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THE KUPKA SCHEME AND UNFOLDINGS∗

CÉSAR MASSRI† , ARIEL MOLINUEVO† , AND FEDERICO QUALLBRUNN†

Abstract. Let ω be a differential 1-form defining an algebraic foliation of codimension 1 in
projective space. In this article we use commutative algebra to study the singular locus of ω through
its ideal of definition. Then, we expose the relation between the ideal defining the Kupka components
of the singular set of ω and the first order unfoldings of ω. Exploiting this relation, we show that
the set of Kupka points of ω is generically not empty.

As an application of these results, we can compute the ideal of first order unfoldings for some
known components of the space of foliations.
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1. Introduction. An algebraic foliation of codimension one in projective space
Pn over C, is given by a global section ω of the sheaf of twisted differential 1-forms
Ω1

Pn(e) that verify the Frobenius integrability condition ω∧dω = 0. The space of such
foliations forms a projective variety F1(Pn, e). A first invariant that one can attach to
a codimension one foliation is its degree, which is given by the number of tangencies
of a generic line with the foliation. For ω ∈ F1(Pn, e) the degree is known to be e−2.

The singular locus of a foliation given by ω is defined by sing(ω)set = {p ∈ Pn :
ω(p) = 0}. It can be decomposed as a union

sing(ω)set = Kset ∪ Lset

where Kset is the closure of the set of Kupka points which are the singular points of ω
such that dω 6= 0; and Lset is defined as the closure of sing(ω)set \ Kset. We append
a subindex set to stress the fact that this is a set-theoretical approach. Kupka points
were first studied by Ivan Kupka in [Kup64], where he first noted that the existence
of such points is stable under deformations of ω, see also [LN07, Chapter 1.4, p. 38].
Sometimes the subvariety Kset is referred to as the Kupka component. Locally around
each Kupka point it is a smooth variety of codimension 2. Also ω has locally a normal
form around Kupka points. On the other side, if Lset has codimension greater than 3,
by B. Malgrange’s theorem in [Mal76, Théorème 0.1, p. 163], ω admits locally around
each point of Lset an analytic integrating factor.

Since a series of articles which appeared around 1994 such as [CAS94, Bal99,
CLN94], a lot of attention had been paid to foliations in Pn with a non-empty Kupka
variety. Many results on such foliations focus around special cases where Kset is non-
singular and every point in Kset is a Kupka point. In this setting there are results such
as the main theorem of [CLN94], stating that if Kset is globally a smooth complete
intersection then ω has a meromorphic first integral. The work of D. Cerveau and
A. Lins Neto motivated the question of when Kset is a non-singular global complete
intersection subvariety of Pn. In this regard, the first results are the very important
principal theorems of [CAS94] and its addendum [Bal99].

Other results on properties of a foliation with a non-singular Kupka variety are
the main subject of papers like [CA99, SC99], and more recently [CAMP06].
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In this work we address a more fundamental question on Kupka singularities,
namely: Which forms ω on Pn admit a non-empty Kupka variety? In every known
irreducible component of the space of integrable forms, a generic element has indeed
Kupka points. Whether this is a general situation or a coincidence remains unknown.

We find a partial answer to this question which takes us to consider the schematic
structure of sing(ω) given by the homogeneous ideal generated by the coefficients of
ω. See Theorem 4.24 for a full statement of the following result.

Theorem 1.1. If the ideal of sing(ω) is radical, then its Kupka variety is non-
empty.

In order to prove this statement, we need a result of independent interest, namely
Theorem 2.7, which is a local division property for dω.

Moreover, we also relate the algebraic structure of the ideal defining the Kupka
variety of ω with its first order unfoldings.

A first order unfolding of ω is given by an integrable differential 1-form ω̃ε, defined
in the scheme Pn[ε] := Pn × spec(k[ε]), where k[ε] = k[x]/(x2), such that ω̃ε reduces
to ω when intersected with the central fiber Pn. The set U(ω) of first order unfoldings
of ω has a natural vector space structure. After [Suw83a, Definition 4.10, p. 193], or
[Mol16, Def. 2.2.5, p. 7] for a more algebraic approach, we say that two unfoldings
ω̃ε and ω̃′ε are isomorphic if there is an isomorphism φ of Pn[ε] such that φ restricts
to the identity in the central fiber and φ∗ω̃ε = ω̃′ε.

First order unfoldings of a form are closely related to its first order deformations.
A first order deformation of ω is given by a family of differential 1-forms ωε, param-
eterized by an infinitesimal parameter ε, such that ωε is integrable and reduces to ω
when ε = 0. These are the ‘classic’ perturbations and they identify with the Zariski
tangent space TωF1(Pn, e). They relate to unfoldings through the exact sequence

0 // IF (ω) // U(ω) // D(ω),

where IF (ω) denotes the integrating factors of ω,

IF (ω) = {f ∈ H0 (OPn(e)) : fdω = −ω ∧ df}.

The theory of unfoldings for differential forms was developed by Tatsuo Suwa in
[Suw83a]. Let us denote by OCn+1,p and Ω1

Cn+1,p the analytic germs of functions and

differential 1-forms around p ∈ Cn+1, respectively. If $ ∈ Ω1
Cn+1,p defines a foliation,

the space of unfoldings of $ can be parameterized as

Up($) =
{

(h, η) ∈ OCn+1,p × Ω1
Cn+1,p : h d$ = $ ∧ (η − dh)

}/
C.(0, $).

For a generic $, the projection of Up($) to the first coordinate defines an ideal
Ip($) ⊆ OCn+1,p. This ideal gives a good algebraic structure to study Up($) and was
used by Suwa to classify first order unfoldings of rational and logarithmic foliations,
see [Suw83c, Suw83b]. We refer the reader to [Suw95] for a review of his work.

For ω ∈ F1(Pn, e), first order unfoldings can be parameterized in an analogous
way as{

(h, η) ∈ H0(Pn,OPn(e))×H0(Pn,Ω1
Pn(e)) : h dω = ω ∧ (η − dh)

}/
C.(0, ω).

Since U(ω) is a finite dimensional vector space there is no ideal associated to it. To
remedy this shortcoming one can proceed as follows. Let S = C[x0, . . . , xn] be the
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ring of homogeneous coordinates in Pn and consider ω as an affine differential form in
Cn+1, the cone of Pn. Then we recall from [Mol16] the S-module of graded projective
unfoldings,

U(ω) =
{

(h, η) ∈ S × Ω1
S : LR(h) dω = LR(ω) ∧ (η − dh)

}/
S.(0, ω).

where LR is the Lie derivative with respect to the radial vector field R =
∑n
i=0 xi

∂
∂xi

,
see Definition 3.1.

The projection of U(ω) to the first coordinate defines an ideal I(ω) ⊆ S emulat-
ing the situation in the local analytic setting. We will call I(ω) the ideal of graded
projective unfoldings of ω, or simply, the ideal of unfoldings of ω if no confusion can
arise. As we will show later in Proposition 3.4, the classes of isomorphism of graded
unfoldings of ω can be computed by a quotient of I(ω).

