z(σ)
in V is

⊕m
j=1 Lj |Z(σ) and the fundamental class [Z(σ)] in Ad(V ) is the top Chern

class of
⊕m

j=1 Lj.

Proof. Applying Theorem 2.1 to the case k = 0, E = OV and F =
⊕m

j=1 Lj , the
zero locus Z(σ) is smooth and has the expected codimension m for a general σ : E →
F . Namely, there is a Zariski open subset U in H0(V,F ) such that every element σ in
U defines a smooth complete intersection X in V of dimension dimV −m = d. By [5,
Example 3.2.16], the fundamental class of a general member in Ad(V ) is cm(F )∩[V ].

Remark 3.3. Since
⊕m

j=1H
0(V,Lj) is naturally isomorphic to H0(V,F ) (as

vector spaces), any element σ in U corresponds (sj) in
⊕m

j=1H
0(V,Lj) and thus

X = Z(σ) is the complete intersection ∩mj=1Z(sj).

Applying Theorem 2.1 repeatedly, we may assume that, for a general section
(sj) in H0(V,F ), the divisor Z(sj) is smooth with all subsets of the Z(sj)’s meeting
transversely. For example, by Theorem 2.1, there is a Zariski open subset Vj of
H0(V,Lj) such that Z(sj) is smooth for 1 6 j 6 m. According to Lemma 2.4, it
follows that

∏m
j=1 Vj is Zariski open in H0(V,F ). Replacing U by U ∩ (

∏m
j=1 Vj),

which is Zariski open in H0(V,F ), all Z(sj)’s are smooth for (sj) ∈ U .

In order to connect two configurations, we shall define a formal correspondence
on configurations which is introduced in [1].
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Let P be a smooth projective variety, and let p and π be the projections from
Pn × P onto Pn and P respectively. If V = Pn × P and

L̂j =

{
p∗OPn(1)⊗ π∗Lj if 1 6 j 6 n+ 1,
π∗Lj if n+ 2 6 j 6 m,

where Lj ’s are globally generated line bundles on P , we rewrite the configuration

Ĉ := [V ‖L̂1, · · · , L̂m] as[
n 1 · · · 1 0 · · · 0
P L1 · · · Ln+1 Ln+2 · · · Lm

]
.

We introduce a new configuration

C :=
[
P

⊗n+1
i=1 Li Ln+2 · · · Lm

]
so as to remove the Pn factor and denote the formal correspondence by

Ĉ ←←→ C . (3.2)

Remark that the paper [1] refers to the correspondence of passing from the right hand
side to the left as splitting and the reverse process as contraction.

We are going to compute the difference of topological Euler numbers of smooth
members under the formal correspondence of 3-dimensional configurations.

Proposition 3.4. Let S be a smooth variety of dimension 4,

R =

[
n 1 · · · 1
S L1 · · · Ln+1

]
a configuration of dimension 3 and E =

⊕n+1
i=1 Li a vector bundle of rank n + 1.

Assume that X̂ ∈ R and X̃ ∈
[
S

⊗n+1
i=1 Li

]
are smooth members. Then we have

e(X̂)− e(X̃) = 2

∫
S

(
c2(E )2 − c1(E )c3(E )

)
where e(−) denotes the topological Euler number.

Proof. Let ι : X̃ ↪→ S be the inclusion. Since S and X̃ are smooth varieties, we
have the normal bundle sequence

0→ TX̃ → TS |X̃ → NX̃ → 0.

By Proposition 3.2, the normal bundle of the hypersurface X̃ in S is ⊗n+1
i=1 Li|S . Let

p(t) := ι∗ct(TX̃) = ct(TS)st(⊗n+1
i=1 Li), (3.3)

where ct(V ) is the Chern polynomial of a vector bundle V and ct(V )st(V ) = 1.

Observe that ⊗n+1
j=1 Lj and E have the same first Chern class

∑n+1
j=1 c1(Lj). Then the

fundamental class of X̃ in the Chow group A3(S) is

c1(⊗n+1
j=1 Lj) ∩ [S] = c1(E ) ∩ [S]. (3.4)
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We are going to calculate e(X̃). According to that st(⊗n+1
j=1 Lj) is the inverse of

the Chern polynomial ct(⊗n+1
j=1 Lj) = 1 + c1(⊗n+1

j=1 Lj), it follows that

st(⊗n+1
j=1 Lj) =

∞∑
i=0

(−c1(E ))iti =

∞∑
i=0

s1(E )iti. (3.5)

Set ct(S) = ct(TS). Using (3.5) and collecting the coefficient of t3 in (3.3), we obtain

1

3!
p′′′(0) = s1(E )3 + c1(S)s1(E )2 + Cs, (3.6)

where

Cs := c2(S)s1(E ) + c3(S). (3.7)

By (3.4), (3.6), and the Gauss-Bonnet theorem, we get

e(X̃) =

∫
X̃

c3(X̃) =

∫
S

1

3!
p′′′(0)c1(E ).

Let pr be the projection from Pn × S onto Pn and ι̂ the inclusion from X̂ into
Pn × S. To compute e(X̂), we identify the line bundle OPn(1) on Pn with pr∗OPn(1)
on Pn × S (similarly for vector bundles on S).

According to NX̂ = (E ⊗ OPn(1)) |X̃ , it follows that

q(t) := ι̂∗ct(TX̂) = ct(TPn ⊕ TS)st(E ⊗ OPn(1)).

By Proposition 3.2, the fundamental class of X̂ in A3(Pn × S) is

cn+1(E ⊗ OPn(1)) ∩ [Pn × S].

