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CURVATURE ESTIMATES FOR WEAKLY STABLE SURFACES OF
CONSTANT NULL EXPANSIONS∗
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Abstract. In this paper, we prove by blow-up arguments the curvature estimates for weakly
stable constant null expansion surfaces in Cauchy data set for the Einstein equation. This improves
the sup-estimate by Andersson-Metzger [AM10] for the curvature of stable marginally outer trapped
surfaces.
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1. Introduction. Let (M3, g, K) be the Cauchy data set for the Einstein equa-
tion, where (M3, g) is a Riemannian 3-manifold and K is a symmetric 2-tensor on
M . Assume that there is a closed Riemannian 2-surface (Σ2, h) and an isomet-
ric immersion f : (Σ, h) → (M, g) of trivial normal bundle. Let ν be one of the
global unit normal vector field on Σ. We identify the tangent vector X ∈ TpΣ with
f∗X ∈ Tf(p)M , and sometimes just say Σ is a surface inM (Σ #M) if there is no am-
biguity. The second fundamental form Π of Σ is computed as Π(X, Y ) = g(DXν, Y ),
∀X, Y ∈ X(Σ), whereD is the metric connection of g. The mean curvatureH = H(Σ)
of Σ is computed as H = trhΠ. The null expansion θ(Σ) of Σ is then defined as
θ(Σ) = H(Σ) + trhK. We say Σ is a surface of constant null expansion if θ(Σ) is a
constant.

In the context of general relativity, it turns out that these surfaces of constant null
expansion are deeply related to the physical properties of the spacetime. A surface
of vanishing null expansion, i.e., θ(Σ) = 0, is called marginally outer trapped surface
(MOTS). The existence of MOTS indicates the formation of black hole under suitable
circumstances (cf. [Wal84]). For time symmetric Cauchy data set which is asymptotic
to Schwarzschild, Huisken and Yau [HY96] prove the existence of the foliation of the
asymptotic region by constant mean curvature surfaces (which are in particular of
constant null expansions), and as a result they are able to define the center of mass.
Also surfaces of constant null expansion appear in an interesting way in the positive
mass theorem: Recently, Luo, Xie and Zhang [LXZ10] establish the positive mass
theorem for positive cosmological constant Λ. Singularities are allowed if they are
surrounded by some kind of apparent horizons with null expansion equal to 2

√
Λ/3.

In this paper we exploit surfaces of constant null expansion in general data set.
Precisely, we define the notion of weak stability (see definition 9) for such surfaces,
and then derive the resulting curvature estimates.

Before stating our main results we specify some basic settings throughout this
paper. For simplicity we assume all the geometric objects, for examples the M , g, K,
Σ, and f as above, are all C∞ unless otherwise stated. Denote by the dg distance
function onM associated to metric g. Similarly we have dh for the surface (Σ, h). It is
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assumed that Σ is compact. Although the interesting case is that Σ is boundaryless,
we also exploit at the same time the case ∂Σ 6= ∅ for later reference. In the case
∂Σ 6= ∅, we do not need any smoothness assumption on the boundary ∂Σ. This
is because our curvature estimates are the interior estimates. Constants are always
denoted by C, and by C(a, b, . . . ) we mean a constant depends only on the quantities
a, b, . . . in such a way that C deteriorates as any of these quantities diverges to
infinity. We obtain the following two theorems:

Theorem 1. Let (M3, g, K) be a three dimensional Cauchy data set, (Σ2, h)
a compact connected 2-surface and f : (Σ, h) → (M, g) an isometric immersion of
trivial normal bundle. Suppose that Σ is of constant null expansion, i.e. θ(Σ) ≡ θ0

for some constant θ0, and that Σ is weakly stable. Moreover, assume that there is an
open subset Ω of M and positive constants σ, i0, Λ0 and Λ1 so that f(Σ) ⊂ Ω and

‖ Ricg ‖C0(Ωσ, g)≤ Λ0, inf
P∈Ωσ

inj(M, g)(P ) ≥ i0 > 0, ‖ K ‖C1(Ω, g)≤ Λ1

where Ωσ = {P ∈M : dg(P, Ω) < σ}.
Then there is a constant C = C(σ−1, i−1

0 , Λ0, Λ1), which does not depend on θ0,
so that the following holds:

(1) If ∂Σ 6= ∅, then

|Π(p)|h min{dh(p, ∂Σ), rH} ≤ C, ∀p ∈ Σ\∂Σ.

(2) If ∂Σ = ∅, then

|Π(p)|h min{1

2
diam(Σ), rH} ≤ C, ∀p ∈ Σ.

Here rH is the infimum of the harmonic radius of (M, g) taken over Ω, and it turns
out that rH > 0 and rH depends only on σ−1, i−1

0 and Λ0.

Theorem 2. Assume the conditions of Theorem 1, and assume ∂Σ = ∅. It holds
that

sup
p∈Σ
|Π(p)|h ≤ C(σ−1, i−1

0 , Λ0, Λ1, |θ0|).

Theorem 1 is analogous to the Main Theorem of [RST10] (also Corollary 1.1 and
Theorem 2.5 therein) by Rosenberg, Souam and Toubian, shifting from strongly stable
constant mean curvature surfaces to weakly stable constant null expansion surfaces.
Precisely, they show that there is a universal constant C so that for any Riemannian 3-
manifold (M3, g) with |sectional curvature|≤ Λ, and for any strongly stable constant
mean curvature surface (Σ2, h) # (M3, g) with ∂Σ 6= ∅, the following curvature
estimate is valid:

|Π(p)|h min{dh(p, ∂Σ),
π

2
√

Λ
} ≤ C, ∀ p ∈ Σ.

One of the remarkable features of their result is that the curvature estimate does not
involves the injectivity radius of (M, g). They could achieve this by passing the proof
to the universal covering of M . However this technique no longer works here: strong
stability lifts to the covering while weak stability fails even in the symmetric case
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[EM12, P. 88]. By contrast, the upper bound C in our Theorem 1 depends on the
injectivity radius.

The proof of Theorem 1 is based on the blow up argument of [RST10] (also see
that of [EM12, Proposition 2.3]), which remains valid to our case. This blow up
argument is to assume toward a contradiction that such curvature estimate is wrong
so that there exists a sequence of surfaces whose the norms of second fundamental
forms diverge to infinity. After suitably rescaling these surfaces, one would obtain a
smooth limiting surface in R3 that is boundaryless, orientable, complete, weakly stable
and of constant mean curvature. The existence of such a limiting surface could be
inferred by the argument by Breuning [Bre14] with some extra effort. For the sake of
completeness, we present the proof in detail in the last section. On the other hand, it
is by the rigidity theorem [BD84, Pal86, DS87, LR89] that this kind of limiting surface
must be exactly either a sphere or a plane. However this is impossible by detecting our
derivation in the proof. Hence the desired curvature estimate is inferred. Since the
rigidity theorem is only known to be available in dimension three, this limit Theorem
1 to the situation of dim M = 3.

Theorem 2 is a consequence of Theorem 1 by estimating the lower bound of the
diameter of Σ. For the case Σ is a strongly stable (see definition 5) MOTS, Andersson
and Metzger [AM10] use the iteration technique, initiated by Simons, Schoen and
Yau [SSY75], to obtain the sup-estimate of |Π| depending on the C0 norm of the full
Riemannian curvature tensor of (M, g), the injectivity radius of (M, g) and the C1

norm of K. This estimate plays an important role in solving Jang’s equation and in
proving the smoothness of the boundary of trapped region [AM09]. As we will see in
section 2 that strong stability implies weak stability, our Theorem 2 is an improvement
of Andersson and Metzger’s curvature estimate. It should be pointed out that their
curvature estimate, although proven originally in the case dim M = 3, is actually
valid for 3 ≤ dim M ≤ 6 [AEM11]. This dimensional restriction is the same as that
celebrated curvature estimate by [SSY75].

In time symmetric case, i.e. K ≡ 0, null expansion reduces to mean curvature
and the notion weak stability reduces to volume preserving stability. In this case
Theorem 2 reduces essentially to [EM12, Proposition 2.2] (also see [Ye96]), which
states that the norm of the second fundamental form of a volume preserving constant
mean curvature surface (Σ2, h) # (M3, g) is bounded by a constant depending only
on the C0 norm of the Ricci curvature of g, the injectivity radius of (M, g) and the
absolute value of the mean curvature of Σ.

We point out that Theorem 1 and 2 require neither energy condition nor constraint
equations on (g, K).

In the Euclidean 3-space, the harmonic radius rH is infinity. Thus as a direct
consequence of Theorem 1 (1), we also obtain a generalization of a curvature esti-
mate of Schoen [Sch83, Corollary 4], shifting from stable minimal surfaces to volume
preserving stable constant mean curvature surfaces. Precisely, we have the following
corollary:

Corollary 3. There is a universal constant C so that if
(1) (Σ, h) # R3 is a compact connected orientable isometrically immersed 2-

surface with ∂Σ 6= ∅; and
(2) Σ is of constant mean curvature and volume preserving stable,

then

|Π(p)|h ≤ Cdh(p, ∂Σ)−1, ∀ p ∈ Σ\∂Σ.
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2. Notions and Preliminaries.

2.1. Stabilities. In order to establishing notions of stabilities, we first compute
the linearization of the null expansion.

Denote by∇ and ∆ the metric connection and the nonpositive Beltrami-Laplacian
of h, respectively. Latin indices i, j . . . run from 1 to 2, and a, b . . . run from 1 to 3.
The Einstein summation convention of summing on repeated indices is used.

Suppose F : Σ × (−ε, ε) → M , (p, t) 7→ F (p, t) is a normal variation so that
F (·, 0) = f and ∂tF (·, 0) = ϕν for some ϕ ∈ C∞(Σ). We have

Lemma 4. The linearization of the null expansion in normal direction is

LΣϕ :=
d

dt
θ(F (Σ, t))|t=0 = −∆ϕ+ 2K(ν, ∇ϕ) + (−|Π|2h −Ricg(ν, ν) + trh(DνK))ϕ.

This variational formula could be found in [Met07, AEM11]. The proof is included
here for completeness.

Proof. Note that d
dtθ(t)|t=0 = d

dtH(F (Σ, t))|t=0 + d
dt trht(K)|t=0 where ht is the

pulled back metric of g to Σ by F (·, t). It is well known that

d

dt
H(F (Σ, t))|t=0 = −∆ϕ− (|Π|2 +Ricg(ν, ν))ϕ.