To achieve a deeper understanding of sing(ω), the varieties Kset and Lset had to be
redefined as subschemes K and L, respectively. See Section 4 for these two definitions,
as well as for an example showing that the reduced structure of K might differ from
Kset. Two of our main results show how to relate the module of isomorphism classes of
unfoldings with the homogeneous coordinate ring of L, generalizing [Mol16, Theorem
5.1.4, p. 18]. Another of our main results states the relation between the ideals I(ω)
and the graded ideal of K. We summarize these results below and refer the reader to
Theorem 4.12 and Corollary 4.20 for complete statements.

Theorem 1.2. Let ω ∈ F1(Pn, e) be a generic foliation and denote by K and L
the ideals associated to K and L, respectively. Then√

I(ω) =
√
K.

Even more so, if K and the ideal of sing(dω) are comaximal, then there is an isomor-
phism of S-modules

I(ω)
/
J(ω) ∼= S

/
L,

where J(ω) is the singular ideal of ω.

In Section 4 we also give a series of specific examples exposing different situations.
The computations involved in such examples were done by using the computer algebra
software Macaulay 2 together with the differential algebra package DiffAlg, see [GS]
and [DMMQ15], respectively.

Finally, in Section 5 we apply the previous results to pullback and split tangent
sheaf foliations and compute their unfoldings ideal. Let us recall their definitions.

Given a dominating homogeneous map F : Pn //P2 and a differential form ω
in P2, the pullback F ∗ω defines an integrable differential form in Pn. The set of such
pullbacks, for fixed degrees on F and ω, defines an irreducible component of the space
of foliations, as it is shown in [CLNE01].

A foliation with split tangent sheaf in Pn can be written as

ω = iRiX1
· · · iXn−1

dx0 ∧ . . . ∧ dxn,

where X1, . . . , Xn−1 are vector fields and R is the radial vector field. These foliations
are a generalization of foliations associated to affine Lie algebras, which were studied
in [CACGLN04]. They form an irreducible component of the space of foliations, see
[CP08].
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2. Codimension one foliations. Along this section we first give basic defini-
tions for foliations in Pn. Then, we state and prove a division lemma for integrable
forms on smooth varieties.

Let us denote Ω1
Pn(e) the sheaf of twisted differential 1-forms in Pn of degree e.

Definition 2.1. We will say that a generically rank 1 subsheaf F of Ω1
Pn(e),

e ≥ 2 is an algebraic foliation of codimension 1 on Pn, a foliation from now on, if F
is generated by a non zero global section ω ∈ H0(Pn,Ω1

Pn(e)) such that ω ∧ dω = 0.
We recall from the introduction that such foliations have degree e− 2.

A foliation is required to have singular locus of codimension greater than 2. As we
will show below, this is equivalent to ask that ω is not of the form f.ω′, for some global
section f ∈ H0(Pn,OPn(d)) and a 1-form ω′ ∈ H0(Pn,Ω1

Pn(e − d)). Also, integrable
differential 1-forms define the same foliation up to scalar multiplication. Then, we
will denote the set of codimension 1 foliations of degree e− 2 as

F1(Pn, e) :=
{
ω ∈ P

(
H0(Pn,Ω1

Pn(e))
)

: ω ∧ dω = 0, codim(sing(ω)) ≥ 2
}
.

We can give to F1(Pn, e) a subscheme structure defined by the equations ω∧dω =
0.

As we are going to fix one generator for each foliation we might refer to the
foliation F = (ω) simply as ω .

Let us denote by S the ring of homogeneous coordinates C[x0, . . . , xn]. Then, a
foliation defined by ω can be written as

ω =

n∑
i=0

Aidxi (1)

where theAi’s are homogeneous polynomials of degree e−1 that verify the integrability
condition ω ∧ dω = 0 and the property of descent to projective space. The latter
condition can be stated as the vanishing of the contraction of ω with the radial field
R =

∑
xi

∂
∂xi

.
By eq. 1, the ideal of the singular locus of ω is given by

C (ω) := (A0, . . . , An).

From now on we will denote by C (η) the ideal generated by the polynomial coefficients
of the differential form η ∈ ΩrS . Note that this ideal may not be radical.

The Koszul complex associated to ω, noted with Kosz•(ω), is defined as

Kosz•(ω) : S
ω∧ // Ω1

S
ω∧ // Ω2

S
ω∧ // . . .

We will usually denote the p-th homology group of this complex as Hp(ω). The
homology of Kosz•(ω) is able to compute the codimension of the singular set of ω,
by the well-known result:

Theorem 2.2. For ω ∈ H0(Pn,Ω1
Pn(e)) the following are equivalent:

i) codim(sing(ω)) ≥ k
ii) H l(ω) = 0 for all l < k



THE KUPKA SCHEME AND UNFOLDINGS 1029

Proof. See [Mal76, Appendix, p. 172] or [Mal77, Appendix, p. 87] for two proofs
with different level of generalities in the local analytic setting and [Eis95, Theorem
17.4, p. 424] for a purely algebraic proof of our statement.

Note that H1(ω) = 0 is equivalent to have codim(sing(ω)) ≥ 2, as we asked in
the definition of foliation. The integrability condition makes dω to be a 2-cycle of
Kosz•(ω) whose homology class is non-trivial. This can be easily seen by comparing
the degrees of the polynomial coefficients of dω and ω∧η, for some differential 1-form
η.

Then, an algebraic foliation can be defined by a form ω ∈ F1(Pn, e) with codi-
mension 2 singular locus. In Theorem 4.24 we will show that every foliation with
reduced singular locus has Kupka points.

2.1. Division Lemma. Here we will prove a statement (Theorem 2.7) that will
be applied later in Section 4 to foliations on projective space. However, it is a result
of independent interest which works in a wider context.

In the following we will do our computations in a non-singular variety X. We will
consider a 1-form ω on X with singular locus of codimension equal to or greater than
2. And we will denote by J the ideal sheaf of sing(ω).

Set Zp(ω) to be the module of degree p cycles in the Koszul complex of ω. Set
D(ω) := ann(ω) ⊆ TX the subsheaf of vector fields ξ such that ω(ξ) = 0. For a sheaf
F we denote by F∨ the (dual) sheaf Hom(F,OX). We define with N(ω) the cokernel
in the short exact sequence

0→ D(ω)→ TX → N(ω)→ 0

As explained in [Qua15, section 4], we have an exact sequence

0→ Ω1
X

/
OX · (ω)→ D(ω)∨ → Ext1X(N(ω),OX)→ 0

We define a morphism Φ : Z2(ω) → D(ω)∨ in the following manner: Let θ ∈
Z2(ω), and ξ ∈ D(ω) , since θ ∧ ω = 0, and iξω = 0 we have

iξθ ∧ ω = iξ(θ ∧ ω) = 0.