Set H = c1(OPn(1)) in A1(Pn × S). According to ct(TPn ⊕ TS) = ct(TPn)ct(TS), it
follows that the coefficient of t3 in q(t) is

1

3!
q′′′(0) =

3∑
p=0

(
n+ 1

p

) ∑
i+j=3−p

ci(S)sj(E ⊗ O(1))

Hp. (3.8)

From [5, Example 3.1.1], we have

sl(E ⊗ O(1)) =

l∑
i=0

(−1)l−i
(
n+ l

n+ i

)
si(E )H l−i. (3.9)

By substituting (3.9) into (3.8), we obtain

1

3!
q′′′(0) = s1(E )H2 − [2s2(E ) + c1(S)s1(E )]H + [s3(E ) + c1(S)s2(E ) + Cs] , (3.10)

where Cs is the class as defined in (3.7). (For example, the coefficient of H3 in (3.10)
is
(
n+1

3

)
− (n+ 1)

(
n+1

2

)
+ (n+ 1)

(
n+2
n

)
−
(
n+3
n

)
which is equal to zero.)
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We regard the class 1
3!q
′′′(0)cn+1(E ⊗ OPn(1)) as a polynomial in H, denoted it

by Q(H). Then

e(X̂) =

∫
Pn×S

Q(H) =

∫
S

1

n!
Q(n)(0).

If we can prove

1

n!
Q(n)(0)− 1

3!
p′′′(0)c1(E ) = 2

(
c2(E )2 − c1(E )c3(E )

)
, (3.11)

then the Proposition follows by integrating the equality (3.11) over S.

Note that the top Chern class of E ⊗OPn(1) is
∑n+1
i=0 cn+1−i(E )Hi. According to

(3.10), it follows that the coefficient 1
n!Q

(n)(0) of Hn in Q(H) is equal to the coefficient
of Hn in the class

1

3!
q′′′(0)

(
c1(E )Hn + c2(E )Hn−1 + c3(E )Hn−2

)
.

From Hn+1 = 0 in A∗(Pn), it follows that

1

n!
Q(n)(0) =s1(E )c3(E )− [2s2(E ) + c1(S)s1(E )]c2(E ) (3.12)

+ [s3(E ) + c1(S)s2(E ) + Cs] c1(E ).

Subtracting these two equations (3.12) and (3.6) from each other and rewriting
Segre classes si(E ) in terms of Chern classes ci(E ) by using the recurrence relations

sl(E ) = −
∑l
i=1 ci(E )sl−i(E ), we obtain the equation (3.11).

Corollary 3.5. Let Ĉ ←←→ C be as in (3.2), and let E =
⊕n+1

i=1 Li and
F =

⊕m
i=n+2 Li be vector bundles of rank n+ 1 and m− n− 1 respectively. Assume

that Ĉ and C are configurations of dimension 3. Given smooth members X̂ ∈ Ĉ and
X̃ ∈ C , we assume that there is a global section σ of F such that the zero locus Z(σ)

is smooth of dimension 4 and contains X̃. Then

e(X̂)− e(X̃) = 2

∫
P

(
c2(E )2 − c1(E )c3(E )

)
cm−n−1(F ).

Proof. Let S be the zero locus Z(σ). The corollary follows immediately from
Proposition 3.4 and the fundamental class of S in A4(P ) is cm−n−1(F ) ∩ [P ].

Example 3.6. Consider

Ĉ :=

 2 1 1 1
3 1 1 2
1 0 0 2

←←→ C :=

[
3 4
1 2

]
.

For smooth member X̂ ∈ Ĉ and X̃ ∈ C , the Euler numbers e(X̂) and e(X̃) are −112
and −168 respectively. Let s (resp. t) be the class of a hyperplane on P3 (resp. P1),
and let E be the vector bundle O(1, 0)

⊕
O(1, 0)

⊕
O(2, 2) of rank 3 on P3×P1. Then

the Chern classes of E are
c1(E ) = 4s+ 2t, c2(E ) = 5s2 + 4st, c3(E ) = 2s3 + 2s2t,

and the coefficient of s3t in c2(E )2 − c1(E )c3(E ) is 28.
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4. Calabi–Yau Configurations. From now on we assume that all configura-
tions are of dimension 3.

Definition 4.1. A configuration matrix [n‖q] is called a complete intersection
Calabi–Yau (CICY) configuration if it satisfy the Calabi–Yau condition∑m

j=1
qij = ni + 1

for all 1 6 i 6 k.

It is easy to see that CICY configuration matrices are preserved under formal
correspondences (3.2). Note that the topological Euler number of a smooth member
which belongs to a CICY configuration matrix is non-positive [1, (2.28)].

Remark 4.2. We do not allow that a Calabi–Yau 3-fold X is a product of three
elliptic curves or of an elliptic curve and K3 surface since H1(OX) = 0. Further,
we are not interested in a configuration matrix which contains the sub-configuration
[1‖2] because the sub-configuration describes two points (counted with multiplicity)
in P1. To exclude such cases, we only treat non block-diagonal CICY configuration
matrices.

Let us consider the simple case for all ni = 1 and qij = 0 or 2.

Example 4.3 ([9]). Given a CICY configuration k × (m+ 1)-matrix [n‖q] with
ni = 1 and qij = 0 or 2 for all i, j, we have k = m+ 3. By Remark 4.2, we know that
[n‖q] is non block-diagonal and thus∑k

i=1
qij > 4

for each column of q. According to the Calabi–Yau condition, it follows that

4(k − 3) 6
∑

i,j
qij = 2k

and therefore 4 6 k 6 6. When k equals 5 or 6, we get a product of an elliptic curve
and K3 surface or of three elliptic curves respectively. By Remark 4.2, the CICY
configuration matrix must be 

1 2
1 2
1 2
1 2


in this simple case. We denote this configuration matrix by C1111.

We say that a configuration connects to another formally if, after finite formal
correspondences (3.2), one represents the same configuration as the other one. The
following proposition was proved in [10, Lemma 2], for the convenience of the readers
we recall the proof here.

Proposition 4.4 ([10]). Every CICY configuration matrices can be connected
formally.

Proof. Given a (non block-diagonal) CICY configuration matrix [n‖q] as in (3.1).
We perform formal correspondences iteratively until we arrive at a configuration ma-
trix for which each row entries qij with ni > 1 are 0 or 1 (for example, introducing a
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sub-configuration matrix [1‖11] to split it). Perform next formal correspondences in
a way that finally leaves each ni = 1 and qij = 0 or 2. Notice that non block-diagonal
CICY configuration matrices are preserved under formal correspondences. According
to Example 4.3, it follows that the configuration matrix is the simple configuration
C1111.