Thus it remains to calculate d
dt trht(K)|t=0. For any p ∈ Σ, let {z1, z2} be an h-

normal coordinate system centered at p. The following computation is then valid as
evaluated at p:

d

dt
trht(K)|t=0 =

d

dt
(Kij(ht)

ij)|t=0

= (D∂tK)(∂i, ∂i) + 2K(D∂i∂t, ∂i)− 2Kijg(D∂i∂t, ∂j)

= trh(DνK)ϕ+ 2K(∇ϕ, ν).

This completes the proof.

In general, the elliptic operator LΣ is not symmetric due to the presence of the
2-tensor K. However, as pointed out in [AM10] (and references therein), the principal
eigenvalue λ1(LΣ) of LΣ, being defined as the eigenvalue of least real part, must be
real. Moreover the corresponding eigenfunction does not change sign in the interior
of Σ. The following definition is a straightforward generalization of the stable MOTS
in [AM10].

Definition 5. An immersed surface Σ # M of constant null expansion is
strongly stable if the principal eigenvalue λ1(LΣ) of LΣ is nonnegative.

To proceed further people symmetrize LΣ [GS06, AM10] (also see the proof of
Lemma 8 below) and obtain the following symmetric elliptic operator:

LsymΣ ϕ := −∆ϕ+ (−|Π|2 + Z)ϕ (2.1)

where

Z = −divhS + |S|2h −Ricg(ν, ν) + trh(DνK) (2.2)

and S ∈ X(Σ) is the dual vector field of the 1-form f∗(K(ν, ·)) ∈ Λ1(Σ) with respect
to metric h.
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Lemma 6. The following inequality holds pointwise on Σ:

|Z|h ≤ |K|g(|Π|h + |H(Σ)|) + 2|DK|g + |K|2g + |Ricg|g.

Proof. Let p ∈ Σ, and let {z1, z2} be an h-normal coordinate system centered at
p. Then the following holds as evaluated at p:

divhS = ∇∂i(S(∂i)) = D∂i(K(ν, ∂i))

= (D∂iK)(ν, ∂i) +K(D∂iν, ∂i) +K(ν, D∂i∂i)

= (D∂iK)(ν, ∂i) +KijΠij −H(Σ)K(ν, ν).

Substituting this into (2.2) and applying Cauchy inequality, the lemma is then in-
ferred.

Definition 7. An immersed surface Σ # M of constant null expansion is
symmetrized stable if the principal eigenvalue λ1(LsymΣ ) of LsymΣ is nonnegative.

This definition is a direct generalization of symmetrized stable MOTS (cf.
[GM08]) to surface of constant null expansion. The following lemma (cf. [GM08,
Proposition 2.1] for MOTS) is inferred by the argument in [GS06]. We include the
proof here and show that how to obtain LsymΣ from LΣ.

Lemma 8. Strong stability implies symmetrized stability.

Proof. Suppose λ := λ1(LΣ) ≥ 0 and let ϕ be a corresponding eigenfunction that
is positive in the interior of Σ. Then

0 ≤ λ1 = ϕ−1LΣϕ

= −ϕ−1∆ϕ+ 2h(S, ∇ϕ)ϕ−1 + (−|Π|2 −Ricg(ν, ν) + trh(DνK))

= divh(S −∇ logϕ)− |S −∇ logϕ|2h − |Π|2 + Z.

Partially integrating the above inequality against ψ2, with ψ being any function of
C∞c (Σ\∂Σ), and applying the Cauchy inequality, we then obtain

0 ≤
∫

Σ

−h(S −∇ logϕ, 2ψ∇ψ)− |S −∇ logϕ|2hψ2 + (−|Π|2 + Z)ψ2 dµ

≤
∫

Σ

|∇ψ|2 + (−|Π|2 + Z)ψ2 dµ.

This implies λ1(LsymΣ ) ≥ 0 by the Rayleigh formula.

Definition 9. An immersed surface Σ #M of constant null expansion is weakly
stable if

IΣ(ϕ) :=

∫
Σ

|∇ϕ|2 + (−|Π|2 + Z)ϕ2 dµ ≥ 0 (2.3)

for all ϕ ∈ C∞c (Σ\∂Σ) with
∫

Σ
ϕdµ = 0.

It is obvious that symmetrized stability implies weak stability.
Let us consider the above notion of stabilities in the special case that K = cg with

c being a real number. In this case, it holds that θ(Σ) = H(Σ) + 2c. Thus surfaces
of constant null expansion reduces to surfaces of constant mean curvature, and LΣ
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reduces to the linearization of the mean curvature. Moreover, it holds LΣ = LsymΣ .
Thus strong stability reduces to symmetrized stability, and weak stability reduces to
the volume preserving stability for surfaces of constant mean curvature. Here is an
example relevant to this case:

Example. Consider the Schwarzschild-de Sitter metric in the Mc Vittie form (cf.
[LXZ10]) as follow

g̃ = −
(1− m

2Ar )2

(1 + m
2Ar )2

dt2 +A2(1 +
m

2Ar
)4δ

where δ = (dx1)2 + (dx2)2 + (dx3)2 is the standard Euclidean metric, r =

(
∑3
a=1(xa)2)1/2, A = et/λ, and λ and m are positive numbers. This metric g̃ sat-

isfies the vacuum Einstein equation with positive cosmological constant 3/λ2.
We consider the stability of 2-spheres Sr = {|x|δ = r} in time slices {t =

constant}. (Also compare with [EM12, P. 85] for spheres in Schwarzschild.) Each
time slice is R3/{0} with induced metric g := φ4δ, where φ := A1/2(1 + m

2Ar ), and
with second fundamental form K = 1

λg. Applying the following conformal transfor-
mation formula for Ricci curvature

Ricg(∂a, ∂b) =Ricδ(∂a, ∂b)− (∆δ log φ2)δab − ∂a∂b log φ2

− |∂ log φ2|2δδab + ∂a log φ2∂b log φ2,

we infer that

Ricg(∂a, ∂b) = (δab −
3xaxb

r2
)
m

r3
φ−2.

We claim that each time slice is symmetric along the 2-sphere S m
2A

. To see this,
just note that the differentiable mapping F : R3/{0} → R3/{0} defined by F (x) =
( m2A )2 x

|x|2 is a diffeomorphism satisfying F |S m
2A

= IdS m
2A

, F ∗g = g as well as F ∗K =

K. Thus we could restrict ourselves to consider the 2-sphere Sr only for r ≥ m
2A .

Let (S2, gS2) be standard unit sphere of center 0 in R3. Then Sr has induced metric
hr = φ4r2gS2 , and unit outer normal ν = φ−2∂r with respect to g. The second
fundamental form of Sr is computed as

Π =
1

2
Lφ−2∂rg =

1

2
φ−2∂r(φ

4r2)gS2 = A1/2φ−3r−1(1− m

2Ar
)hr,

where L is the Lie derivative. Thus Sr is of constant null expansion θ(Sr) = H(Sr) +
trhr (K) = 2A1/2φ−3(1− m

2Ar )r−1 + 2
λ , and it holds |Π|2hr = 2Aφ−6(1− m

2Ar )2r−2. Also
note that

Ricg(ν, ν) = Ricg(∂r, ∂r)φ
−4 =

xa

r

xb

r
Ricg(∂a, ∂b)φ

−4 = −2m

r3
φ−6.

Thus we have

LsymSr
ϕ = LSrϕ = −r−2φ−4∆gS2ϕ+

−4A2r2 + 8Amr −m2

2Ar4φ6
ϕ.

Since the first two eigenvalues of −∆gS2 are λ1(−∆gS2 ) = 0 and λ2(−∆gS2 ) = 2, it
follows that

λ1(LSr ) =
2A

r4φ6
(
2 +
√

3

2A
m− r)(r +

√
3− 2

2A
m) and λ2(LSr ) =

6m

r3φ6
≥ 0.

This implies that Sr is strongly stable (or equivalently, symmetrized stable) if and
only if m

2A ≤ r ≤
2+
√

3
2A m, and that Sr is weakly stable for all r ≥ m

2A .
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2.2. Harmonic coordinates and rescaling formulae. Let Ω be as given in
Theorem 1, and P0 ∈ Ω. There is a harmonic coordinate system (y1, y2, y3) defined on
the g-geodesic ball Bg(P0, rH) with uniform radius rH . More precisely, the following
holds (cf. [Heb96, Theorem 1.3]).

Theorem 10. Let β ∈ (0, 1) and σ > 0 be two given numbers. Let (M3, g) be a
smooth Riemannian 3-manifold, and Ω an open subset of M . Set

Ωσ = {P ∈M : dg(P, Ω) < σ}

where dg is the distance function associated to metric g. Suppose that there are positive
constants Λ0 and i0 so that

‖ Ricg ‖C0(Ωσ, g)≤ Λ0 and inf
P∈Ωσ

inj(M, g)(P ) ≥ i0 > 0.

Then there exists positive numbers Q0 ≥ 1 and rH ∈ (0, i0], both of which depend only
on β, σ, Λ0 and i0, so that for each P0 ∈ Ω there is a harmonic coordinate system
(y1, y2, y3) defined on the g-geodesic ball Bg(P0, rH) with (y1, y2, y3)(P0) = 0 so that
the metric coefficients gyayb = g(∂ya , ∂yb) satisfy the following:

(1) gyayb(0) = δab;
(2) Q−2

0 δab ≤ gyayb ≤ Q2
0δab (as quadratic forms);

(3)
3∑
c=1

sup |∂ycgyayb | +
3∑
c=1

[∂ycgyayb ]β ≤ Q0, with norms taken in the ya coordi-

nates.

In this paper, all the strength to apply the harmonic coordinates is that the
sizes of the coordinate neighborhood, i.e. rH , and the C1, β-norms of gyayb could be
estimated. The property ya’s being harmonic functions is not made use of.

Now, we fix an arbitrary number λ ≥ 1 and call (x1, x2, x3) := λ(y1, y2, y3) the
λ-coordinates on Bg(P0, rH). We identify Bg(P0, rH) with its image Ũ in R3 via
{xa}, and view g as being defined in Ũ . It follows from Theorem 10 (2) that

Bδ(0, λrH/Q0) ⊂ Ũ ⊂ Bδ(0, λrHQ0). (2.4)

(Hereafter Bδ(0, ρ) is the Euclidean 3-ball centered at the origin and of radius ρ > 0.)
Set

g̃ := λ2g.