Then, as H1(ω) = 0 we must have a unique f ∈ OX such that iξθ = fω. We define
Φ(θ) : D(ω)∨ → OX to be the OX -linear map such that, to each ξ ∈ D(ω)∨ assigns
Φ(θ)(ξ) = f , where iξθ = fω.

Lemma 2.3. The morphism Φ : Z2(ω)→ D(ω)∨ is injective.

Proof. Take a point p ∈ X such that ω ⊗ k(p) 6= 0. Then, locally in p, there is a
1-form η such that θ = ω ∧ η. Therefore, for each ξ ∈ D(ω)p, we have iξθ = (iξη)ω.
Now take a θ ∈ Z2(ω) such that Φ(θ) = 0; that means that, near p, iξη = 0 for every
ξ ∈ D(ω)p. Then, there is a g such that η = g · ω, and so θp = 0. As this would
happen for every p in the dense open subset where ω ⊗ k(p) 6= 0, we have that if
Φ(θ) = 0 then θ = 0.

Then we have a diagram

0 // Ω1
X/OX · (ω) // Z2(ω) //

� _

Φ

��

H2(ω) //
� _

��

0

0 // Ω1
X/OX · (ω) // D(ω)∨ // Ext1X(N(ω),OX) // 0
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We thus arrive at another proof of [Ser65, Proposition 4, IV-7]. First we are going
to make clear the convention we are going to use when we mention the support of a
coherent sheaf. Given a coherent sheaf F over a scheme X we denote with supp(F)
the subscheme of X defined by the annihilator of F , that is, the sheaf of ideals of X
such that in every x ∈ X is locally given by the annihilator ideal Ann(Fx) of Fx in
OX,x.

Proposition 2.4. With the notation as above we have supp(H2(ω)) ⊆ sing(ω).

Proof. By the diagram above we have supp(H2(ω)) ⊆ supp(Ext1X(N(ω),OX).
As explained in [Qua15, Remark 7.7, p. 178] the annihilator of Ext1X(N(ω),OX) is
locally defined by the coefficients of ω. So the subscheme supp(Ext1X(N(ω),OX) is
just sing(ω).

Proposition 2.5. Suppose θ ∈ J ·Ω2
X ∩Z2(ω) and D(ω) ⊆ J ·TX. Then there

is an η ∈ Ω1
X such that θ = ω ∧ η.

Proof. With the hypotheses we have that, for every ξ ∈ D(ω), iξθ ∈ J 2 · Ω1
X .

Then the f such that iξθ = fω must be in J . In other words Φ(θ) is a morphism
from D(ω) to J . As Hom(D(ω),J ) = J ·D(ω)∨ we have that the class of Φ(θ) in
Ext1X(N(ω),OX) is 0, and so is the class of θ in H2(ω).

Corollary 2.6. If X has dimension 2 then for every θ ∈ J ·Ω2
X ∩Z2(ω) there

is an η such that θ = ω ∧ η.

Proof. When X is 2-dimensional we have that D(ω) is generated by a single field
ξ and sing(ω) = sing(ξ) as schemes, so D(ω) ⊆ J · TX.

Theorem 2.7. Let ω be an integrable 1-form in a smooth variety X and p ∈
sing(ω) be such that J (ω)p is radical and such that (dω)p ∈ Jp · Ω2

X,p. Then there is

a formal 1-form η ∈ Ω̂1
X,p such that dω = ω ∧ η.

Proof. The proof proceeds by induction on the dimension of the ambient space. If
dimX = 2 the theorem follows by Corollary 2.6. If dimX > 2 we consider a generic
point p ∈ sing(ω), then there are two alternatives:

If locally around p we have D(ω)p ⊆ Jp · TX, then the theorem follows from
Proposition 2.5.

If D(ω) * Jp · TX then, as Jp is radical, there must be a vector field ξ ∈ D(ω)
such that ξ ⊗ k(p) 6= 0. If for every such vector field we have Φ(dω)(ξ) ∈ Jp, then we
would have Φ(dω) ∈ Hom(D(ω),Jp) and we would be set. So we may suppose there
is ξ ∈ D(ω) such that ξ ⊗ k(p) 6= 0 and such that iξdω = fω with f 6= 0 in k(p). We
can now take a closed point p specializing p such that f(p) 6= 0. Dividing by f we get
a vector field such that

ξ|p 6= 0, iξω = 0, Lξω = iξdω = ω.

We now take a hyperplane H transversal to ξ at p. And take ωH to be the restriction
of ω to H. We can take a formal system of coordinates around p, (x, y1, . . . , yn−1)

with ∂
∂x = ξ̂ and the y’s being formal coordinates of H around p. In this coordinate

system, as i ∂
∂x
ω = 0 we have

ω =

n−1∑
i=1

gi(x, y1, . . . , yn−1)dyi,
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as we also have L ∂
∂x
ω = ω then the coefficients gi verify the differential equation ∂gi

∂x =

gi. So, for every i there is a series hi(y1, . . . , yn−1) such that gi(x, y1, . . . , yn−1) = exhi.
In other words, for these coordinates we have

ω = exωH .

This implies that if JH is ideal of the singular scheme of ωH then Ĵp = JH [[x]]. So

JH is also radical and moreover dωH ∈ JH · Ω̂2
S,p. Then by induction there is a formal

1-form η′ such that dωH = ωH ∧ η′. Now we have, in a formal neighborhood around
p:

dω = d(exωH) = exdx ∧ ωH + exdωH =

= exdx ∧ ωH + exωH ∧ η′ = exωH ∧ (−dx+ η′) =

= ω ∧ η,

where η = −dx+ η′.
So far we have proved that, around a generic point p ∈ sing(ω), the class d(ω)p

of dωp in H2(ω) is zero. Then the support of d(ω) must be a proper closed sub-
scheme of the singular locus of ω. This implies that the support of H2(ω), and
therefore that of Ext1X(N(ω),OX), must have as an irreducible component a proper
closed set of sing(ω). Again by [Qua15, Remark 7.7, p. 178], we have the equality
supp(Ext1X(N(ω),OX)) = sing(ω), and sing(ω) is reduced by hypothesis and therefore

have no embedded components. Hence, d(ω) ∈ H2(ω) must be zero, which implies
the existence of η as in the statement of the theorem.

3. Graded projective unfoldings. Throughout this section we will consider
ω ∈ F1(Pn, e). First we will define the space of graded projective unfoldings, U(ω),
and its related objects which are the ideal of (graded projective) unfoldings I(ω) and
the complex of S-modules R•(ω). We will use I(ω) in Section 4 to state our main
results.

We refer the reader to [Mol16] for a detailed exposition regarding this subject.

Definition 3.1. We define the S-module of graded projective unfoldings of ω as

U(ω) =
{

(h, η) ∈ S × Ω1
S : LR(h) dω = LR(ω) ∧ (η − dh)

}/
S.(0, ω).

For a ∈ N, the homogeneous component of degree a can be written as

U(ω)(a) =
{

(h, η) ∈ (S × Ω1
S)(a) : a h dω = e ω ∧ (η − dh)

}/
S(a− e).(0, ω).