Remark 4.5. To illustrate Proposition 4.4, we give formal correspondences con-
necting the configuration of quintic hypersurfaces in P4 to C1111:

[ 4 5 ]←→→
[

4 4 1
1 1 1

]
←→→

[
4 3 1 1
1 1 1 0
1 1 0 1

]
←→→

 4 2 1 1 1
1 1 1 0 0
1 1 0 1 0
1 1 0 0 1



←→→


4 1 1 1 1 1
1 1 1 0 0 0
1 1 0 1 0 0
1 1 0 0 1 0
1 1 0 0 0 1

←←→
 1 2

1 2
1 2
1 2

 .

The following proposition is an application of Theorem 2.1, which is a well known
result in [9]. The remaining task is to prove that a general CICY member is irreducible
and H1(O) = 0 by using a suitable Lefschetz-type theorem for an ample reducible
divisor.

Proposition 4.6. A general member of a CICY configuration matrix is a smooth
Calabi–Yau 3-fold.

Proof. Let V =
∏k
i=1 Pni and let [n‖q] be a (non block-diagonal) CICY config-

uration matrix. Let Lj be the line bundle with the multidegree (q1
j , · · · , qkj ). Note

that the canonical bundle of X is trivial by the adjunction formula. By Proposition
3.2, it suffices to prove that a general smooth member X ∈ [n‖q] is connected and
H1(OX) = 0. Namely, we only need to prove that H0(X,C) and H1(X,C) have
dimension one and zero respectively.

Pick a general section (sj) in H0(V,
⊕m

j=1 Lj) for which the divisor Dj := Z(sj)
is a smooth with all subsets of the Dj ’s meeting transversely (cf. Remark 3.3). We
notice that if all qisj = 0 for some is then DJ is of the form D′J × Pnis where D′J is a

complete intersection in
∏
i6=is P

ni . In particular, H0(Dj ,C) and H1(Dj ,C) are one
and zero respectively by Lefschetz hyperplane theorem, and thus Dj is irreducible for
all 1 6 j 6 m.

Using the mixed Hodge theory and Lefschetz hyperplane theorem on the ample
divisor

∑m
j=1Dj , we get exact sequences [2, (2.1)], for i = 0, 1,

0→ Hi(V,C) · · · →
⊕
|J|=r

Hi(DJ ,C)→ · · ·Hi(X,C)→ 0 (4.1)

where DJ := Dj1

⋂
· · ·
⋂
Djr for a multi-index J = (j1, · · · , jr) of length |J | = r with

1 6 j1 < · · · < jr 6 m and X =
⋂
|J|=mDJ . Note that i+m < dimV for i = 0, 1.

By induction, it follows that the dimension of
⊕
|J|=rH

0(DJ ,C) is
(
m
r

)
and of⊕

|J|=rH
1(DJ ,C) is zero for the length r < m. We remark that the induction process

works because every DJ has the form D′J ×
∏

Pnl with D′ =
∑
D′j is ample. Hence
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the connectedness and simple connectedness of DJ can be proved in the similar way as
shown before. Using the sequence (4.1) and dimension counting, we get the dimension
of H0(X,C) and H1(X,C) are one and zero respectively.

As a byproduct of the proof of Proposition 4.6, we obtain the following second
Betti number formula:

Proposition 4.7. With the notation as in the proof of Proposition 4.6,

b2(X,C) = (−1)m

m+

m−1∑
r=1

(−1)r
∑
|J|=r

b2(DJ ,C)

 .

Moreover, the second Betti number of X equals the second Betti number of the ambient
space V if b2(DJ ,C) = b2(V,C) for each 1 6 |J | < m.

Proof. By V =
∏m
i=1 Pni and Künneth formula, the second Betti number of V

equals m. Since dimV > m + 2, the exact sequence (4.1) holds for i = 2 and the
proposition follows.

Remark 4.8. For a smooth Calabi–Yau 3-fold X, the topological Euler number
e(X) is 2(h1,1(X) − h2,1(X)). To know the Hodge number h1,1(X) and h2,1(X),
it suffices to compute either one of these two Hodge numbers and e(X). In [11],
finding these Hodge numbers corresponding to a given CICY configuration matrix
is in principle just a matter of looking up the relevant matrix in the list. Those
calculated in [11] for the 7868 CICY matrices constructed in [1]. Proposition 4.7 gives
a direct calculation of h1,1(X) = b2(X,C) for X in any given CICY configuration
matrix.

The remark is illustrated by the following example which was given in the ap-
pendix of [11].

Example 4.9 ([11]). Consider

X ∈

 4 3 1 1 0 0
2 0 1 0 1 1
2 0 0 1 1 1

 .
Applying Lefschetz hyperplane theorem, Künneth formula and Proposition 4.7, we
get

b2(X,C) = b2(P4,C) + b2(D,C)

where D ∈
[

2 1 1
2 1 1

]
is a smooth surface with Euler number 6. Therefore b2(D) =

e(D)− 2 = 4 and the second Betti number of X is 5.

5. Connecting the CICY Web via Determinantal Contractions. We first
recall the definition of determinantal contractions, which is introduced in [1], between
configurations of complete intersection varieties in a product of a projective space and
a smooth projective variety.

Let P be a smooth projective variety, and let Ĉ be a configuration of dimension
3 of the type

Ĉ =

[
n 1 · · · 1 0 · · · 0
P L1 · · · Ln+1 Ln+2 · · · Lm

]
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where Lj ’s are line bundles on P . Note that dimP = m − n + 3 because Ĉ is of
dimension 3. We have the formal correspondence

Ĉ ←←→ C =
[
P

⊗n+1
i=1 Li Ln+2 · · · Lm

]
.

Let π : Pn × P → P be the projection and X̂, X := π(X̂) a member of the

configuration Ĉ , C respectively. We are going to define a determinantal contraction
for the formal correspondence Ĉ ←←→ C and find a morphism π : X̂ → X with each
fiber is a point or a projective line in Pn.