Note that since the coefficients g̃xaxb(x) of g̃ in the λ-coordinates {xa} satisfy

g̃xaxb(x) = gyayb(x/λ) and ∂xc g̃xaxb(x) =
1

λ
∂ycgyayb(x/λ),

it follows that:
(A1) g̃xaxb(0) = δab;
(A2) Q−2

0 δab ≤ g̃xaxb(x) ≤ Q2
0δab, ∀x ∈ Ũ , as quadratic forms;

(A3) ‖g̃xaxb − δab‖C1, β(Bδ(o, ρ)) ≤
Q0

λ (1 + ρ), ∀ ρ ∈ (0, λrH/Q0],
where

‖g̃xaxb − δab‖C1, β(Bδ(o, ρ)) := sup
Bδ(o, ρ)

|g̃xaxb − δab|+
3∑
c=1

sup
Bδ(o, ρ)

|∂xc g̃xaxb |

+

3∑
c=1

[∂xcgxaxb ]β;Bδ(o, ρ).
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Denote by h̃ the pulled back metric f∗g̃ = λ2h. Obviously f : (Σ, h̃) → (M, g̃)
is isometrically immersed with global unit normal ν̃ := 1

λν. Denote by H̃ and Π̃ the
mean curvature and second fundamental form with respect to ν̃, and by ∇̃ and D̃ the
metric connection of h̃ and g̃, respectively. Set

K̃ := λ2K.

It is easy to check that:

Lemma 11. With notion as above, the following rescaling formulae hold:
(1) H̃ = 1

λH, Π̃ = λΠ, |Π̃|h̃ = 1
λ |Π|h;

(2) ∇̃ϕ = λ−2∇ϕ, |∇̃ϕ|h̃ = λ−1|∇ϕ|h for all differentiable function ϕ on Σ;
(3) dµh̃ = λ2dµh where dµh̃ and dµh are the volume form of h̃ and h respectively;
(4) trh̃(K̃) = trh(K), |K̃|g̃ = |K|g and |D̃K̃|g̃ = λ−1|DK|g. In particular, we

have |K̃|C1, g̃ ≤ |K|C1, g.

With the above rescaling, the equation H(Σ) + trh(K) = θ0 then becomes

H̃ +
1

λ
trh̃(K̃) =

θ0

λ
, (2.5)

and the integral I(ϕ) in definition 9 could be rewritten as

I(ϕ) =

∫
Σ

|∇̃ϕ|2
h̃

+ (−|Π̃|2
h̃

+ λ−2Z)ϕ2 dµh̃. (2.6)

2.3. Local computations. Continued with the above λ-coordinates
{x1, x2, x3}, we assume that Σ is contained in Ũ and that Σ is the graph of
a differentiable function u which is defined on some open subset of R2 × {0} ⊂ R3.
We will give some explicit expressions of geometric quantities of Σ in terms of u and
g̃ab. Write u = u(x′) with x′ = (x1, x2), and set s = s(x) = x3 − u(x′). Clearly Σ is
the zero level set of s. Putting (A2) into |D̃s|2g̃ = ∂a(x3 − u)∂b(x

3 − u)g̃ab, it follows
that

Q−2
0 (1 + |∂u|2δ) ≤ |D̃s|2g̃ ≤ Q2

0(1 + |∂u|2δ).

Let µ̃ = µ̃(x′) = |D̃s|−1
g̃ (x′, u(x′)). Then

Q−2
0

1 + |∂u|2δ
≤ µ̃2 ≤ Q2

0

1 + |∂u|2δ
. (2.7)

Assume ν̃ equals the upward unit normal of graph u; namely, ν̃ = ν̃(x′) =
µ̃D̃s(x′, u(x′)). Note that

h̃ij(x
′) := g̃(∂i + ui∂3, ∂j + uj∂3)(x′, u(x′)), 1 ≤ i, j ≤ 2,

are metric coefficients of h̃ relative to the frame {ei := ∂i + ui∂3 : i = 1, 2} on graph
u. Set

h̃ab = h̃ab(x′) = g̃ab(x′, u(x′))− ν̃a(x′)ν̃b(x′)

for 1 ≤ a, b ≤ 3. It is well known that (h̃ij) is the inverse metric of (h̃ij). We next
estimate the eigenvalues of (h̃ij). Denote by λmax(h̃ij) and λmin(h̃ij) the maximal
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and minimal eigenvalues of (h̃ij) respectively. Then we have

λmax(h̃ij) = max
w=(w1, w2)∈R2

|w|δ=1

h̃ijw
iwj = max

w∈R2

|w|δ=1

g̃(wiei, w
jej)

≤ Q2
0 max
w∈R2

|w|δ=1

|wiei|2δ ≤ Q2
0(1 + |∂u|2δ),

and similarly

λmin(h̃ij) = min
w=(w1, w2)∈R2

|w|δ=1

h̃ijw
iwj = min

w∈R2

|w|δ=1

g̃(wiei, w
jej)

≥ Q−2
0 min

w∈R2

|w|δ=1

|wiei|2δ ≥ Q−2
0 .

Hence, there holds that

Q−2
0 δij ≤ h̃ij ≤ Q2

0(1 + |∂u|2δ)δij

and

Q−2
0 (1 + |∂u|2δ)−1δij ≤ h̃ij ≤ Q2

0δij (2.8)

as quadratic forms. Recall that H̃ and Π̃ are the mean curvature and second funda-
mental form of (Σ, h̃) in (Ũ , g̃) respectively. We have

Lemma 12. With notion as above, the following holds:
(1) H̃ = −µ̃h̃ij∂i∂ju+ µ̃h̃abΓ̃iab∂iu− µ̃h̃abΓ̃3

ab;
(2) trh̃(K̃) = (K̃ij + K̃33∂iu∂ju+ 2K̃3j∂iu)h̃ij;
(3) Π̃ij := Π̃(∂i + ui∂3, ∂j + uj∂3) = −µ̃∂i∂ju − µ̃Γ̃aj3∂as∂iu − µ̃Γ̃ai3∂as∂ju −

µ̃Γ̃a33∂as∂iu∂ju+ µ̃Γ̃kij∂ku− µ̃Γ̃3
ij.

where Γ̃abc’s are the Christoffel symbols of metric g̃ in xa coordinates.

Proof. Note that

H̃ = divh̃(µ̃D̃s) = divg̃(µ̃D̃s) = g̃abg̃(D̃∂a(µ̃D̃s), ∂b)

= µ̃(g̃ab − ν̃aν̃b)D̃2
a, bs = µ̃h̃ab(∂a∂bs− Γ̃cab∂cs).

This together with s = x3 − u implies (1). (2) follows directly from trh̃(K̃) = K̃(∂i +

ui∂3, ∂j + uj∂3)h̃ij . As for (3), observe that

Π̃ij = −g̃(D̃∂i+ui∂3∂j + uj∂3, µ̃D̃(x3 − u)).

Then the direct calculation of the right hand side implies (3).

With (2.7) and (2.8), one sees from the above lemma that the equation (2.5) is
not uniformly elliptic unless there is a priori estimate for the upper bound of |∂u|δ.

Denote by νδ the unit normal of Σ in (Ũ , δ), and by Πδ the relative second
fundamental form. Then the difference between |Π̃|2

h̃
and |Πδ|2δ could be estimated as

follow (Σ is not necessarily a graph):

Proposition 13. Assume condition (A2). The following holds pointwise on Σ:

||Π̃|2
h̃
− |Πδ|2δ | ≤ C(Q0)

[
(Q0 − 1 + |∂g̃|)|Π̃|2

h̃
+ |∂g̃|(1 + |∂g̃|2)

]
,
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where C(Q0) is a constant, and |∂g̃|2(x) :=
∑3
a, b, c=1(∂ag̃bc(x))2.

Proof. Pick any p ∈ Σ. Observe that both Q0 and |∂g̃| are invariant under
coordinate transformation by translations and rotations, so we could assume without
loss of generality that Σ is the graph of a differentiable function x3 = u(x′) near p so
that p = (0, u(0)) and ∂u(0) = 0. To the end of this proof, the calculation is carried
out only at p. By (2.8) and Lemma 12, we have

Q−2
0 δij ≤ h̃ij ≤ Q2

0δij

and

Π̃ij = −(g̃33)−1/2(∂i∂ju+ Γ̃3
ij), (Π̃δ)ij = −∂i∂ju.

It follows that

||Π̃|2
h̃
− |Πδ|2δ | = |h̃ikh̃jl(g̃33)−1(∂i∂ju+ Γ̃3

ij)(∂k∂lu+ Γ̃3
kl)− |∂2u|2δ |

≤ |(g̃33)−1h̃ikh̃jl∂i∂ju∂k∂lu− |∂2u|2δ | (2.9)

+ |(g̃33)−1h̃ikh̃jl(Γ̃3
kl∂i∂ju+ Γ̃3

ij∂k∂lu+ Γ̃3
ijΓ̃

3
kl)|

≤ (Q6
0 − 1)|∂2u|2δ +Q6

0

(
2|∂2u|δ

(∑2
i, j=1(Γ̃3

ij)
2
)1/2

+
∑2
i, j=1(Γ̃3

ij)
2

)
.

It also holds that

|Π̃|2
h̃

= |h̃ikh̃jl(g̃33)−1(∂i∂ju+ Γ̃3
ij)(∂k∂lu+ Γ̃3

kl)|

≥ Q−6
0

∑2
i, j=1(∂i∂ju+ Γ̃3

ij)
2

≥ Q−6
0

(
1

2
|∂2u|2δ −

∑2
i, j=1(Γ̃3

ij)
2

)
.

Thus

|∂2u|2δ ≤ 2Q6
0|Π̃|2h̃ + 2

2∑
i, j=1

(Γ̃3
ij)

2. (2.10)

Note that

2∑
i, j=1

(Γ̃3
ij)

2 =

2∑
i, j=1

(
1

2
g̃3a(∂ig̃ja + ∂j g̃ia − ∂ag̃ij))2 ≤ C(Q0)|∂g̃|2. (2.11)

Putting (2.11) and (2.10) into (2.9), we get the desired estimate.

2.4. Langer Charts. Although it is true by Implicit Function Theorem that any
2-surface immersed in R3 could be represented locally as the graph of a differentiable
function, we need more information for our purpose: To what extent this is true.
Indeed, the size of the graph is controlled by the norm of the second fundamental
form. For the sake of clarity and for latter reference, we first introduce some notation,
following [Bre14] and [Lan85].