For (h, η) ∈ U(ω)(a) and f ∈ S(b), the graded S-module structure is defined via
the formula

f · (h, η) :=
(
fh, a+b

a fη + 1
a (a h df − b f dh)

)
∈ U(ω)(a+ b).

Definition 3.2. We define the isomorphism classes of graded projective unfold-
ings, as the quotient U(ω) := U(ω)/CU(ω). For a ∈ N, the homogeneous component
of degree a of CU(ω), is defined as

CU(ω)(a) =

{(
iXω,

1

e
(a iXdω + e diXω)

)
: X ∈ TS(a− e)

}/
S(a− e).(0, ω).
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Let us consider the projection to the first coordinate

U(ω)
π1 // S.

Definition 3.3. We define the graded ideals of S associated to ω as

I(ω) := π1(U(ω)) =
{
h ∈ S : h dω = ω ∧ η for some η ∈ Ω1

S

}
J(ω) := π1(CU(ω)) = {iX(ω) ∈ S : X ∈ TS} .

We will also denote them I = I(ω) and J = J(ω) if no confusion arises.

Proposition 3.4. The projection π1 : U(ω) −→ S induces the isomorphisms

U(ω) ' I(ω)/J(ω) and U(ω) ' I(ω).

Proof. Let us consider (h, η1), (h, η2) ∈ (S × Ω1
S)(a) such that

a hdω = e ω ∧ (η1 − dh)

a hdω = e ω ∧ (η2 − dh).

Then ω∧(η1−η2) = 0 and there must exist f ∈ S(a−e) such that η1−η2 = fω. This
way the classes of (h, η1) and (h, η2) coincide in U(ω), which shows that U(ω) ' I(ω).
By doing the same for elements of the form

(
iXω,

a iXdω+e diXω
e

)
we can see the

isomorphism CU(ω) ' J(ω).
Putting together both arguments we have that U(ω) ' I(ω)/J(ω).

Remark 3.5. Notice that 1 6∈ I, since the class of dω in H2(ω) is not zero as we
pointed out in Section 2.

Recall from Section 2, that we denote by C (η) the ideal of polynomial coefficients
of the differential form η.

Proposition 3.6. We have the following relations

C (ω) = J(ω) ⊆ I(ω) .

Proof. The equality can be easily verified by contracting ω with the vector fields
∂/∂xi, i = 0, . . . , n. The inclusion follows from the following fact,

ω ∧ dω = 0 =⇒ iX(ω)dω = ω ∧ (−iX(dω)) =⇒ iX(ω) ∈ I(ω).

The equivalence between the conditions ω ∧ dω = 0 and dω ∧ dω = 0, allows us
to define the following complex:

Definition 3.7. We define the graded complex R•(ω) of S-modules associated
to ω, as

R•(ω) : TS
dω∧ // Ω1

S
dω∧ // Ω3

S
dω∧ // . . .

where Rs(ω) = Ω2s−1
S for s ≥ 0 and the 0-th differential is defined as dω∧X := iXdω.
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As usual, let us denote by Zk(−) the cycles of degree k of the given complex. We
recall from [Mol16, Proposition 3.1.5, p. 13 and Theorem 3.2.2, p. 14], the following
results.

Theorem 3.8. Let ω ∈ F1(Pn, e), then we have S-module isomorphisms

Z1(R•(ω))
/
S.ω ∼= U(ω) ∼= I(ω)

H1(R•(ω)) ∼= U(ω) ∼= I(ω)
/
J(ω).

We will use the relation between Z1(R•(ω)) and I, given by theorem above, to
make effective computations of the ideal I. Specifically, the unfoldings ideal I can be
computed as

iRZ1(R•(ω)) = I, (2)

where iR is the contraction with the radial field. Notice that this is the relation used
in the proof of the previous theorem.

4. The singular set and the unfoldings ideal. Along this section we will
redefine the varieties Kset and Lset as projective schemes K and L, respectively.
These varieties, together with the unfoldings ideal I defined in the previous section,
are our main objects of study. The computations regarding K and L are going to be
done with its ideal of definitions, K and L, respectively, regarded as graded ideals
over S (see [Har77, Chapter II, 5, p. 108] for the relation between projective schemes
and graded modules).

In Definition 4.10 we state our genericity conditions on a codimension one foliation
ω that we will carry throughout this section.

In Theorem 4.12 we prove that the radical of I and the radical of K coincide with
mild generic assumptions.

In Theorem 4.24 we show that the Kupka scheme K equals the Kupka set Kset
and they are non-empty, provided the ideal of sing(ω) is radical, J(ω) =

√
J(ω).

4.1. Definitions.

Definition 4.1. For ω ∈ F1(Pn, e), we define the Kupka scheme K(ω) as the
scheme theoretic support of dω at Ω2

S⊗SS
/
J(ω). Then, K(ω) = Proj(S/K(ω)) where

K(ω) is the homogeneous ideal defined as

K(ω) = ann(dω) + J(ω) ⊆ S, dω ∈ Ω2
S ⊗S S

/
J(ω).

We will denote K = K(ω) and K = K(ω) if no confusion arises.

For the definition of the scheme L we recall the notion of ideal quotient of two
S-modules M and N as

(N : M) := {a ∈ S : a.M ⊆ N} ,

see [AM69, Example 1.12, p. 8 and Corollary 3.15, p. 43] for basic properties. In the
case of two ideals I, J ⊆ S, we define the saturation of J with respect to I as

(J : I∞) :=
⋃
d≥1

(
J : Id

)
.

Later, we will use the following simple fact.



1034 C. MASSRI, A. MOLINUEVO, AND F. QUALLBRUNN

Lemma 4.2. Let J be a radical ideal. Then (J : I) is radical and

(J : I) = (J : I∞) = (J :
√
I).

One could also define K(ω) as K(ω) = (J ·Ω2
S : dω). Then, given that Ω2

S is free,
we can also write

K(ω) = (J : C (dω)). (3)

Definition 4.3. For ω ∈ F1(Pn, e), we define the non-Kupka scheme L(ω) as
the projective scheme Proj(S/L(ω)), where L(ω) is the homogeneous ideal defined by

L(ω) = (J(ω) : K(ω)∞).

We will write L = L(ω) and L = L(ω) if no confusion arises.

Remark 4.4. By Lemma 4.2 and eq. 3 we immediately see that, if J is radical,
then K and L are radical ideals.

In the following example we show that the algebraic geometric approach is indeed
necessary, since the reduced structure associated to the Kupka scheme K differs from
the reduced variety associated to Kset. In general, when J is radical, both varieties
will coincide, as we will show below.

Example 4.5. Consider the following integrable differential 1-form ydx+ x2dy.
Its projectivization in P2 is given by

ω = yz2dx+ x2zdy − (x2y + xyz)dz,

and its exterior differential is

dω = (2xz − z2)dx ∧ dy − (2xy + 3yz)dx ∧ dz − (2x2 + xz)dy ∧ dz.