Writing z = [z0 : · · · : zn] ∈ Pn and let X̂ ∈ Ĉ be defined by global sections

n∑
i=0

sij(p)zi = 0

and tl(p) = 0, where sij ∈ H0(P,Lj) and tl ∈ H0(P,Ll) for 1 6 j 6 n + 1, n + 2 6
l 6 m. Set

∆(p) := det(sij(p)),

which is a global section of the line bundle
⊗n+1

j=1 Lj on P . Since zi cannot all vanish
simultaneously, we have ∆(p) = 0 for (z, p) ∈ Pn × P .

Obviously, the X := π(X̂) is defined by global sections
∆(p) = 0 and tl(p) = 0

for n+ 2 6 l 6 m and thus X belongs to the configuration C .

Definition 5.1. Assume that Ĉ and C are configurations of dimension 3. We
say that a formal correspondence Ĉ ←←→ C gives a determinantal contraction if there
is a smooth member X̂ in Ĉ such that the morphism π : X̂ → X given in the above
process is an isomorphism or a small resolution of a normal variety X ∈ C with only
isolated singularities.

The proof of Theorem 5.2 follows the idea outlined in [1]. The main tool used in
the proof is the Bertini-type theorem introduced in §2.

Theorem 5.2. Let Ĉ and C be 3-dimensional CICY configuration matrices as
above. Then the formal correspondence Ĉ ←←→ C gives a determinantal contraction.

Proof. Let

L̂j =

{
p∗OPn(1)⊗ π∗Lj if 1 6 j 6 n+ 1,
π∗Lj if n+ 2 6 j 6 m,

where p and π are the projections from Pn × P onto Pn and P respectively. The
basic idea of the proof is to find a suitable Zariski open subset in the space of global

sections of
⊕m

j=1 L̂j by repeatedly applying Theorem 2.1.

By Proposition 4.6, there is a Zariski open set Û in H0
(
Pn × P,

⊕m
j=1 L̂j

)
such

that X̂ = Z(σ) is a smooth Calabi–Yau 3-fold for σ ∈ Û . Under the isomorphism

H0
(
Pn × P,

⊕m
j=1 L̂j

)
'
⊕m

j=1H
0
(
Pn × P, L̂j

)
, we may assume that Û =

∏m
j=1 Uj

where Uj is a Zariski open subset of H0
(
Pn × P, L̂j

)
(cf. Remark 3.3).

By Theorem 2.1, for a general morphism τ :
⊕n+1

1 OP →
⊕n+1

j=1 Lj the expected

codimension of the degeneracy locus Dk(τ) is (n+1−k)2. In particular, the expected
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codimension of the degeneracy loci Dn−2(τ) and Dn−1(τ) in P are nine and four.
Using Lemma 2.4, we may assume that there are Zariski open subsets Vij of H0(P,Lj)

for 1 6 i, j 6 n + 1 such that sections [sij ] ∈
∏n+1
i,j=1 Vij correspond to morphisms τ ,

by identifying τ with a global section of (
⊕n+1

j=1 Lj)⊗ (
⊕n+1

j=1 Oj)∨.
Applying Künneth formula, we have for 1 6 j 6 n+ 1

H0(Pn × P, L̂j) ' H0(Pn,OPn(1))⊗H0(P,Lj) (5.1)

'
⊕n+1

i=1

(
H0(P,Lj) · zi−1

)
and for n+ 2 6 j 6 m

H0(Pn × P, L̂j) ' H0(P,Lj),

where {z0, · · · , zn} is a basis of H0(Pn,OPn(1)). Therefore we can identify σ ∈ Û
with global sections

∑n
i=0 s

i
j(p)zi = 0 and tl(p) = 0 where sij ∈ H0(P,Lj) and

tl ∈ H0(P,Ll) for 1 6 j 6 n+ 1 and n+ 2 6 l 6 m.

Using (5.1) and Lemma 2.4 again,
∏n+1
i=1 Vij can be thought of as a Zariski open

subset of H0(Pn × P, L̂j) for 1 6 j 6 n+ 1. Replacing Û with(∏n+1

j=1
(Uj ∩ (

∏n+1

i=1
Vij))

)
×
∏m

j=n+2
Uj ,

we get the desired Zariski open set.
We are now in a position to show the existence of determinantal contractions.

Pick a section σ = (
∑
i s
i
jzi, tj) ∈ Û , we notice that, for p ∈ P , the dimension of

π−1(p) is less than two if and only if the corank of the matrix [sij(p)] is less than

or equal to two, i.e., rank[sij(p)] > n − 1. From dimP = m − n + 3, the number
of sections tj ’s is equal to dimP − 4. Set Y be the 4-dimensional smooth variety
Z(tn+2, · · · , tm). Since the expected codimension Dn−2([sij ]) and Dn−1([sij ]) are nine

and four, the intersection of Y with Dn−2([sij ]) and Dn−1([sij ]) are empty and isolated
points respectively.

According to that X = π(X̂) is defined by ∆|Y = det(sij)|Y on the smooth variety
Y and is irreducible, it follows that X is integral and satisfies Serre’s S2 condition [5,

Theorem 14.4 (c)]. Since X̂ = Z(σ) is a smooth variety, we have now derived that, for

all σ = (
∑
i s
i
jzi, tj) ∈ Û , the morphism π : X̂ → X is a small resolution of the normal

variety X with only isolated singularities (which equals Y ∩Dn−1([sij ])). Hence the

formal correspondence Ĉ ←←→ C gives a determinantal contraction.

Remark 5.3. If corank of [sij(p)] is 1 or 2 then the solution space of the matrix
defines a point or a projective line in Pn respectively. Namely, each fiber of π is a
point or a projective line in Pn.

Corollary 5.4. With notation as in the proof of Theorem 5.2. Let E =⊕n+1
i=1 Li and F =

⊕m
i=n+2 Li be vector bundles of rank n+1 and m−n−1 on P re-

spectively. For the determinantal contraction π : X̂ → X, the number of singularities
of X is equal to ∫

P

(
c2(E )2 − c1(E )c3(E )

)
cm−n−1(F ).
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Proof. As in the proof of Theorem 5.2, the number of singularities of X equals
the intersection number [Dn−1([sij ])] ∩ [Z(tn+2, · · · , tm)] ∩ [P ]. By [5, Theorem 14.4,

Example 14.4.1], for the smooth general member X̂ which is defined by a general
section σ = (

∑
i s
i
jzi, tj), the fundamental classes [Dn−1([sij ])] and [Z(tn+2, · · · , tm)]

are (
c2(E )2 − c1(E )c3(E )

)
∩ [P ] and cm−n−1(F ) ∩ [P ]

respectively. This completes the proof.