A mapping A : R3 → R3 is called a Euclidean isometry if there is a rotation
R ∈ SO(3) and a translation T ∈ R3 such that A(x) = Rx + T for all x ∈ R3. Let
f : Σ2 → R3 be a 2-surface immersed in R3 with global unit normal νδ. For any given
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point q ∈ Σ, there is a (but not unique) Euclidean isometry Aq(x) = Rqx+Tq, which
maps the origin to f(q) and whose differential, i.e. Rq, takes (0, 0, 1) to νδ(q). Denote
by π : R3 → R2 the standard projection onto the x1, x2-plane. Let Ur, q ⊂ Σ be the
q-component of the set (π ◦ A−1

q ◦ f)−1(Dr), where Dr := Dδ(0, r) is the Euclidean
2-disk of center 0 and of radius r in R2. Although Aq is not uniquely determined the
set Ur, q does not depend on the choice of Aq.

Definition 14. Let r > 0 and α > 0. An immersion f : Σ2 → R3 is said
to be (r, α)-immersed at some point q ∈ Σ if the set A−1

q ◦ f(Ur, q) is the graph
of a differentiable function uq : Dr → R which satisfies |∂uq(x′)| < α for all x′ =
(x1, x2) ∈ Dr. If f is (r, α)-immersed at each point of a subset W of Σ, then f is
called (r, α)-immersed in W .

If f is (r, α)-immersed at q ∈ Σ, then it is clear that the restriction

fq := π ◦ A−1
q ◦ f |Ur, q : Ur, q → Dr

is a diffeomorphism; that is, (Ur, q, fq) is a coordinate chart of Σ. We shall call
(Ur, q, fq) the Langer chart centered at q, with defining Euclidean isometry Aq and
defining function uq. Note that by the choice of Aq it must holds that uq(0) = 0 and
∂uq(0) = 0. Moreover, R−1

q νδ is the upward unit normal of graph uq; that is,

Rq

(
(−∂uq, 1)√
1 + |∂uq|2δ

(x′)

)
= νδ(f

−1
q (x′)), ∀x′ ∈ Dr. (2.12)

The following lemma is analogous to [PR02, Lemma 4.35]. We modify the proof
given therein.

Lemma 15. Let Ũ be an open subset of R3 and g̃ be a Riemannian metric defined
in Ũ satisfying (A2) and

sup
x∈Ũ
|∂g̃|2(x) ≤ Q2

0. (2.13)

Suppose that f : (Σ2, h̃) → (Ũ , g̃) is an isometric immersion with bounded second
fundamental form Π̃ so that

sup
Σ
|Π̃|2

h̃
≤ Λ

for some constant Λ.
Then f is (r, α)-immersed at any point q ∈ Σ\∂Σ provided

r ≤ min{Q−1
0 (1 + α2)−1/2dh̃(q, ∂Σ), C(Q0, Λ)−1(1 + α2)−3/2α}

for some positive constant C(Q0, Λ). Here dh̃(q, ∂Σ) would be defined as∞ if ∂Σ = ∅.

Proof. Since the value Q0 in both (A2) and (2.13) is invariant under coordinate
transformation by Euclidean isometries, we assume Aq = idR3 for simplicity. Set

r∗ = sup{r : f is (r, α)-immersed at q}.

Clearly r∗ > 0 and f is (r∗, α)-immersed at q. Let u = uq : Dr∗ → R be the defining
function. In particular, f(Ur∗, q) is the graph of u. By the choice of r∗, we infer that
there is a sequence {pi} ⊂ Ur∗, q so that at least one of the following holds:
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(a) pi → ∂Σ as i→∞;
(b) limi→∞ |∂u(x′i)| = α, where x′i = π ◦ f(pi).

Assume (a) first. Note that

Ur∗, q ⊂ Dh̃(q, (1 + α2)1/2Q0r∗).

Thus we have

dh̃(q, ∂Σ) ≤ lim sup
i→∞

dh̃(q, pi) ≤ (1 + α2)1/2Q0r∗,

or equivalently,

r∗ ≥ (1 + α2)−1/2Q−1
0 dh̃(q, ∂Σ). (2.14)

Next we assume (b). For any x′ ∈ Dr∗ , we have |∂u(x′)|δ < α. Hence by the
Mean Value Theorem we infer

|∂u(x′)|2δ = |∂u(x′)|2δ − |∂u(0)|2δ ≤ 2αr∗‖∂2u‖C0(Dr∗ ). (2.15)

On the other hand, it holds that

|∂2u|2δ
(1 + |∂u|2δ)3

≤ |Πδ|2δ ≤ ||Π̃|2h̃ − |Πδ|2δ |+ |Π̃|2h̃ ≤ C(Q0, Λ)

where we have used (2.7), (2.8) and Lemma 12 (3) in the first inequality and Propo-
sition 13 in the last inequality. This gives rise to

‖∂2u‖C0(Dr∗ ) ≤ C(Q0, Λ)(1 + α2)3/2.

Substituting this into (2.15), it yields

α2 = lim
i→∞

|∂u(x′i)|2 ≤ 2αr∗C(Q0, Λ)(1 + α2)3/2,

that is

r∗ ≥ C−1(Q0, Λ)(1 + α2)−3/2α. (2.16)

Now the Lemma follows from (2.14) and (2.16).

Finally we need the following convergence theorem.

Theorem 16 (Convergence Theorem). Let fn : (Σn, hδ, n)→ (R3, δ), n ∈ N, be
a sequence of isometric immersions with trivial normal bundle and with marked points
pn ∈ Σn. Suppose that {fn(pn)}n∈N is uniformly bounded in R3, and that there is a
sequence {Rn}n∈N of positive numbers increasing to infinity so that each hδ, n-geodesic
disk Dhδ, n(pn, Rn) is relatively compact in Σn\∂Σn. Let r > 0, α > 0 and 0 < β < 1.
We further assume that

(∗) fn is (r, α)-immersed in Dhδ, n(pn, Rn) for each n ∈ N, and for any
p ∈ Dhδ, n(pn, Rn) the corresponding defining function u

(n)
p : Dr → R has

uniform ‖ · ‖C2, β(Dr)-norm with respect to n, i.e.

sup
n∈N

sup
p∈Dhδ, n (pn, Rn)

‖u(n)
p ‖C2, β(Dr) <∞. (2.17)
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Then there is a C2 boundaryless orientable 2-surface Σ∞ and a C2 immersion

f∞ : Σ∞ → R3

so that
(1) The pulled back metric h∞ = f∗∞δ on Σ∞ is complete.
(2) Σ∞ admits an exhaustion W1 b W2 b · · · of relatively compact open subsets

and a marked point p∞ ∈W1 so that, passing to a subsequence of {n} if neces-
sary, there are C1 embeddings Φn : Wn → Dhδ, n(pn, Rn) with Φn(p∞) = pn.

(3) fn ◦ Φn → f∞ on any compact subset of Σ∞ in C1 topology .
(4) |Πδ, n|hδ, n ◦ Φn → |Π∞|h∞ on compact subsets of Σ∞ in C0 topology, where

Πδ, n and Π∞ are the second fundamental forms of fn and f∞, respectively.

The condition (∗) in the above theorem is stronger than sup |Πδ, n|hδ, n <∞, but
a litter weaker than sup |Πδ, n|hδ, n + |∇hδ, nΠδ, n|hδ, n < ∞, where the supremum is
taken over Dhδ, n(pn, Rn) with n ranging over N. This condition is suitable for our
latter application.

The proof of Theorem 16 is essentially due to the main idea of [Bre14, Theo-
rem 1.3]. The latter concerns the convergence of a sequence of immersed surfaces
in Euclidean space with uniformly bounded second fundamental forms under slightly
different conditions. The proof is presented in the final section, but let us here make
some further remarks which are helpful for the application in the next section. The
limiting immersion f∞ : Σ∞ → R3 turns to have globally bounded second fundamen-
tal form, and hence be (r0, α0)-immersed on the entire Σ∞ for some r0 ∈ (0, r] and
α0 > 0. Given any Langer chart (U

(∞)
r0, q, (f∞)q) of Σ∞ with defining Euclidean isom-

etry Aq and defining function uq ∈ C2(Dr0), there are Langer charts (U
(n)
r0, qn , f

n
qn) of

Σn with defining Euclidean isometry Aqn and defining function uqn so that Aqn → Aq
and uqn → uq in C2(Dr0). Let us identify Aq(graph uq) and Aqn(graph uqn) with the
portion of Σ∞ and Σn respectively. Intuitively one could project Aq(graph uq) along
its normal direction into Aqn(graph uqn). Indeed this gives the local construction of
Φn. Since this construction involves the normal direction of Σ∞, it is reasonable that
Φn looses one derivative and it is only C1. However, since uqn → uq in C2(Dr0), one
could check that |Πδ, n|hδ, n(x′, uqn(x′))→ |Π∞|h∞(x′, uq(x

′)). This implies the con-
clusion (4) of 16 at least in the sense of pointwise convergence. Also if each defining
function uq is C∞, then both Σ∞ and f∞ are smooth.

Finally we point out that the limiting immersion f∞ : Σ∞ → R3 is not necessarily
proper. To see this, for each n take Σn = R2 and fn = f to be the (non-proper)
covering map f : R2 → T 2 # R3, where T 2 is a torus. Then Σ∞ = R2, f∞ = f , and
hence f∞ is not proper.

3. Proof of Theorem 1 and 2.

Proof of Theorem 1. The statement (2) is a direct consequence of (1). To see this,
observe that the geodesic disk Dh(p, 1

2diam(Σ)) is still weakly stable. Thus applying
(1) with Σ replaced by Dh(p, 1

2diam(Σ)) concludes (2).
So it remains to prove the statement (1). Without loss of generality, we assume

|Π|h is continuous up to ∂Σ. (Otherwise, we replace Σ by Σσ := {p ∈ Σ : dh(p, ∂Σ) ≥
σ} with σ → 0+.) Toward a contradiction, we suppose that for each n ∈ N there is
an initial data set (M3

n, gn, Kn) and an isometric immersion

fn : (Σ2
n, hn)→ (M3

n, gn),
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satisfying assumptions of Theorem 1 with constant null expansion θn, so that

sup
Σn

{
|Πn(·)|hn min{dhn(·, ∂Σn), rH}

}
≥ 2Q2

0(n+ 1). (3.1)

Here, the harmonic radius rH and the corresponding constant Q0 ≥ 1, as was shown
by Theorem 10, depend only on δ−1, i−1

0 , and Λ0, but not on n. Moreover, each
|Πn(·)|hn is continuous up to ∂Σn.