In a set-theoretically setting, the singular set of ω and dω are given by

sing(ω) = {(1 : 0 : 0), (0 : 1 : 0), (0 : 0 : 1)} and sing(dω) = {(0 : 1 : 0)},

implying that the Kupka set is equal to {(1 : 0 : 0), (0 : 0 : 1)}.
The ideal defining sing(ω) is

J = (yz2, x2z, x2y + xyz)

giving multiplicities 1, 4 and 2 to the points of sing(ω) respectively. The Kupka
scheme K is defined by the ideal

K = (yz2, x2z, 2xy − yz).

The support of K is all sing(ω) but with multiplicities 1, 2 and 2 respectively.

Lemma 4.6. Let ω ∈ F1(Pn, e) such that J =
√
J . Then

K = Kset.
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Proof. This follows immediately from the equalities

K = (J : C (dω)) = (J : C (dω)∞) = I (Kset),

where I (Kset) denotes the (radical) ideal associated to Kset.

We can now extend the chain of inclusions of Proposition 3.6 by considering the
ideal K.

Proposition 4.7. Let ω ∈ F1(Pn, e). Then, we have the following relations

C (ω) = J ⊆ I ⊆ K .

Proof. We only need to prove the last inclusion. By definition, given h ∈ I there
exists a differential 1-form η such that

h dω = ω ∧ η.

Then, h ∈ (J · Ω2
S : dω) = K.

4.2. Main results. Let p be a point in Pn, i.e., a homogeneous prime ideal in S
different from the irrelevant ideal (x0. . . . , xn), and let ω be an integrable differential

1-form. We will denote by a subscript p the localization at the point p and with Ŝp

the completion of the local ring Sp with respect to the maximal ideal defined by p.

Definition 4.8. We say that p ∈ Pn is a division point of ω if 1 ∈ I(ω)p.

Recall from Section 2 that we refer to the homology of the Koszul complex of ω
as Hp(ω).

Proposition 4.9. Let p ∈ Pn and let ω ∈ F1(Pn, e). The class of dωp in H2(ωp)
is zero if and only if p is a division point of ω.

Even more so, assume that formally around p, ω̂p ∈ Ω1
S ⊗S Ŝp is equal to fdg,

where f, g ∈ Ŝp and f a unit. Then p is a division point.

Proof. If p is a division point, then 1 ∈ I(ω)p, hence dωp = 0 ∈ H2(ωp). Analo-
gously, if dωp = 0 ∈ H2(ωp), then 1 ∈ I(ω)p.

Assume that ω̂p = fdg, where f, g ∈ Ŝp and f(p) 6= 0, then

dω̂p = df ∧ dg = − 1

f
fdg ∧ df = ω̂p ∧

(
− 1

f
df
)

= 0 ∈ H2(ω̂p).

Then, 1 ∈ Î(ω)p, that is, Ŝp = Î(ω)p. By Nakayama’s Lemma, see [GH94, p. 681],
the inclusion I(ω)p ⊆ Sp is an epimorphism, hence I(ω)p = Sp and 1 ∈ I(ω)p.

We now define a subset of the space of foliations on which we are going to state
some of our results.

Definition 4.10. We define the set U ⊆ F1(Pn, e) as

U =
{
ω ∈ F1(Pn, e) : ∀p 6∈ K(ω), p is a division point of ω

}
.

Remark 4.11. A few remarks should be made regarding the set U :
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i) By [Mal76, Théorème 0.1, p. 163] and Proposition 4.9 above, U contains the
following open subset

U ′ =
{
ω ∈ F1(Pn, e) : codim(sing(ω)) ≥ 2 and codim(sing(dω)) ≥ 3

}
.

This open set is one of the usual generic conditions used in the literature.
ii) If sing(ω) is reduced then ω ∈ U . This follows from Theorem 2.7 and the

simple fact that, in Pn, the inclusion sing(dω) ⊆ sing(ω) holds. This can be
seen by contracting dω with the radial field from where we get iRdω = eω.
Then, the following set is included in U ,

U ′′ := {ω ∈ F1(Pn, e) : sing(ω) is reduced},

A small variation of U ′′ is to ask sing(ω) to be reduced in the affine cone Cn+1.
This is equivalent to asking J =

√
J and it is slightly stronger, because it

removes the irrelevant ideal as an eventual immersed component of J . Since
our approach is algebraic, we will use this condition as well. We remind that
the condition of being reduced is an open condition, see [Gro66, Théorème
(12.2.4), item (v), p. 183], then U contains the open subset U ′′ of F1(Pn, e).

iii) If ω admits a global integrating factor F such that the only components of
sing(ω) of codimension 2 that intersects {F = 0} are in K, then ω ∈ U .
Indeed, any codimension 2 component of sing(ω) intersects the hypersurface
{F = 0}. Hence, every point p 6∈ K is a division point; see [Mal76, Théorème
0.1, p. 163] and Proposition 4.9. This remark is useful for logarithmic folia-
tions.

The hypothesis ω ∈ U will be our more general assumption from now on. It is
the key to establish relations between the unfoldings ideal I, the singular ideal J and
the Kupka ideal K, as the following theorem shows. It gives a global characterization
of U .

Theorem 4.12. Let ω ∈ U ⊆ F1(Pn, e). Then,
√
I =
√
K.

Even more so, if
√
I =
√
K then ω ∈ U .

Proof. Take ω ∈ U and p /∈ K. Then Ip = Sp, which is equivalent to p /∈ I, where
I = Proj(S/I). This way, we see that Ired ⊆ K. Reciprocally, if Ired ⊆ K then every
p /∈ K implies p /∈ I and so Ip = Sp, meaning that ω ∈ U . Then have that

ω ∈ U ⇐⇒ Ired ⊆ K ⇐⇒ K ⊆
√
I .

By Proposition 4.7 we already know that I ⊆ K. Then, taking radicals in the inclu-
sions I ⊆ K ⊆

√
I we have the first implication of the theorem.

If now we suppose that
√
I =
√
K, then K ⊆

√
I which is equivalent to ω ∈ U as

we just see.

In Section 5 we will show that in certain components of the space of foliations it
can be stated that, generically, I = K. The following example shows that this is not
always the case; there exists forms with

√
I =
√
K, but I 6= K.

Example 4.13. In [CLNL+07, 5.4, p. 49], the authors find a new irreducible
component of F1(P3, 6) consisting of foliations with projective transverse structure.
These foliations can be constructed by considering a differential form ω0 in C2 as

ω0 = x0dx1 − x1dx0 + P2dx0 +Q2dx1 +R2(x0dx1 − x1dx0),
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where P2, Q2 andR2 are homogeneous polynomials of degree 2. As the article explains,
we can consider the homogenization of ω0, Ω0, and pullback it by the automorphism
of C3 given by σ(x0, x1, x2) = (x0, x1, x2 + x2

0). In this way, we get a new differential
1-form ω1 = σ∗(Ω0) which is not homogeneous. By considering its homogenization
again, we finally get an integrable differential form ω ∈ F1(P3, 6) with projective
transverse structure.