Remark 5.5. If π : X̂ → X is an isomorphism (that is, Sing(X) = ∅), the

Ĉ ←←→ C is referred to as an ineffective splitting in [1, p.512]. It is easy to see

that it is ineffective if and only if X and X̂ have the same Euler characteristic if and
only if the intersection Dn−1([sij ]) ∩ Z(tn+2, · · · , tm) is empty. In the case n = 1, the

intersection is defined by dimP sections sij and tl. Therefore the splitting is ineffective
if and only if the intersection number

c2(E )2 ∩ [P ] = D1. · · · .DdimP = 0

where D1, · · · , DdimP are Cartier divisors defined by s0
1, s

1
1, s

0
2, s

1
2, tl’s respectively.

We are now ready to prove the connectedness of parameter spaces of CICY con-
figuration matrices.

Theorem 5.6. Any two (parameter spaces of) CICY 3-folds in product of pro-
jective spaces are connected by a finite sequence of conifold transitions.

Proof. By Proposition 4.4 and Theorem 5.2, every CICY configuration matrices
connect formally and each formal correspondence gives a determinantal contraction
X̂ → X, which is an isomorphism or a small projective resolution, say X ∈ C . Ac-
cording to Corollary 3.5 and Corollary 5.4, it follows that e(X̂)− e(X̃) = 2 |Sing(X)|,
where X̃ ∈ C is a general smooth member. By Proposition 2.3, the singularities of X
are ODPs. Hence each parameter space [n‖q] connects to C1111 by conifold transitions
(cf. Remark 4.5).

Example 5.7 (Fiber products of elliptic surfaces). Consider

Ĉ :=

 2 3 0
2 0 3
1 1 1

←←→ C :=

[
2 3
2 3

]
.

It shall be related to the fiber products of rational elliptic surfaces which was inves-
tigated in [30].

Let fi : Si → P1 be a relatively minimal, rational, elliptic surface with section for
i = 1, 2. Then Si is the 9-fold blowing up of P2 at the base points of a cubic pencil
which induces the fibration fi [20, IV.1.2], that is, there are generic homogeneous
cubic polynomials ai and bi such that Si ⊆ P2 × P1 is a resolution of indeterminacy
of the rational map Ci : P2 99K P1 defined by Ci(x) = [ai(x) : bi(x)]. Obviously, Si is
defined by

Pi(z, x) = z1ai(x)− z0bi(x) = 0

where [z0 : z1] ∈ P1 and x ∈ P2.
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Let W = S1 ×P1 S2. It is well known that W is a Calabi–Yau 3-fold [30]. It is
easy to see that W can be obtained as a CICY in P2×P2×P1 defined by P1 and P2.
Therefore W ∈ Ĉ and is birational to a member in C which is defined by the bicubic
polynomial a0(x)b1(x)− a1(x)b0(x) = 0.

Example 5.8 (Double solids). Consider the CICY configuration matrix

C :=

[
3 4
1 2

]
.

Let x, y be a basis of H0(OP1(1)). Let L be the line bundle of multidegree (4, 2) on
P := P3×P1 and Γ = H0(OP3(4)). By Proposition 4.6, there is a Zariski open subset
of

H0(P,L ) ' (Γ · x2)⊕ (Γ · xy)⊕ (Γ · y2)

such that each section in the open set defines a smooth Calabi–Yau 3-fold.
Choose general quartics A,B and C on P3 so that the octic hypersurface S in P3

defined by ∆ := B2 − 4AC ∈ H0(P3,OP3(8)) contains 43 = 64 singular points (the

three quartics vanish simultaneously at these 64 points) and the Calabi–Yau X̂ ∈ C
defined by

Ax2 +Bxy + Cy2 = 0

is smooth.
Let X be the double cover of P3 branched over S. We can show that the only

singular points of X are ODPs, one for each singular point of S. These double covers
X, called double solids, were firstly studied by Clemens [3].

Consider the Stein factorization of the natural projection φ of X̂ on P3:

φ = φ′ ◦ π

where φ′ is finite and π has connected fibers. For each p ∈ P3, the fiber φ−1(p) consists
of (i) two points if ∆(p) 6= 0, (ii) one point if ∆(p) = 0 but at least one of A(p), B(p)
and C(p) does not vanish, (iii) a copy of P1 if A(p) = B(p) = C(p) = 0. Therefore
the map φ′ is a double cover of P3 (by (i)) branched over the octic surface S (by (ii)),

and the map π : X̂ → X is a small resolution (by (iii)).
For instance, we choose a open set U in P3 such that OP3(4)|U ' OU and A|U

is nowhere zero. Let V = {[x : y] ∈ P1 | y 6= 0}. On W := U × V , we rewrite the
equation

Ax2 +Bxy + Cy2 =
A

4

[
(2x+

B

A
y)2 − ∆

A2
y2

]
.

Then we get a commutative diagram

X̂ W ∩ X̂ π? _oo

φ

""

Spec U
OP3 (U)[T ]

(T 2−∆)
� � //

φ′

yy

X.

U

Let X̃ be a smoothing of X, which is a double cover of P3 branched over a smooth
octic surface S̃ ∈ [3||8]. Then the topological Euler number e(X̃) = 2e(P3)− e(S̃) =

−296. Hence, by Proposition 2.3, the difference of the Euler numbers e(X̂)− e(X̃) is
128 = 2 · 64 as expected and X is a conifold.
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6. Further discussions on small transitions. We review the definition of
(projective) small transitions.

Definition 6.1. Let X̂ → X be a small projective resolution of a Calabi–Yau
3-fold X, which has terminal singularities. If X can be smoothed to a Calabi–Yau
manifold X̃, then the process of going from X̂ to X̃ is called a small transition and
denoted by a diagram X̂ → X  X̃. It is called a conifold transition if X has only
ODPs.