Then the compactness of Σn implies that the supremum in the left hand side of
(3.1) could be achieved by some point, say pn, in Σn\∂Σn. Set

ρn =
1

2Q2
0

min{dhn(pn, ∂Σn), rH}

and λn = |Πn(pn)|hn . Then (3.1) implies that

λnρn ≥ n+ 1→∞ as n→∞,

and that

λn ≥ 2Q2
0r
−1
H (n+ 1)→∞ as n→∞. (3.2)

Denote by Dn the hn-geodesic disk Dhn(pn, ρn) of center pn and radius ρn. Clearly,
Dn is relatively compact in Σn\∂Σn. For any p ∈ Dn, it is easy to check that

min{dhn(p, ∂Σn), rH} ≥
1

2
min{dhn(pn, ∂Σn), rH} = Q2

0ρn.

Thus

Q2
0ρn|Πn(p)|hn ≤ |Πn(p)|hn min{dhn(p, ∂Σn), rH}

≤ |Πn(pn)|hn min{dhn(pn, ∂Σn), rH}
= λn2Q2

0ρn,

that is

|Πn(p)|hn ≤ 2λn, ∀p ∈ Dn. (3.3)

Next we identify, in exactly the same way as is done in subsection 2.2, the gn-
geodesic ball Bgn(fn(pn), rH) with its image Ũn in R3 via the λn-coordinates {xa}.
Set g̃n = λ2

ngn. Then fn(pn) = 0 and, by (2.4),

Bδ(0, λnrH/Q0) ⊂ Ũn. (3.4)

Moreover, in view of (A2) and (A3), we obtain:
(B1) Q−2

0 δab ≤ (g̃n)xaxb(x) ≤ Q2
0δab, ∀x ∈ Bδ(0, λnrH/Q0), as quadratic forms;

(B2) ‖g̃xaxb‖C1, β(Bδ(0, λnrH/Q0)) ≤ 1 + 2rH ;
(B3) (g̃n)xaxb → δab on any compact set of R3 in C1, β topology as n→∞,

where (3.2) is used in (B2) and both (3.2) and (3.4) are used in (B3).
Let h̃n = λ2

nhn and let D̃n := Dh̃n
(pn, λnρn) be the h̃n-geodesic disk of center pn and

radius λnρn ≥ n+ 1. Then Dn = D̃n, and it is easy to check that

fn(D̃n) ⊂ Bδ(0, Q0λnρn) ⊂ Bδ(0,
1

2Q0
rHλn) ⊂ Ũn.

To abuse of notation, we still denote by fn the restriction fn|D̃n : D̃n →
Bδ(0, λnrH/Q0). By Lemma 11, (2.5) and (2.6), it holds
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(B4) |Π̃n(pn)|h̃n = 1, and supD̃n |Π̃n|h̃n ≤ 2;
(B5) H̃n + 1

λn
trh̃n(K̃n) = θn

λn
;

(B6) supBδ(0, λnrH/Q0) |K̃n|C1, g̃n ≤ Λ1;
(B7) 0 ≤

∫
D̃n
|∇̃h̃nϕ|

2
h̃n

+ (−|Π̃n|2h̃n + λ−2
n Zn)ϕ2 dµh̃n for all ϕ ∈ C1

c (D̃n) with∫
D̃n

ϕdµh̃n = 0.
Let hδ, n = (fn)∗δ be the pulled back metric by δ on D̃n, and denote by Πδ, n the second
fundamental form of fn : (D̃n, hδ, n) → (Bδ(0, λnrH/Q0), δ). Applying Lemma 13
and using (B1), (B2) and (B4), we infer

sup
D̃n

|Πδ, n|hδ, n ≤ C(Q0, rH) = C(δ−1, i−1
0 , Λ0).

From (B5) and (B6), we see that

| θn
λn
| ≤ |H̃n|+ λ−1

n |trh̃n(K̃n)| ≤
√

2(|Π̃n|h̃n + λ−1
n |K̃n|g̃n) ≤ C(δ−1, i−1

0 , Λ0, Λ1).

Thus by passing to a subsequence we could assume

θn
λn
→ θ∞ (3.5)

for some constant θ∞ ∈ R. By Lemma 6 and (3.2), the term λ−2
n Zn in (B7) satisfies

sup
D̃n

λ−2
n |Zn| ≤ C(Λ0, Λ1)(1 + λ−1

n )λ−1
n → 0, (3.6)

as n→∞. Fix any α ∈ (0, 1). Combining (B4) and the fact dh̃n(Dh̃n
(pn, n), ∂D̃n) ≥

1, we assert from Lemma 15 that fn is (2r, α)-immersed in Dh̃n
(pn, n), where r is

a constant depending only on Q0, rH and α. Pick any qn ∈ Dh̃n
(pn, n) and let

v := uqn be the corresponding defining function as in definition 14. Since v(0) = 0
and ‖∂v‖C0(D2r) ≤ α < 1, we have ‖v‖C1(D2r) ≤ 1 + 2r ≤ C(δ−1, i−1

0 , Λ0). Moreover,
since it follows from Proposition 13 that

|∂2v|2δ
(1 + |∂v|2δ)3

≤ |Πδ, n|2hδ, n ≤ ||Π̃n|2h̃n − |Πδ, n|2hδ, n |+ |Π̃n|2h̃n ≤ C(δ−1, i−1
0 , Λ0),

so we obtain

‖v‖C2(D2r) ≤ C(δ−1, i−1
0 , Λ0). (3.7)

Now using (3.7), (B2) and (B6) into Lemma 12, we see that the quasilinear elliptic
equation (B5) could be viewed as a uniform linear elliptic equation, with uniform
ellipticity constants and uniformly Cβ-bounded coefficients with respect to n. Thus
the standard Schauder interior estimate (cf. [GT98, Theorem 6.2]) gives that

‖v‖C2, β(Dr) ≤ C(δ−1, i−1
0 , Λ0, Λ1).

Hence by Arzela-Ascoli’s Lemma, there is a u ∈ C2(Dr) so that uqn → u in C2(Dr)
for some subsequence. Moreover, if {dh̃n(pn, qn)} is uniformly bounded, then the
limit u must satisfy the equation

Hδ = θ∞
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where Hδ is the mean curvature of graph u in (R3, δ). This just comes from (B5)
by letting n → ∞, with (3.2), (B3), (B6) and (3.5) in mind. Consequently, u is
C∞ by the regularity theorem (cf. [GT98, Theorem 6.17]). By Theorem 16 and the
discussion after it, we then obtain a C∞ boundaryless orientable complete limiting
Riemannian 2-surface (Σ∞, h∞) with a marked point p∞ and an isometry immersion
f∞ : Σ∞ → R3 of constant mean curvature θ∞ so that f∞(p∞) = 0.

Next we show that f∞ : Σ∞ → R3 is weakly stable. By Theorem 16 again,
there is an exhaustion W1 b W2 b · · · of Σ∞ and, passing to a subsequence of
{n} if necessary, a sequence of C1 embeddings Φn : Wn → D̃n with Φn(p∞) = pn.
Moreover, fn ◦ Φn converges to f∞ on any compact set of Σ∞ in C1 topology. This
together with (B3) implies that:

(B8) Φ∗nh̃n = (fn ◦ Φn)∗g̃n → f∗∞δ = h∞ on compact sets of Σ∞ in C0 topology.
Denote by Φ−1

n : Φn(Wn) → Wn the inverse of Φn. Clearly, Φ−1
n is a C1 diffeomor-

phism. Fix a ψ ≥ 0, ∈ C∞c (Σ∞) with
∫

Σ∞
ψdµh∞ = 1, and pick any ϕ ∈ C∞c (Σ∞)

with
∫

Σ∞
ϕdµh∞ = 0. For n sufficiently large, we have sptϕ ∪ sptψ ⊂ Wn. Then we

set

cn :=

∫
Φn(Wn)

ϕ ◦ Φ−1
n dµh̃n =

∫
Wn

ϕdµΦ∗nh̃n
,

dn :=

∫
Φn(Wn)

ψ ◦ Φ−1
n dµh̃n =

∫
Wn

ψdµΦ∗nh̃n
.

By (B8), we have cn →
∫

Σ∞
ϕdµh∞ = 0 and dn →

∫
Σ∞

ψdµh∞ = 1 as n→∞. Since∫
Φn(Wn)

(ϕ− cn
dn
ψ) ◦ Φ−1

n dµh̃n = 0,

we apply (B7) to obtain that

0 ≤
∫

Φn(Wn)

|∇̃h̃n(ϕ− cn
dn
ψ) ◦ Φ−1

n |2h̃n

+ (−|Π̃n|2h̃n + λ−2
n Zn)(ϕ− cn

dn
ψ)2 ◦ Φ−1

n dµh̃n

=

∫
Σ∞

|∇Φ∗nh̃n
(ϕ− cn

dn
ψ)|2

Φ∗nh̃n

+ (−|Π̃n|2h̃n + λ−2
n Zn) ◦ Φn(ϕ− cn

dn
ψ)2 dµΦ∗nh̃n

. (3.8)

We assert that:
(B9) |Π̃n|h̃n ◦ Φn − |Π∞|h∞ → 0 on compacts set of Σ∞ in C0 topology.

To see this, let F be any compact set of Σ∞. Then by Theorem 16 (4), it holds
|Πδ, n|hδ, n ◦ Φn → |Π∞|h∞ on F in C0 topology. It also follows from Theorem 16 (3)
that fn ◦ Φn(F ) is uniformly bounded. This together with Proposition 13 leads to
|Π̃n|h̃n ◦ Φn − |Πδ, n|hδ, n ◦ Φn → 0 on F in C0 topology. Hence (B9) is inferred.

Letting n→∞ in (3.8) and using (3.6), (B8) and (B9), we infer that

0 ≤
∫

Σ∞

|∇h∞ϕ|2h∞ − |Π∞|
2
h∞ϕ

2 dµh∞ .