Choosing generic polynomials as

P2 = x2
0 − x2

1 Q2 = x2
0 + x2

1 R2 = x2
0 + x2

1 + x0x1,

and following the process described in loc. cit., we find a generic foliation of such
component defined by

ω =
(
−x4

0x1 − x4
0x3 − 2x3

0x1x3 + x2
0x

2
1x3 − 2x0x

3
1x3 − 2x2

0x1x2x3 − x2
0x1x

2
3 + x0x

2
1x

2
3+

−x3
1x

2
3 + x2

0x2x
2
3 − x2

1x2x
2
3 − x1x

2
2x

2
3

)
dx0 +

(
x5
0 + x4

0x3 + x2
0x

2
1x3 + 2x3

0x2x3+

+x3
0x

2
3 − x2

0x1x
2
3 + x0x

2
1x

2
3 + x2

0x2x
2
3 + x2

1x2x
2
3 + x0x

2
2x

2
3

)
dx1+

+
(
−x3

0x
2
3 − x2

0x1x
2
3 + x0x

2
1x

2
3 − x3

1x
2
3

)
dx2 +

(
x5
0 + x4

0x1 − x3
0x

2
1 + x2

0x
3
1

)
dx3.

Making some computations we find that: since
√
I =

√
K then ω ∈ U by Theorem 4.12 ,

sing(ω) is not reduced and I 6= K.

In the case of P2 we can state the following stronger result.

Lemma 4.14. Let ω ∈ F1(P2, e), then I = K.

Proof. In a similar way to what we did with the definitions of K and L we can
characterize the unfoldings ideal of ω as

I = (B2(ω) : dω),

where B1(ω) are the borders of the differential of the Koszul complex in degree 1.
Since K = (J · Ω2

S : dω), Corollary 2.6 implies that every ω ∈ F1(P2, e) satisfies
I = K.

We have a similar statement in Pn only under certain conditions.

Corollary 4.15. Let ω ∈ F1(Pn, e) be such that J =
√
J and K∩L = ∅. Then

I = K.

Proof. By Remark 4.4 we have that K and L are also radical ideals. Let p be an
associated prime of I. Using the hypothesis K ∩ L = ∅ we get that Jp = Kp. Then,
by the inclusions J ⊆ I ⊆ K of Property 4.7, we have that

Jp = Ip = q

where q is a p-primary ideal. Since J is radical, necessarily q = p and p cannot be an
embedded prime. The result now follows from Theorem 4.12.

Remark 4.16. In [CSV06], it is shown that the singular locus of generic loga-
rithmic foliations can be decomposed as the disjoint union of the Kupka set and a
finite number of isolated points. Even if the authors do not say it, the article also
applies to generic rational foliations. In [Suw83b] and [Suw83c], the unfoldings ideal
of generic rational and logarithmic foliations is classified in terms of the functions
defining such foliations. Putting together these works, one can conclude that I = K
in these irreducible components.
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Also, in Section 5, we will show that the equality I = K holds generically for
pullback and split tangent sheaf foliations. Notice that the assumptions of Corollary
4.15 are verified in all these components we are mentioning.

Following example 4.13 (and many others of the same type that we were able to
compute), we believe that it should not be expected that I = K in the component of
foliations with projective transverse structure, therefore in F1(Pn, e).

Despite the previous result, the hypotheses J radical and K ∩ L = ∅ are not
necessary to imply I = K, as the next two examples shows. For the computations of
I, see eq. 2.

Example 4.17. Consider the differential 1-form in P2,

ω = x2
0x2dx0 + x2

1x2dx1 + (−x3
0 − x3

1)dx2.

The scheme sing(ω) consists of three points with multiplicities 1, 2 and 4. Also, K is
the union of the points with multiplicities 1 and 2 and L is the other point. In this
case we have K ∩ L = J and I = K.

Example 4.18. The family of Dulac foliations in P3 of type (p, q) ∈ N2, D(p, q),
see [CA03, Cap. 1, p. 48], is defined by differential 1-forms as

ω(p,q) = iRiY iX(dx0 ∧ . . . ∧ dx3)

where X and Y are vector fields defined as

X = −(q + 1)xp+q−1
0 x1

∂

∂x1
+ (p+ 1)xp+q−1

0 x2
∂

∂x2
+

+
[
(p− q)xp+q−1

0 x3 +
(
(q + 1)β − (p+ 1)α

)
xp1x

q
2

] ∂

∂x3

Y = −βx1
∂

∂x1
+ αx2

∂

∂x2
− (pβ − qα)x3

∂

∂x3

with α, β ∈ C and R is the radial vector field. Note that [X,Y ] = 0.
Taking α = 1 and β = 2 we define the following Dulac foliation of type (p, q) =

(1, 1) as

ω(1,1) = (6x2
1x

2
2 + 2x0x1x2x3) dx0 + (−2x0x1x

2
2 − 2x2

0x2x3) dx1+

+ (−4x0x
2
1x2 − 2x2

0x1x3) dx2 + 2x2
0x1x2 dx3

The scheme L is the reduced line {x1 = x2 = 0}. And K has 4 components; two
reduced, given by {x1 = x3 = 0} ∪ {x2 = x3 = 0}, and two of multiplicity 2, given
by {x0 = x1 = 0} ∪ {x0 = x2 = 0}. Despite this pathological situation, we still have
I = K.

As one can see in this example the decomposition K ∪ L fails to be sing(ω) at a
schematic level, since it do not cover all the multiplicities of sing(ω). The primary
decomposition of sing(ω) it is given by 5 components 3 reduced and 2 of multiplicity
4. The two missing components of multiplicity 2, that are the same that K has, can
be found in the quotient ideal given by (J(ω) : K(ω)).

From Theorem 4.12 we can draw several results relating the unfoldings of ω and
its isomorphism classes with the ideal of the singular locus of ω and its decomposition
in the ideals K and L.
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Corollary 4.19. If sing(ω) is reduced then the minimal components of I/J and
S/L coincide.

Proof. Assume
√
J = J . Then,

i) L = (J : K) since K is also radical by Remark 4.4.
ii) (J : I) = (J :

√
I) since J is radical by Lemma 4.2.

By Theorem 4.12, we know that
√
I =
√
K from which we have the following chain

of equalities

ann(I/J) = (J : I) = (J : K) = L = ann(S/L).

The result follows from [Mat86, §6, Theorem 6.5 (iii), p. 39].
If sing(ω) is reduced, the irrelevant ideal may be an associated prime of J . Then,

the minimal associated primes of S/L and of I/J may differ only by the irrelevant
ideal. In any case, the result follows.

Corollary 4.20. Let ω ∈ U . If K and C (dω) are coprime (comaximal), then

I
/
J ∼= S

/
L.