Conifold transitions play a fundamental role in Reid’s fantasy [27, Section 8]
(cf. §1), which conjectures that all the moduli spaces of smooth Calabi–Yau 3-folds
are connected through conifold transitions. As in the previous section, the moduli
spaces of CICY 3-folds in product of projective spaces are connected to each other by
conifold transitions (cf. [10] and Theorem 5.2). A special yet fundamental question
arising from Reid’s fantasy is the following:

Question 1. Let X̂ → X  X̃ be a small transition. Is it true X̂ can be
connected to X̃ by a conifold transition (through a different X of course)?

For a Calabi–Yau 3-fold X, Namikawa and Steenbrink proved that X can be
deformed to a Calabi–Yau 3-fold with at worst ODPs [21]. In view of this result, it
seems that one may possibly answer Question 1 affirmatively by finding a deformation
direction of X̂ which deforms X̂ → X into X̂1 → X1 with X1 being a Calabi–Yau
conifold. Unfortunately, Namikawa produced a counterexample to this in [23, Remark
2.8]. We recall it briefly as follows:

Choose a suitable rational elliptic surface S with six singular fibers of type II (i.e.,
cuspidal rational curves). Let X = S ×P1 S. Then X is a Calabi–Yau 3-fold with six
singular points of cA2 type:

x2 − y3 = u2 − v3,

which admits smoothings to X̃ = S1×P1 S2 with Si → P1 having disjoint discriminant
loci. A small resolution π : X̂ → X can also be constructed (see below). Namikawa
observed that the exceptional loci cannot be deformed to a disjoint union of (−1,−1)-
curves. The reason is that a singular fiber of type II splits up into at most two singular
fibers of type I, and a general fiber of small deformation of a singularity of X which
preserves the small resolution has three ODPs.

To search for a modification of Question 1, we need to study Namikawa’s con-
struction of the small resolution π carefully. Notice that the diagonal D ∼= S in
X is a smooth Weil divisor which contains the six singular points and is thus not
Q-Cartier1. On the other hand, by [23, Example, p.1220], there is a nontrivial auto-
morphism τ ∈ Aut(X) such that Dτ := τ(D) has the same properties as D. Then
X ′ := BlDX has six ODPs and the exceptional locus of X ′ → X consists of six mu-
tually disjoint P1s, with each of them passing through one of the six ODPs. Now
the small resolution can be constructed as the blowing up of X ′ along the proper
transform D̃τ of Dτ , with π being composed of morphisms X̂ → X ′ → X. It admits
exceptional trees, composed of couples of rational curves intersecting at one point.

1In fact the divisor class group of a terminal Gorenstein 3-fold is torsion-free [13, (5.1)]. Hence it
suffices to show that D is not Cartier. It follows from commutative algebra: If (A,m) is a Noetherian
local ring, f ∈ m and A/(f) is a regular local ring of dimension dimA− 1, then A is regular. Then
we are done since the smooth Weil divisor D contains Sing(X).
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Now comes the key point. Using Friedman’s criterion, X ′ → X can be deformed
to a small resolution Y ′ → Y where Y ′ is smooth and Y has only ODPs. Thus we
have decomposed the small transition X̂ → X  X̃ into two conifold transitions
X̂ → X ′  Y ′ and Y ′ → Y  X̃:

X̂ = BlD̃τX
′

��

Y ′

��

X ′ = BlDX

��

::

Y ``

  

X

99

// X̃.

Combining the above discussions, we modify Question 1 as follows:

Question 2. Let X̂ → X  X̃ be a small transition. Up to deformations of
contractions and flops, is it true X̂ can be connected to X̃ through a sequence of
conifold transitions?

Remark 6.2. We prefer to identify Calabi–Yau 3-folds which can be connected
by a sequence of flops. The reason is that many invariants are preserved under flops,
e.g. quantum invariance [19, 18] (see also [33] for a survey on recent development), the
Kuranishi (miniversal deformation) spaces [16, (12.6)], analytic type of singularities
[14, (4.11)], integral cohomology groups, etc. (see [15, (3.2.2)]).

Before proceeding further, we review here the deformation theory of Calabi–Yau
3-folds. Fix a Calabi–Yau 3-fold X. Let Def(X) be the Kuranishi space for flat
deformations of X (see [16, (11.3)] and the references therein). By [22, Theorem A],
the Kuranishi space Def(X) is smooth2.

Fix a small projective partial resolution π : X ′ → X, where the Calabi–Yau 3-fold
X ′ has at worst terminal singularities. Since X has only rational singularities, there
is a natural map of germs of smooth complex spaces π∗ : Def(X ′)→ Def(X) (cf. [16,
(11.4)] or [32, (1.4)] on the level of deformation functors). According to that π is
small, it follows that the natural map π∗ is a closed immersion (cf. [32, (1.12)], [23,
(2.3)]).

Let X̂ → X be a small projective resolution. We can show that there is a closed
immersion Def(X̂) into Def(X ′). Indeed, let X̂ ′ be a Q-factorialization of X ′ [13,

(4.5)]. Since Calabi–Yau 3-folds X̂ and X̂ ′ are connected by a sequence of flops
[13, 14] and the Kuranishi spaces are unchanged under flops [16, (12.6)], we get

Def(X̂) ' Def(X̂ ′) ↪→ Def(X ′).

Remark that X̂ ′ is also smooth (see Remark 6.2 or [14, (4.11)]).
According to that the Gorenstein terminal 3-fold singularities p ∈ X are pre-

cisely the isolated compound Du Val (cDV for short) hypersurface singularities [26,
(1.1)], it follows that the miniversal deformation space Def (p ∈ X) is smooth (see

2In this paper, we stick to Calabi–Yau 3-folds X with at worst terminal singularities. If we relax
the class of singularities, then Def(X) might be singular. Indeed, there is a Calabi–Yau 3-fold with
canonical singularities whose Kuranishi space is singular [8].
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[17, (4.61)] and the references therein). There is a natural restriction morphism
Def(X)→ Def (p ∈ X) for every singular point p ∈ X.