This shows that the constant mean curvature immersion f∞ : Σ∞ → R3 is weakly
stable (i.e. volume preserving stable). Thank to the results of [BD84, Pal86, DS87,
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LR89], we know that f∞(Σ∞) must be either a plane or a sphere. If f∞(Σ∞) is a
plane, then Π∞ = 0, which contradicts which |Π∞|h∞(p∞) = limn→∞ |Π̃n|h̃n(pn) = 1.
If f∞(Σ∞) is a sphere, then so is Σ∞. Thus it must be Wn = Σ∞ for any sufficiently
large n. This leads to an embedding of a sphere into D̃n, and hence into Σn, by
Φn. This is impossible since Σn is connected and ∂Σn 6= ∅. Therefore the curvature
estimate of Theorem 1 (1) must be true. This completes the proof.

For Theorem 2, we need the following lemma.

Lemma 17. Let U be an open subset of R3 , and let r(x) = |x|δ be the Euclidean
distance to the origin. Suppose that there is a Riemannian metric g defined in U and
a constant Q0 ≥ 1 so that

(1) Q−2
0 δab ≤ gab(x) ≤ Q2

0δab as quadratic form for all x ∈ U ;
(2) supx∈U |∂g|2(x) ≤ Q2

0.
Let Sr := {x ∈ R3 : r(x) = r} be any Euclidean 2-sphere contained in U , and denote
by H(Sr) the mean curvature of Sr in (U, g) computed as the tangential divergence of
the outer unit normal vector Dr/|Dr|g , where D is the metric connection of g. Then
there is a constant C = C(Q0) so that

H(Sr) ≥
2

Q7
0r
− C(Q0).

Proof. Pick any x ∈ Sr. Observe that we could assume, applying a rotation if
necessary, that (gab(x)) =diag(λ1, λ2, λ3). To the end of this proof, calculation is
only carried out at x. Then

|Dr|2g =

3∑
a, b=1

∂ar∂brg
ab =

3∑
a=1

λa(xa)2

r2
∈ [Q−2

0 , Q2
0].

Recall that ∂c(ln det g) = gab∂cgab. Thus

H(Sr) = divg(
Dr

|Dr|g
) =

1√
det g

∂a(
√

det g
Dar

|Dr|g
)

=
gaa

r|Dr|g
− xbgbaxcgac

r3|Dr|3g
+

1

2
gcd∂agcd

xbgab

r|Dr|g
+
xb∂ag

ab

r|Dr|g
− xbgbaxcxd∂ag

cd

2r3|Dr|3g

≥ 1

r3|Dr|3g

(
(λ1 + λ2 + λ3)

3∑
a=1

λa(xa)2 −
3∑
a=1

λ2
a(xa)2

)
− C(Q0)

≥ 2

Q7
0r
− C(Q0).

Since x is arbitrary, the lemma follows.

Proof of Theorem 2. Pick any p ∈ Σ. By Theorem 10, there is a harmonic
coordinates chart on the geodesic ball Bg(f(p), rH). We identify Bg(f(p), rH) with
its image U in R3 via this harmonic coordinates. There is a constantQ0 ≥ 1 depending
only on δ, i0 and Λ0 so that

(C1) f(p) = 0 ∈ R3, Bδ(0, rH/Q0) ⊂ U ;
(C2) Q−2

0 δab ≤ gab(x) ≤ Q2
0δab as quadratic form for all x ∈ U ;

(C3) supx∈U |∂g|2(x) ≤ Q2
0.
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By Lemma 17, there is a positive number r0 < rH/Q0, depending only on rH and Q0,
so that the 2-sphere Sr = {x ∈ R3 : |x|δ = r} is mean convex with respect to (U, g)
for any 0 < r ≤ r0. Namely, it holds H(Sr) > 0, where H(Sr) is computed as the
tangential divergence of the outer unit normal of Sr. Assume diam(Σ) < r0/Q0. It
follows from (C1) and (C2) that

f(Σ) ⊂ B̄δ(0, Q0diam(Σ)) ⊂ U.

Thus there is a r∗ ∈ (0, Q0diam(Σ)] so that the 2-sphere Sr∗ encloses f(Σ) and is
tangent to f(Σ) at some point x0 = f(q) (q ∈ Σ). By the maximal principle, this
implies that

|H(Σ)(q)| ≥ H(Sr∗)(x0) > 0. (3.9)

On one hand, we have by Lemma 17 that

H(Sr∗) ≥ 2Q−7
0 r−1
∗ − C(Q0) ≥ 2Q−8

0 diam(Σ)−1 − C(Q0). (3.10)

On the other hand, we have

|H(Σ)| ≤ |trh(K)|+ |θ0| ≤
√

2Λ1 + |θ0|. (3.11)

Putting (3.10) and (3.11) into (3.9), we then infer diam(Σ) ≥ C(Q0, Λ1, |θ0|)−1. To
summarize, we obtain

diam(Σ) ≥ min{r0/Q0, C(Q0, Λ1, |θ0|)−1} = C(δ−1, i−1
0 , Λ0, Λ1, |θ0|)−1.

This together with Theorem 1 (2) concludes the result.

4. Proof of Theorem 16. In this section, we prove the Theorem 16 following
the systematic approach given by Breuning [Bre14]. However, somethings different
should be noted. The conditions of Theorem 16 are slightly different from those
of [Bre14, Theorem 1.3] so that the resulting limiting immersions in our case, as
illustrated in the discussion after Theorem 16, is not necessarily proper.(By contrast,
the limiting immersion in [Bre14, Theorem 1.3] is proper.) In addition, we have to
show that the limiting Riemannian 2-surface (Σ∞, h∞) is orientable and complete.
Also, the regularity of the objects in construction should be carefully treated.

We begin by a few observations relevant to a single immersion f : Σ2 → R3 with
global unit normal νδ. In the sequel, we denote by Bs the Euclidean disk in R2 of
center 0 and radius s, and set x = (x1, x2). Beyond that, notion below would coincide
with that of subsection 2.4, unless where stated.

Lemma 18. Suppose that f : Σ2 → R3 is (r, α)-immersed at q ∈ Σ, and that the
defining function uq : Br → R satisfies supBr |∂

2uq| ≤ c1. Then f is (r′, (2c1αr
′)

1
2 )-

immersed at q for any 0 < r′ < r.

Proof. Observe that A−1
q ◦ f(Uq, r′) is already the graph {(x, uq(x)) : x ∈ Br′}.

Since ∂uq(0) = 0, we have from the Mean Value Theorem that

|∂uq|2(x) ≤ sup
Br′

2|∂uq||∂2uq||x| < 2c1αr
′.

Hence the lemma is proved.
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Let hδ = f∗δ to be the pulled back metric on Σ. For any p ∈ Σ and r′ > 0,
denote by Dhδ(p, r

′), or just D(p, r′) when there is no possibility of confusion, the
hδ-geodesic disk of Σ of center p and of radius r′.

Lemma 19. Suppose that f : Σ2 → R3 is (r, α)-immersed at p ∈ Σ, then

D(p, r) ⊂ Ur, p ⊂ D(p, (1 + α2)
1
2 r).

Proof. It follows by the fact that the Langer chart (Ur, p, fp) satisfies

(1 + α2)−
1
2 ≤ ‖dfp‖ ≤ 1.

The following lemma (cf. [Lan85, Lemma 3.1]) is crucial.

Lemma 20. Suppose that f : Σ2 → R3 is (r, α)-immersed at p, q ∈ Σ. If α2 < 1
3

and U r
4 , p
∩ U r

4 , q
6= ∅, then U r

4 , p
⊂ Ur, q. Thus in this case, for any x ∈ B r

4
, there is

a unique y ∈ Br so that f−1
p (x) = f−1

q (y) ∈ U r
4 , p

and

Ap(x, up(x)) = Aq(y, uq(y)).

Next we prove a technical covering lemma.

Lemma 21 (Covering Lemma). Suppose that the immersion f : Σ2 → R3 is
(r, α)-immersed in D(p, R) b Σ\∂Σ with 0 < α ≤

√
3. Let L ≥ 1, ∈ N and 0 < s ≤ r

2
with (L + 3)s ≤ R. Let 0 < θ ≤ 1

2 . There is an integer K = K(θ−1) ≥ 2 and
a consequence {qi}K

L

i=1 of points in D(p, R) with q1 = p so that for each integer
1 ≤ l ≤ L, the following holds:

(1) D(p, ls) ⊂
Kl⋃
i=1

Uθs, qi ⊂ D(p, (l + 2)s).

(2) {qi}K
l

i=Kl−1+1 ⊂ D(p, (l + 1)s)\D(p, (l − 2)s).
Here D(p, r′) is assumed to be ∅ if r′ ≤ 0.

Proof. Observe first that the second inclusion in (1) follows from (2). Indeed, if
qi ∈ D(p, (l+1)s), then f is (r, α)-immersed at qi. Thus it follows by Lemma 19 that

Uθs, qi ⊂ D(qi, (1 + α2)
1
2 θs) ⊂ D(qi, s) ⊂ D(p, (l + 2)s).

Hence it suffices to construct a sequence satisfying (2) and the first inclusion of (1).
It is easy to find an integer K = K(θ−1) ≥ 2, and two sequences {xi}Ki=1 ⊂ Bs

and {yi}Ki=1 ⊂ B 3
2 s

with x1 = y1 = 0, satisfying

Bs ⊂
K⋃
i=1

B(xi,
θs

(1 + α2)
1
2

) ⊂ B2s ⊂ Br, (4.1)

B 3
2 s
⊂

K⋃
i=1

B(yi,
θs

(1 + α2)
1
2

) ⊂ B2s ⊂ Br.

We shall construct {qi}K
L

i=1 by induction on 1 ≤ l ≤ L. So we first assume l = 1.
By Lemma 19 and (4.1), it holds

D(p, s) ⊂ Us, p = f−1
p (Bs) ⊂

K⋃
i=1

f−1
p (B(xi,

θs

(1 + α2)
1
2

)).
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Set qi = f−1
p (xi). Then

qi ∈ f−1
p (Bs) = Us, p ⊂ D(p, (1 + α2)

1
2 s) ⊂ D(p, 2s).

Since f is (r, α)-immersed at qi, it follows from the argument of the proof of Lemma
19 that

f−1
p (B(xi,

θs

(1 + α2)
1
2

)) ⊂ D(qi, θs) ⊂ Uθs, qi .