Also, if K ∩ sing(dω) = ∅, then the Hilbert polynomial of I/J and S/L coincide.

Proof. First note that C (dω) ⊆ L,

L = (J : K∞) ⊇ (J : K) = (J : (J : C (dω)) ⊇ C (dω).

Then,

S = K + C (dω) ⊆ K + L ⊆ S =⇒ K + L = S.

From [AM69, Proposition 1.16, p. 9] and given that
√
K =

√
I we obtain, I +L = S.

Second, let us prove that I ∩ L = J ,

J ⊆ I ∩ L ⊆ K ∩ L =
⋃
n>0

(J : C (dω) +Kn) = J.

The equality Kn + C (dω) = S for all n > 0, follows again from [AM69, Proposition
1.16, p. 9].

Finally,

I/J = I/I ∩ L ∼= (I + L)/L = S/L.

The last part follows because the Hilbert polynomial of an ideal X and (X : m∞)
coincide, where m is the irrelevant ideal. Given that K ∩ sing(dω) = ∅, K ∩ L = ∅
and Proj(S/I) ∩ L = ∅. Also, Kn + C (dω) is m-primary or equal to S. In any case,
(I ∩ L : m∞) = (J : m∞). Then,

PI/J = PI − PĴ = PI − PÎ∩L = PI+L − PL = PS/L,

where PX is the Hilbert polynomial of the ideal X and X̂ is the saturation of the
ideal X.

In the following example we show that the hypothesis of the previous corollary
are necessary.
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Example 4.21. Let us consider 3 vector fields with linear coefficients in P4,
S,X, Y , such that

[S,X] = −X [S, Y ] = Y [X,Y ] = 2S.

Then {S,X, Y } define a Lie algebra isomorphic to sl(2,C) and the 1-form defined as

ω = iRiSiX iY (dx0 ∧ dx1 ∧ dx2 ∧ dx3)

gives rise to a degree 3 foliation given by the action of PSL(2,C) in P4, see [CA03,
Cap 1, p. 53]. Taking

S = x0
∂

∂x0
− x1

∂

∂x1
+ 2x2

∂

∂x2
− 2x3

∂

∂x3

X = x4
∂

∂x0
+ x3

∂

∂x1
+ x0

∂

∂x2
+ x1

∂

∂x4

Y = −4x2
∂

∂x0
− 6x4

∂

∂x1
− 4x1

∂

∂x3
− 6x0

∂

∂x4

we get the differential 1-form

ω =
(
12x3

1x2 − 6x2
0x1x3 + 24x0x2x

2
3 − 4x0x

2
1x4 − 32x1x2x3x4 + 12x0x3x

2
4

)
dx0 +

+
(
−4x0x

2
1x2 + 18x3

0x3 + 16x1x
2
2x3 − 4x2

0x1x4 − 32x0x2x3x4 + 8x1x2x
2
4

)
dx1 +

+
(
−8x0x

3
1 − 4x2

1x2x3 − 18x2
0x

2
3 + 28x0x1x3x4 + 8x2x

2
3x4 + 4x2

1x
2
4 − 12x3x

3
4

)
dx2 +

+
(
−12x3

0x1 − 12x2
1x

2
2 − 6x2

0x2x3 + 28x0x1x2x4 + 8x2
2x3x4 + 6x2

0x
2
4 − 12x2x

3
4

)
dx3 +

+
(
8x2

0x
2
1 + 8x0x1x2x3 − 16x2

2x
2
3 − 12x2

1x2x4 − 18x2
0x3x4 + 24x2x3x

2
4

)
dx4

In this situation, J(ω) is radical. Then, by Remark 4.11 ii), ω ∈ U . In fact sing(ω)
has two irreducible components, K and L, both of codimension 2. Also, L = sing(dω),
K = I and K ∩ sing(dω) 6= ∅,

K = I =
(
2x0x1 − 2x2x3 − x2

4, 6x
2
1x2 + 9x2

0x3 − 18x2x3x4 − x3
4

)
,

L = C (dω) =
(
x0x1x3 + 2x2x

2
3 + x2

1x4 − 3x3x
2
4, 2x

2
1x2 − 3x2

0x3 ,

2x0x1x2 + 4x2
2x3 + 3x2

0x4 − 6x2x
2
4, x

3
1 + 3x0x

2
3 − 3x1x3x4, x0x

2
1 + 2x1x2x3 − 3x0x3x4,

x2
0x1 + 2x0x2x3 − 2x1x2x4, 3x

3
0 + 4x1x

2
2 − 6x0x2x4

)
.

We can see that I/J 6= S/L by computing the Hilbert polynomials of both graded
modules, PI/J and PS/L, obtaining

PI/J = 4P2 − 11P1 + 10P0 PS/L = 4P2 − 3P1

where Pr is the Hilbert polynomial of Pr. Notice that the degree of PS/L shows that
codim(L) = 2. Finally, Corollary 4.19 explains why the highest degree term of both
polynomials coincide.

In this example we show a form ω ∈ U in P2 such that K and C (dω) are not
comaximal, but K ∩ sing(dω) = ∅. Generic logarithmic foliations present the same
behavior as well, see [CSV06].

Example 4.22. Let us consider a 1-form ω in P2 as

ω = x2x1dx0 + x2x0dx1 − (x0x1 + x0x1)dx2.
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The singular ideal is equal to J = (x1x2, x0x2, x0x1) and it is radical. Also, K =
(x2, x0x1) and L = C (dω) = (x0, x1). In this case S/L is different from I/J , but
the Hilbert polynomials coincide. Note that K is equal to the union of two lines,
{x0 = x2 = 0} ∪ {x1 = x2 = 0}, and L is equal to another line {x0 = x1 = 0}. Then,
K ∩ sing(dω) = ∅, but the radical of K + C (dω) is the irrelevant ideal (x0, x1, x2).
From the previous corollary the Hilbert polynomials coincide, specifically, PI/J =
PS/L = 1.

Remark 4.23. Let ω ∈ U ⊆ F1(Pn, e). By Theorem 4.12 we know that
√
I =√

K, then there exists a natural number n such that Kn ⊆ I. Then for every f ∈ K,
there exists η ∈ Ω1

S such that fndω = ω ∧ η. Equivalently, fndω = 0 in H2(ω).

From Theorem 4.12 we can conclude the existence of Kupka points under very
general conditions. It is worth mentioning that such result is the first general result
on the existence of Kupka points for foliations on Pn.

Theorem 4.24. Let ω ∈ F1(Pn, e) such that J =
√
J . Then

K = Kset 6= ∅.

Proof. Since sing(ω) 6= ∅, the irrelevant ideal of S, m, cannot be an associated
prime of

√
J .