To attack Question 2, we introduce primitive small transitions:

Definition 6.3. A small transition X̂
π−→ X  X̃ is said to be primitive if it

satisfies the following two conditions:
(1) For any small projective partial resolution X ′(6= X) of X, the closed immer-

sion Def(X̂) ↪→ Def(X ′) of Kuranishi spaces is an isomorphism.
(2) The composition

Def(X̂)
π∗
↪−→ Def(X)→

∏
p∈Sing(X)

Def (p ∈ X) (6.1)

is trivial.

Remark 6.4. In [22], Namikawa discusses a natural stratification on the Ku-
ranishi space Def(X) by means of small projective partial resolutions of X. Let

Y1 := Def(X̂) and let Y0 be the complement of Y1 in Def(X). The condition (1)
in Definition 6.3 means that strata of Def(X) are only Y0 and Y1. Note that if the
relative Picard number of π is one, then the condition (1) is automatically satisfied.

To explain the condition (2) in Definition 6.3, let Π : X̂ → X be a flat family
over the unit disk ∆ in C with Π|t=0 = π. By restricting the deformation X → ∆
of X to a sufficiently small open neighborhood Vi of a singular point pi ∈ X, we get
a deformation Vi → ∆ of the singular point pi. Then the condition (2) implies that
Π−1(Vi)→ Vi is isomorphic to the trivial family π−1(Vi)×∆→ Vi ×∆ over the unit
disk ∆.

We recall the Namikawa’s criterion for the smoothability [23, (2.5)].

Theorem 6.5 ([23]). Let X be a Calabi–Yau 3-fold. The following two conditions
are equivalent:

(1) X is smoothable by a flat deformation;
(2) for any small projective partial resolution X ′(6= X) of X, Def(X ′) ↪→ Def(X)

is not a surjection.

As an immediate consequence of Theorem 6.5, we give an equivalent formulation
of the condition (1) in Definition 6.3.

Proposition 6.6. Let π : X̂ → X be a small projective resolution of a Calabi–
Yau 3-fold X. Then X satisfies the condition (1) in Definition 6.3 if and only if for
any small projective partial resolution X ′ → X with X ′ 6= X the Calabi–Yau 3-fold
X ′ is not smoothable.

Proof. First, we observe that the ”only if” implication follows immediately from
Theorem 6.5. To proof the ”if” implication, we recall the defect σ(Y ) of a variety Y .
It is the rank of WDiv(Y )/CDiv(Y ), where WDiv(Y ) (resp. CDiv(Y )) is the Abelian
group of Weil (resp. Cartier) divisors of Y . Then σ(Y ) < ∞ (resp. = 0) if Y has
at most rational singularities [13, (1.1)] (resp. if Y is Q-factorial). Remark that if Y
admits a nontrivial small birational morphism then σ(Y ) > 0.

Fix a small projective partial resolution X ′ → X with X ′ 6= X. By Theorem 6.5
and X ′ is not smoothable, there is a small projective partial resolution X ′′( 6= X ′) of
X ′ such that Def(X ′′) ↪→ Def(X ′) is an isomorphism. Clearly σ(X ′′) < σ(X ′) < ∞.
Since X ′′ is also a small projective partial resolution of X, it is not smoothable.



1000 S.-S. WANG

Hence we can repeat this process until we reach a Q-factorial variety X̂ ′′ with the
isomorphism Def(X̂ ′′) ↪→ Def(X ′′). According to that X̂ ′′ is also a Q-factorialization
of X, it follows that the composition

Def(X̂) ' Def(X̂ ′′) ↪→ Def(X ′′) ↪→ Def(X ′)

is an isomorphism, which completes the proof of the ”if” implication.

The following proposition explains why we use primitive small transitions as build-
ing blocks of general small transitions.

Proposition 6.7. Every small transition of Calabi–Yau 3-folds can be decom-
posed into primitive small transitions up to deformations and flops.

Proof. Let X̂
π−→ X  X̃ be a small transition of Calabi–Yau 3-folds. We use

induction on the relative Picard number ρ := ρ(X̂/X) to prove the proposition.
Observe that the condition (1) in Definition 6.3 is automatically satisfied in the

case ρ = 1. Suppose that the composition map (6.1) in Definition 6.3 is not trivial.
The key point is just that the Du Val surface singularities have no moduli. In fact,
given such a nontrivial deformation Π : X̂ → X of π over the unit disk ∆ in C with
Π|t=0 = π, there is a nontrivial holomorphic map ∆ → Def(pi ∈ X). Since (pi ∈ X)
is an isolated cDV singularity, it is a 1-parameter family fi over a 1-dimensional disk
∆i of Du Val surface singularities (cf. [26] or [22, §1]). Let Si := f−1

i (0). By the
versality of Def(Si) there is a nontrivial homomorphic map ψi : ∆×∆i → Def(Si).

Let Fi be the miniversal family for the deformation of Si. Since the Milnor number
of hypersurface singularities is upper semicontinuous under deformations, the Milnor
number of the isolated Du Val surface singularity Si is greater than or equal to the
sum of the Milnor numbers at all singularities of the Du Val surface F−1

i (ψi(t, w))
for (t, w) ∈ ∆ ×∆i. Recall that the isolated Du Val surface singularity Si is simple
(and therefore of type An, Dn, E6, E7, E8). Hence, for sufficiently small t ∈ ∆ \ {0},
the Milnor number at a singularity of F−1

i (ψi(t, 0)) is less than the Milnor number
of the isolated Du Val surface singularity Si = F−1

i (ψi(0, 0)) (cf. [6, Theorem 5] or

[17, Remark 4.42]) and then we replace the original small transition X̂
π−→ X  X̃

with X̂t
Π|t−−→ Xt  X̃. Repeating this process finitely many times leads to a primitive

small transition.
Now assume that ρ > 2 and that there is a small projective partial resolution

X ′ → X with X ′ 6= X such that the Calabi–Yau 3-fold X ′ is smoothable. Take a
Q-factorialization X̂ ′ of X ′. Since X̂ and X̂ ′ are both Q-factorialization of X and X̂
is smooth, they are connected by flops

X̂
flops
//

π

77X̂ ′ // X ′ // X

and X̂ ′ is also smooth. Then we replace X̂
π−→ X  X̃ with the new small transition

X̂ ′ → X  X̃. By assumption, X ′ → X can be deformed to a small projective
resolution Y ′ → Y where Y ′ is smooth. Thus we have decomposed X̂ ′ → X  X̃
into two small transitions X̂ ′ → X ′  Y ′ and Y ′ → Y  X̃.