This implies

D(p, s) ⊂
K⋃
i=1

Uθs, qi . (4.2)

This completes the construction for l = 1.
Next suppose L ≥ 2 and there is a desired sequence {qi}K

L−1

i=1 . Note that f is
(r, α)-immersed at each point qi. Thus we have

D(p, Ls) = {q ∈ Σ : d(q, D(p, (L− 1)s)) < s}

⊂
KL−1⋃
i=1

{q ∈ Σ : d(q, Uθs, qi) < s}

⊂
KL−1⋃
i=1

Uθs+s, qi ⊂
KL−1⋃
i=1

U 3
2 s, qi

=

KL−1⋃
i=1

f−1
qi (B 3

2 s
)

⊂
KL−1⋃
i=1

K⋃
j=1

f−1
qi (B(yj ,

θs

(1 + α2)
1
2

)). (4.3)

Set qi, j = f−1
qi (yj). Clearly qi, 1 = qi. It also holds that

qi, j ∈ f−1
qi (B 3

2 s
) = U 3

2 s, qi
⊂ D(qi, 3s) ⊂ D(p, R),

which implies that f is (r, α)-immersed at qi, j . Thus we have

f−1
qi (B(yj ,

θs

(1 + α2)
1
2

)) ⊂ D(qi, j , θs) ⊂ Uθs, qi, j . (4.4)

Since qi, 1 = qi for 1 ≤ i ≤ KL−1, we could re-index qi, j to obtain {qi}K
L

i=1 which
extends {qi}K

L−1

i=1 . Substituting (4.4) into (4.3), we then obtain

D(p, Ls) ⊂
KL⋃
i=1

Uθs, qi . (4.5)

Moreover we could assume

qi ∈ D(p, (L+ 1)s)\D(p, (L− 2)s) (4.6)

provided KL−1 < i ≤ KL. Otherwise it holds either D(qi, s) ∩ D(p, Ls) = ∅ or
D(qi, s) ⊂ D(p, (L − 1)s). In each of these two cases, Uθs, qi does not contribute to
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(4.5), and hence this qi could be replaced by any point in the right hand side of (4.6)
without changing (4.5). Thus {qi}K

L

i=1 is a desired sequence.

Although the conclusion of Lemma 21 is far from optima, it is enough for our
latter application.

With Lemma 21, we assign each 1 ≤ i ≤ KL the subset

Z(i) := {j ∈ N : 1 ≤ j ≤ KL, Us, qj ∩ Us, qi 6= ∅}.

Clearly, Z(i) is symmetric in the sense that for any 1 ≤ i, j ≤ KL, j ∈ Z(i) if and
only if i ∈ Z(j). Moreover, we have

Lemma 22. If 1 ≤ i ≤ KL, then maxZ(i) ≤ K8i. In particular, |Z(i)| ≤ K8i.

Proof. Let l0 be the integer so that Kl0−1 < i ≤ Kl0 if i > 1, and let l0 = 1 if
i = 1. By Lemma 21 it holds qi ∈ D(p, (l0 + 1)s)\D(p, (l0 − 2)s). Now the proof
breaks down into two cases depending upon whether or not l0 + 7 > L. If l0 + 7 > L,
we have maxZ(i) ≤ KL < Kl0+7 ≤ K8i. If l0 + 7 ≤ L, then for any j with Kl0+6 < j
there holds that qj /∈ D(p, (l0 + 5)s) by virtue of Lemma 21. Thus dh(qj , qi) > 4s.
Observe that since Us, qi ⊂ D(qi, 2s) and Us, qj ⊂ D(qj , 2s) according to Lemma 19,
we obtain j /∈ Z(i) and hence maxZ(i) ≤ Kl0+6 ≤ K7i.

Now let us begin the proof proper of Theorem 16. In view of (2.17) and Lemma
18, we could assume

α <
1

2
(4.7)

by uniformly shrinking r if necessary. We also fix the numbers

s =
r

16
, θ =

1

10
. (4.8)

In particular, Lemma 20, 21 and 22 are available in the sequel.
Since {fn(pn)}∞n=1 is uniformly bounded and limn→∞Rn =∞, we could assume

without loss of generality that fn(pn) = 0 for all n ∈ N and that Rn ≥ (n+ 3)s for all
n ∈ N. The latter assumption allows us to collect by Lemma 21 a sequence {qni }K

n

i=1

of points in Dhδ, n(pn, Rn) for each n. Here K ≥ 2 is an integer independent of n.
Moreover we could define the relative subset Zn(i), with 1 ≤ i ≤ Kn, in exactly the
same way as is done above. By Lemma 22, |Zn(i)| is uniformly bounded with respect
to n for any fixed i. For each qni we assign a Langer chart (Unr, i, f

n
i ) centered at qni

with defining Euclidean isometry Ani given by Ani v = Rni v + Tni , where Rni ∈ SO(3)
and Tni ∈ R3, and with C∞ defining function uni : Br → R. Here the superscript n is
used to indicate the quantities relevant to the immersion fn. Note that by definition
uni (0) = 0, ∂uni (0) = 0 and ‖∂uni ‖C0(Br) ≤ α. By (2.17), ‖uni ‖C2, β(Br) is uniformly
bounded with respect to n and i. Next we claim that for any fixed i, {Tni } is uniformly
bounded with respect to n. To see this, let l to be the least integer not less than logK i.
Then i ≤ Kl and qni ∈ Dhδ, n(pn, (l+1)s). Observe that fn(pn) = 0 and Tni = fn(qni ),
therefore it holds |Tni | ≤ (logK i+ 2)s.

We infer from the above uniform bounds that there are sequences {Ti}i∈N ⊂ R3,
{Ri}i∈N ⊂ SO(3), {ui}i∈N ⊂ C2, β′(Br) with 0 < β′ < β, and {Z(i)} ⊂ 2N, and there
is a subsequence

{νn} ⊂ {n} (4.9)
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so that the following holds

Zνn(i) = Z(i), for all n, iwith 1 ≤ i ≤ n; (4.10)
ενni → 0 as n→∞, for each fixed i ≤ n (4.11)

where

ενni := |T νni − Ti|+ ||R
νn
i −Ri||+ ‖u

νn
i − ui‖C2, β′ (Br).

Lemma 21 and properties (4.10) and (4.11) are crucial for applying the argument in
[Bre14]. We will make implicit use of them throughout the following proof.

For each i ∈ N, we set Bis = Bs × {i}, and then consider the disjoint union

∞⋃
i=1

Bis.

Let “∼” be a relation defined on it by (x, i) ∼ (y, j) if and only if j ∈ Z(i) and
Ai(x, ui(x)) = Aj(y, uj(y)). By the argument of [Bre14, Lemma 4.1], we infer:

Lemma 23. The relation ∼ is an equivalence relation.

Define

Σ∞ =

( ∞⋃
i=1

Bis

)
/ ∼

with the quotient topology, and let

P :

∞⋃
i=1

Bis → Σ∞

be the standard quotient projection. Given any open subset V of Bs, we set V i :=
V × {i} ⊂ Bis and define

ϕiV : P (V i)→ V.

[(x, i)] 7→ x

Clearly, ϕiV is well defined and bijective. Set U = {ϕiV : i ∈ N, V
open
⊂ Bs}.

Lemma 24. The following holds:
(1) The quotient projection P is open.
(2) Σ∞ is a second countable Hausdorff space.
(3) The set U is a differential atlas on Σ∞, making Σ∞ a C2 boundaryless surface.
(4) Σ∞ = ∪∞i=1P (Bi1

6 s
).

We omit the proof, but refer the reader to the argument in [Bre14, Section 4],
which could be almost repeatedly used to prove Lemma 24. We only point out that
the regularity of Σ∞ is easily inferred by taking note that the transition functions of
U are

ϕiV ◦ (ϕjW )−1 : ϕjW (P (V i) ∩ P (W j))→ ϕiV (P (V i) ∩ P (W j)). (4.12)

x 7→ π ◦ A−1
i
◦ Aj(x, uj(x))
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Thus Σ∞ is indeed C2, β′ .
Now we construct the limiting mapping f = f∞ by

f : Σ∞ → R3.

[(x, i)] 7→ Ai(x, ui(x))

It immediately follows from the definition of the relation ∼ that f is well defined.
Moreover f is a C2 immersion since {ui} are C2. Set

p∞ = [(0, 1)] ∈ P (B1
s ).

Since T νn1 = fνn(pn) = 0, it holds T1 = 0. Hence f(p∞) = A1(0, u1(0)) = 0 =
fνn(pνn).

Lemma 25. The immersion f : Σ∞ → R3 has trivial normal bundle. Equiva-
lently, Σ∞ is orientable.

Proof. It is easy to see that

Ri

(
(−∂x1ui, −∂x2ui, 1)√

1 + |∂ui|2

)
(4.13)

is a normal vector field defined on P (Bis) ⊂ Σ for any i. Let [(x, i)] = [(y, j)] be
any point in Σ∞. To detect the proof of [Bre14, Lemma 4.1], we see that there is a
sequence {xνn} of points of Bs so that xνn → x and that (fνni )−1(xνn) = (fνnj )−1(y)
for large n. By (2.12), the designated global unit normal vector field of Σνn at
(fνni )−1(xνn) = (fνnj )−1(y) is

Rνni

(
(−∂x1uνni , −∂x2uνni , 1)√

1 + |∂uνni |2
(xνn)

)
= Rνnj

 (−∂x1uνnj , −∂x2uνnj , 1)√
1 + |∂uνnj |2

(y)

 .

Thus taking n→∞ in the above equation yields that

Ri

(
(−∂x1ui, −∂x2ui, 1)√

1 + |∂ui|2
(x)

)
= Rj

(
(−∂x1uj , −∂x2uj , 1)√

1 + |∂uj |2
(y)

)
.

This implies that the vector fields (4.13) define a global unit normal vector field of
the immersion f .

Given any index i, we would show that for n sufficiently large (depending on i),
f(P (Bis)) is projected into fνn(Uνnr, i) along the normal direction of Σ∞. Moreover, this
projection is diffeomorphic into. In the sequel, we assume without loss of generality
that Ai = Id, and for simplicity we identify P (Bis) with Bis as well as Bs. For any
x ∈ Bs, we set

Nx = −∂ui(x) = −(∂x1ui(x), ∂x2ui(x)).

Then the normal bundle of f : Σ∞ → R3 at x is given by

νf (x) = {(Nx, 1)t : t ∈ R}.