Note that K is proper because 1 6∈ I and
√
I =

√
K = K, by Remark 3.5 and

Theorem 4.12, respectively, since J radical implies K radical and ω ∈ U .
If K = ∅, the irrelevant ideal is an associated prime of K, but let us see that any

associated prime of K is an associated prime of J . Consider (K : x) an associated
prime of K. Then,

(K : x) = ((J : C (dω)) : x) =
⋂

y∈C (dω)

(J : yx) = (J : y0x),

for some y0 ∈ C (dω). The last equality follows from [AM69, Prop. 1.11(ii), p. 8]
implying that (J : y0x) is an associated prime of J . Then, the irrelevant ideal is an
associated prime of J =

√
J . A contradiction. Hence, K 6= ∅.

Since J is radical, By Lemma 4.6, we get K = Kset concluding our result.

Proposition 4.25. Let ω ∈ F1(Pn, e). If Kset 6= ∅, then the reduced Kupka
scheme has pure codimension 2.

In particular, if J =
√
J , K has pure codimension 2.

Proof. Consider the following sequence of inclusions,√
ann(H2(ω)) ⊆

√
I ⊆
√
K ⊆

(√
J : C (dω)

)
.

By Theorem 2.2, the first ideal has pure codimension 2 (it follows by localizing
Kosz•(ω) at the open subset codim(sing(ω)) ≥ 3). The last ideal is the ideal of
the Kupka set which also has pure codimension 2.

In our investigation we have noted certain phenomena while looking for examples
justifying the hypotheses of our statements. We would like to share with the reader
a question we have not been able to settle.

Question 4.26. We do not know any example of an integrable form ω not in U .
So the question arises: is it true that F1(Pn, e) = U?
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5. Applications. Along this section we describe the unfolding ideals of pullback
and split tangent sheaf foliations in F1(Pn, e), see [CLNE01] and [CP08] respectively.

5.1. Pullback foliations. In [CLNE01] the authors prove the generic stability
of pullback foliations. We recall from the introduction that a pullback foliation is
given by F ∗ω, where ω ∈ F1(P2, e) and F = (F0 : F1 : F2) : Pn //P2 is a rational
map, where Fi is a homogeneous polynomial of degree ν, i = 0, 1, 2.

Generic conditions on ω means that its singular locus is reduced and given by
Kupka singularities only; then, sing(ω) will consist of N = (e− 2)2 + e− 1 different
points. Writing ω as

ω = A0 dx0 +A1 dx0 +A2 dx0,

we immediately get

J(ω) = K(ω) = (A0, A1, A2).

Regarding the polynomials Fi, it is required that the critical values of F be disjoint
from the singularities of ω, as well as the set of critical points be disjoint from {F0 =
F1 = F2 = 0}.

We will call the pair (F, ω) a generic pair, if it satisfies the generic conditions just
mentioned.

Theorem 5.1. Let (F, ω) be a generic pair. Following the notation above we
have that

I(F ∗ω) = K(F ∗ω) = (A0(F ), A1(F ), A2(F )).

Proof. By the genericity conditions and Lemma 4.14, we have I(ω) = K(ω) =
(A0, A1, A2).

Following [CLNE01, p. 700], the Kupka component of F ∗ω is reduced and it is
equal to the inverse image of the Kupka component of ω. Then,

K(F ∗ω) = Kset(F
∗ω) = F ∗ (I (Kset)) = (A0(F ), A1(F ), A2(F )) ,

where the first equality follows from Lemma 4.6.
Now, from the inclusion I ⊆ K of Proposition 4.7, we just need to show that

every Ai(F ) ∈ I(F ∗(ω)). Given that Ai ∈ I(ω), we have

Aidω = ω ∧ (ηi − dAi).

Then, by the commutativity of the exterior differential and the pullback operation,

F ∗ (Aidω) = F ∗ (ω ∧ (ηi − dAi)) ⇐⇒ Ai(F )dF ∗ω = F ∗ω ∧ (F ∗ηi − dAi(F )).

Thus, Ai(F ) ∈ I(F ∗(ω)).

5.2. Foliations with split tangent sheaf. As first observed in [CP08], several
examples of integrable forms on Pn are of split type, e.g.: such that there are fields
X1, . . . , Xn−1 satisfying

ω = iRiX1
· · · iXn−1

dx0 ∧ . . . ∧ dxn,

where R is the radial field.
Examples treated in [CP08] include:
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i) Linear pullbacks: the pullback of generic degree e− 2 foliation of P2 under a
generic linear projection.

ii) Foliations associated to affine Lie algebras: these were first studied in
[CACGLN04]. They are foliations in P3 whose tangent sheaf is generated
in an affine open set by two vector fields, X and Y satisfying

X = px
∂

∂x
+ qy

∂

∂y
+ rz

∂

∂z
, [X,Y ] = `Y

for some integers p, q, r, ` with gcd(p, q, r) = 1.

As explained in [Qua15, Section 9], the singular scheme of such foliations is an
equidimensional Cohen-Macaulay scheme of codimension 2. Moreover, in [CP08], in
order to establish when these foliations form irreducible components of the space
F1(Pn), they require ω to be in U ′, c.f. Remark 4.11.

Proposition 5.2. Let ω ∈ U ′ ⊆ F1(Pn) be a foliation of split type. Then J = K.
In particular, for such foliations we have I = J .

Proof. As ω is a foliation of split type its singular scheme is an equidimensional
Cohen-Macaulay scheme of codimension 2. Then dω does not vanish along any com-
ponent of sing(ω). In particular, for any associated prime p ∈ ass(S/J), we have
dωp /∈ p · Ω2

Sp
, so ann(dω) = (0) ⊆ Ω2

S ⊗ S/J .

As any foliation in Pn verifies sing(dω) ⊆ sing(ω), we must have L = S. By
Corollary 4.20 this implies I = J .

Recall from the introduction that we say that two unfoldings ω̃ and ω̂ are iso-
morphic if there is an isomorphism φ of Pn[ε] such that φ restricts to the identity in
the central fiber and φ∗ω̃ = ω̂.

Corollary 5.3. Let ω ∈ U ′ ⊆ F1(Pn, e) be a foliation of split type. Then, every
unfolding of ω is isomorphic to the trivial unfolding.

Proof. By Theorem 3.8 the isomorphism classes of graded unfoldings are param-
eterized by the quotient I/J , which is trivial by the previous proposition.

In this way we can describe I(ω) for the above examples:

i) Linear pullbacks: these were treated with more generality in the previous
section. In the case of linear pullbacks, the singular locus consists only of
Kupka points, which does not need to happen in the general case.

ii) Foliations associated to affine Lie algebras: in [CACGLN04] is shown how the
singular set of these foliations is related with the Lie-Klein curves. These are
rational curves Γp,q,r parameterized by (t : s) 7→ (tp : tqsp−q : trsp−r : sp) for
integers p, q, r with gcd(p, q, r) = 1.
Specifically, in [CACGLN04, p. 999] it is shown that the singular scheme of
foliations given by vector fields X and Y as above with

(p, q, r, `) = (ν2 + ν + 1, ν + 1, 1,−1), ν ∈ Z,

is given by the union of the Lie-Klein curve Γp,q,r, a line and a plane curve
of degree ν + 1.
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