By induction, we may assume that, for any small projective partial resolution
X ′( 6= X) of X, the Calabi–Yau 3-fold X ′ is not smoothable. By Proposition 6.6, the

small transition X̂
π−→ X  X̃ satisfies the condition (1) in Definition 6.3. Using the
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same argument as in the case ρ = 1 yields a primitive small transition, and the proof
is completed.

If we want to approach Question 2, understanding primitive small transitions
becomes essential. The following theorem provides the first step towards this problem:

Theorem 6.8. Let π : X̂ → X be a small projective resolution of a Calabi–Yau
3-fold X. If the natural closed immersion Def(X̂) ↪→ Def(X) of Kuranishi spaces
is an isomorphism then the singularities of X are ODPs. Moreover, the number of
ODPs is equal to the relative Picard number ρ(X̂/X).

We note that Theorem 6.8 is a generalization of [7, (5.1)].

Proof. The proof is by induction on the relative Picard number ρ := ρ(X̂/X).
Observe that X is not smoothable by Theorem 6.5. For the case ρ = 1, the result
follows from the above observation and [7, (5.1)].

To prove the case ρ > 2, we recall some facts about extremal rays. Let D be the
pullback of an ample divisor under the morphism π. By Kodaira’s Lemma, a linear
system |mD−A| is nonempty for any ample divisor A on X̂ and m� 0. Pick a divisor
E ∈ |mD − A|, which is relatively antiample by the relative Kleiman’s criterion for

ampleness. Let NE(X̂/X) be the relative Mori cone. It is a convex (polyhedral) cone
generated by (finitely many) exceptional curves of π. Using the Cone Theorem [17,

(3.25)], we have a klt pair (X̂, εE) for 0 < ε � 1 with OX̂(−E) being π-ample such
that

NE(X̂/X) =
∑k

i=1
R>0[Ci],

where R>0[Ci] are different extremal rays and k > ρ. Notice that every face of

NE(X̂/X) is a (KX̂ + εE)-negative extremal face. It is also evident that the number
of irreducible components of Exc(π) is at least ρ.

Suppose that our assertion is valid for small resolutions with the relative Pi-
card number less than ρ, and let π : X̂ → X be a small projective resolution with
ρ(X̂/X) = ρ. We first claim that the number of irreducible components of Exc(π) is
the relative Picard number ρ.

Let U = X̂ \ π−1(Sing(X)). Consider the following long exact sequence

0→ H1(Ω2
X̂

)→ H1(U,Ω2
U )→

⊕
p∈Sing(X)

H2
π−1(p)(Ω

2
X̂

)
α−→ H2(Ω2

X̂
) (6.2)

where H1
π−1(p)(Ω

2
X̂

) is vanishing for all p ∈ Sing(X) by the depth argument (cf. Lemma

2.5). Since X is Calabi-Yau, Def(X) is smooth [22] and the tangent space of Def(X)
is isomorphic to H1(U,Ω2

U ), by Schlessinger’s result [4, 29]. According to the as-

sumption of the theorem, the dimension of Def(X̂) and Def(X) are the same. Then
we get h1(Ω2

X̂
) = h1(U,Ω2

U ) and thus α is injective. Since the image of α is just
the vector space generated by the fundamental classes of irreducible components of
π−1(Sing(X)), we get rank(α) = ρ. According to Lemma 2.5, it follows that the
dimension of

⊕
pH

2
π−1(p)(Ω

2
X̂

) is greater than or equal to the number of irreducible

components of π−1(Sing(X)) which is at least ρ. Hence we conclude that the number
of irreducible components of π−1(Sing(X)) is exactly ρ.

Notice that now we have

NE(X̂/X) =
⊕ρ

i=1
R>0[Ci].



1002 S.-S. WANG

If any two curves have non-empty intersection, say C1 and C2, we let F be the cone
generated by [C1] and [C2]. It is indeed a face since there are precisely ρ generators

of the ρ-dimensional cone NE(X̂/X). Let π′ : X̂ → X ′ be the contraction of the
(KX̂ + εE)-negative extremal face F . By the induction hypothesis, the singularities
of X ′ consist of exactly two ODPs and Exc(π′) = C1

∐
C2. This contradicts to that

C1 ∩ C2 6= ∅, and thus Exc(π) is a disjoint union of irreducible rational curves. By
the above argument using the induction hypothesis and the Cone theorem, we infer
that the singularities of X are ODPs (the normal bundle of an irreducible exceptional

curve in X̂ is OP1(−1)⊕2).

We can use Theorem 6.8 to give a necessary condition for primitive small transi-
tions with the relative Picard number > 2.

Corollary 6.9. Let X̂
π−→ X  X̃ be a primitive small transition. If the relative

Picard number of π is great than or equal to two, then for any nontrivial factorization
X̂ → X ′ → X with X ′ 6= X the singularities of X ′ are ODPs. Moreover, the number
of ODPs of X ′ equals ρ(X̂)− ρ(X ′).

Question 3. Can one classify primitive small transitions? Or more ambitiously,
is it true a primitive small transition is necessarily a conifold transition?

It amounts to studying the global deformation theory of the small contraction
X̂ → X. Notice that in the case of standard web (CICY inside product of projective
spaces, Theorem 5.6), we have used a Bertini-type theorem for degeneracy loci to play
the role of the required deformation theory. For a general small transition, a deeper
analysis of globalizing the local deformations is needed.
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[7] M. Gross, Deforming Calabi-Yau threefolds, Math. Ann., 308:2 (1997), pp. 187–220.
[8] M. Gross, The deformation space of Calabi-Yau n-folds can be obstructed, Mirror symmetry

II, AMS/IP Stud. Adv. Math., 1, Amer. Math. Soc., Providence, RI, 1997, pp. 401–411.
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[10] P. S. Green and T. Hübsch, Connecting moduli spaces of Calabi–Yau threefolds, Comm.

Math. Phys., 119:3 (1988), pp. 431–441.
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