1112 Z. LIANG

Note that by our notation here, f(x) = (x, ui(x)). We shall show that f(x) + νf (x)
intersects fνn(Uνnr, i) at exactly one point. This is equivalent to show that the equation:

f(x)− (Nx, 1)t = Aνni (y, uνni (y)), (4.14)

has unique solution (y, t) in Br × R. This equation could be rewritten as

Hx(y, t) = (y, t), (4.15)

where Hx : Br × R→ R3 is the mapping defined by

Hx(y, t) = −(Nxt, u
νn
i (y))− (Rνni − Id)(y, uνni (y))− T νni + f(x).

Note that Hx depends on i and νn.

Lemma 26. For n sufficiently large (α+ ενni (1 + α2)
1
2 < 1

2), Hx is a contraction
on Br × R and more precisely

sup
Br×R

‖dHx‖ ≤
1

2
. (4.16)

Proof. Given any (y, t), (y′, t′) ∈ Br × R, we have

|Hx(y, t)−Hx(y′, t′)|
=| − (Nx(t− t′), uνni (y)− uνni (y′))− (Rνni − Id)(y − y′, uνni (y)− uνni (y′))|

≤
(
|Nx|2(t− t′)2 + ‖∂uνni ‖

2
C0(Br)|y − y

′|2
) 1

2

+ ‖Rνni − Id‖(1 + ‖∂uνni ‖
2
C0(Br))

1
2 |y − y′|

≤α|(y, t)− (y′, t′)|+ ενni (1 + α2)
1
2 |y − y′|

≤1

2
|(y, t)− (y′, t′)|.

Thus the lemma is proved.

Lemma 27. For n sufficiently large (ενni < (1 + 1
r )−1), there is exactly one point

(Y νni (x), Sνni (x)) in Br × R so that

Hx(Y νni (x), Sνni (x)) = (Y νni (x), Sνni (x)).

Namely, f(x) + νf (x) intersects fνn(Uνnr, i) exactly at the point
Aνni (Y νni (x), uνni (Y νni (x))). Moreover it holds |(Y νni (x), Sνni (x))| ≤ 3s.

Proof. Pick any (y, t) ∈ B̄3
3s, where B̄3

3s is the closed Euclidean 3-ball in R2 × R
centered at the origin and with radius 3s. Then we have for any x ∈ Bs that

|Hx(y, t)| = | − (Nxt, u
νn
i (y))− (Rνni − Id)(y, uνni (y))− T νni + f(x)|

≤ α|(y, t)|+ ενni (1 + α2)
1
2 |y|+ ενni + (1 + α2)

1
2 |x|

≤ 3αs+ ενni (1 + α2)
1
2 3s+ ενni + (1 + α2)

1
2 s

≤ (
3

2
+

3
√

5ενni
2

+
16ενni
r

+

√
5

2
)s

≤ 3s,
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where the last two lines are on account to (4.8) and the assumption. This shows that
Hx(B̄3

3s) ⊂ B̄3
3s. Furthermore, by Lemma 27, the restriction Hx|B̄3

3s : B̄3
3s → B̄3

3s

is a contraction. Thus, by the usual Fixed Point Theorem, there is a unique point
(Y νni (x), Sνni (x)) ∈ B̄3

3s solving Hx(Y νni (x), Sνni (x)) = (Y νni (x), Sνni (x)), which is
equivalent to

f(x)− (Nx, 1)Sνni (x) = Aνni (Y νni (x), uνni (Y νni (x)). (4.17)

Since Hνn
x is contractive in Br × R, this fixed point (Y νni (x), Sνni (x)) is also unique

in Br × R.

Lemma 28. For each x ∈ Bs, it holds that Y νni (x) → x and Sνni (x) → 0 as
n→∞.

Proof. Since the norm of (Y νni (x), Sνni (x)) is uniformly bounded by 3s,
it suffices to show that the lemma is true for each convergent subsequence of
{(Y νni (x), Sνni (x))}n. By simplicity, we assume that (Y νni (x), Sνni (x)) converges to
some (y′, t′) ∈ B̄3

3s as n→∞. Note that we have by (4.17) that

Aνni (Y νni (x), uνni (Y νni (x))) = (x, ui(x))− (NxS
νn
i (x), Sνni (x)).

Taking n→∞, we then obtain

(y′, ui(y
′)) = (x, ui(x))− (Nxt

′, t′).

Hence

|y′ − x| = |Nxt′| = |Nx(ui(x)− ui(y′))| ≤ α2|x− y′|.

This together with α < 1 implies that y′ = x and t′ = 0. The lemma is proved.

For the sake of notation simplicity below, subsequence extracted from {νn} is still
denoted by {νn}.

Lemma 29. Passing to a subsequence of {νn} if necessary, there holds
(1) Y νni and Sνni are C1(Bs) for each n.
(2) Y νni → Id and Sνni → 0 on Bs in C1 topology as n→∞.

Proof. Define

G : Bs ×Br × R→ R2 × R.
(x, y, t) 7→ (y, t)−Hx(y, t)

It is easy to see from the expression G(x, y, t) = −(Nx, 1)t − Aνni (y, uνni (y)) +
(x, ui(x)) that G is C1. Observe that G(x, ·, ·) : Br ×R→ R2×R is nonsingular for
each x by (4.16), and that (Y νni (x), Sνni (x)) is the unique solution of G(x, y, t) = 0
by Lemma 27. Thus it follows by the Implicit Function Theorem that Y νni and Sνni
are C1(Bs). This proves (1). Differentiating the equation

G(x, Y νni (x), Sνni (x)) = 0. (4.18)

with respect to x, we could solve the first derivatives of Y νni and Sνni in term of the in-
verse matrix of Id−dHx and the first derivative of G evaluated at (x, Y νni (x), Sνni (x)).
Note that ‖uνni , ui‖C2, β′ (Bs)

and ‖Y νni , Sνni ‖C0(Bs) are uniformly bounded. So we
could use a bootstrap argument to assert firstly that ‖Y νni , Sνni ‖C1(Bs), and secondly
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that ‖Y νni , Sνni ‖C1, β′ (Bs)
, are uniformly bounded with respect to n. Applying the

Arzela-Ascoli’s Lemma and Lemma 28, we then conclude (2).

Recall that Y νni (Bs) ⊂ B̄3s ⊂ Br, so we could define

φνni : P (Bis)→ Uνnr, i

by assigning each x ∈ Bis = Bs with the unique point φνni (x) in Uνnr, i so that

fνn(φνni (x)) = Aνni (Y νni (x), uνni (Y νni (x))).

Clearly φνni is C1. Geometrically, in view of (4.17), fνnφνni (x) is the intersection point
of f(x) + νf (x) and fνn(Uνnr, i).

Lemma 30. For n sufficiently large, φνni : P (Bis)→ Uνnr, i is diffeomorphic into.

Proof. It suffices to show that for n sufficiently large, Y νni : Bs → Br is diffeo-
morphic into. However this is just an easy consequence of Lemma 29 (2).

Passing to a subsequence {νn} if necessary, we could assume that Lemma 26-30
hold for all n and i with i ≤ n.

For each l ∈ N, we set

Wl :=
l⋃
i=1

P (Bi(2−1−4−l)s). (4.19)

Then it is clear that

p∞ ∈W1,

Wl bWl+1, ∀ l ∈ N, and
∞⋃
l=1

Wl = Σ∞

where the last line is on account to Lemma 24 (4).
For n ≥ l large, we then define the map

Φνnl : Wl → Σνn

by Φνnl (x) = φνni (x) if x ∈ P (Bi(2−1−4−l)s) and i ≤ l. The reader should take note
that we are here essentially repeating constructions of the immersions φi’s in [Bre14,
Section 5]. Again by the argument therein, we obtain:

Lemma 31. After passing to a subsequence of {νn}, the following holds for all n
and l with n ≥ l:

(1) Φνnl is well defined and Φνnl (p∞) = pνn .
(2) Φνnl is an embedding.
(3) Φνnl (Wl) ⊂ Dhδ, νn

(pνn , (νn + 3)s).

Lemma 32. Let h∞ := f∗δ be the pulled back metric on Σ∞. Then the following
holds

(1) For each l ∈ N, fνn ◦ Φνnl converges to f on Wl in C1 topology.
(2) h is a complete Riemannian metric on Σ∞.
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Proof. Let 1 ≤ i ≤ l, and x ∈ P (Bi1
2 s

). Since ενni → 0 and Y νni → Id in C1(Bs),
it follows that

fνn ◦ Φνnl (x) = Aνni (Y νni (x), uνni (Y νni (x)))→ Ai(x, ui(x)) = f

on P (Bi1
2 s

) in C1 topology. By the definition of Wl, this implies (1) .

To prove the completeness of h∞, let γ : [0, t0) → Σ∞ be any maximal normal
geodesic starting at p∞. Then it suffices to show that t0 = ∞. We divide the proof
into two cases:

Case 1. γ ⊂Wl for some l.
Since W̄l is compact, it follows that t0 must be ∞.
Case 2. γ *Wl for any l ∈ N.
Together with Lemma 22, it is then easy to construct a subsequence {κi} ⊂ {i}

so that

γ ∩ P (Bκi1
2 s

) 6= ∅, ∀ i ≥ 1,

P (Bκis ) ∩ P (Bκjs ) = ∅, ∀ i 6= j.

These imply that

t0 = length (γ) ≥
∑
m

length (γ ∩ P (Bims ))

≥
∑
m

length (π ◦ A−1
im
◦ f(γ ∩ P (Bims )))

≥
∑
m

1

2
s =∞.

Thus the lemma is proved.

Lemma 33. For each l ∈ N, it holds that |Πδ, νn |2hδ, νn ◦ Φνnl → |Π∞|h∞ on Wl in
C1 topology.

Proof. Give any x ∈ P (Bi1
2 s

) with i ≤ l, observe that the local expression for the
second fundamental form is

|Πδ, νn |2hδ, νn ◦ Φνnl (x)

=
∑

j, k, j′, k′

(
δjk − ∂ju

νn
i ∂ku

νn
i

1 + |∂uνni |2

)(
δj
′k′ − ∂j′u

νn
i ∂k′u

νn
i

1 + |∂uνni |2

)
∂j∂j′u

νn
i ∂k∂k′u

νn
i

(1 + |∂uνni |2)
(Y νni (x)).

Since uνni → ui in C2(Br) and Y νni → Id in C1(Bs), it follows that |Πδ, νn |2hδ, νn ◦
Φνnl → |Π∞|h∞ in C0(Bi1

2 s
), and hence in C0(Wl).

Finally, we set

Φl := Φνll .

Then Theorem 16 follows from combining Lemma 24, 25, 31, 32 and 33.
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