NEW SURFACES WITH $K^{2}=7$ AND $p_{g}=q \leq 2^{*}$

CARLOS RITO ${ }^{\dagger}$

Abstract

We construct smooth minimal complex surfaces of general type with $K^{2}=7$ and: $p_{g}=q=2$, Albanese map of degree 2 onto a (1,2)-polarized abelian surface; $p_{g}=q=1$ as a double cover of a quartic Kummer surface; $p_{g}=q=0$ as a double cover of a numerical Campedelli surface with 5 nodes.

Key words. Surface of general type, Albanese map, double covering.
Mathematics Subject Classification. 14J29.

1. Introduction. Despite the efforts of several authors in past years, surfaces of general type with the lowest possible value of the holomorphic Euler characteristic $\chi=1$ are still not classified. For these surfaces the geometric genus p_{g}, the irregularity q and the self-intersection of the canonical divisor K satisfy:

$$
\begin{aligned}
& 1+p_{g} \leq K^{2} \leq 9 \quad \text { if } \quad p_{g} \leq 1, \\
& 4 \leq K^{2} \leq 9 \quad \text { if } \quad p_{g}=2, \\
& K^{2}=6 \text { or } 8 \quad \text { if } \quad p_{g}=3, \\
& K^{2}=8 \quad \text { if } \quad p_{g}=4,
\end{aligned}
$$

from the Bogomolov-Miyaoka-Yau and Debarre inequalities, [HP] and the Beauville Appendix in [De] (cf. also [CCM], [Pi]).

According to Sai-Kee Yeung, the case with $p_{g}=q=2$ and $K^{2}=9$ does not occur (see Section 6 in the revised version of the paper [Ye], available at http://www.math. purdue.edu/~yeung/).

So there are examples for all possible values of the invariants except for one mysterious case:

$$
K^{2}=7, p_{g}=q=2
$$

The cases $K^{2}=7, p_{g}=q=1$ or 0 are also intriguing:

- $p_{g}=q=1$. Lei Zhang $[\mathrm{Zh}]$ has shown that one of three cases occur:
a) the bicanonical map is birational;
b) the bicanonical map is of degree 2 onto a rational surface;
c) the bicanonical map is of degree 2 onto a Kummer surface.

The author has given examples for a) [Ri2] and b) [Ri3], but so far it is not known if c) can occur.

[^0]- $p_{g}=q=0$. Yifan Chen [Ch2] considers the case when the automorphism group of the surface S contains a subgroup isomorphic to \mathbb{Z}_{2}^{2}. He shows that three different families of surfaces may exist:
a) S is an Inoue surface [In];
b) S belongs to the family constructed by him in [Ch1];
c) a third case, in particular S is a double cover of a surface with $p_{g}=q=0$ and $K^{2}=2$ with 5 nodes.
The existence of this last case is an open problem.
In this paper we show the existence of the above three open cases. We give constructions for surfaces with $K^{2}=7$ and:
- $p_{g}=q=2$, Albanese map of degree 2 onto a (1,2)-polarized abelian surface;
- $p_{g}=q=1$, bicanonical map of degree 2 onto a Kummer surface;
- $p_{g}=q=0$ as a double cover of a numerical Campedelli surface with 5 nodes. In all cases the surface can be seen as a double cover with branch locus as in the result below. In particular we show that a construction for the case $p_{g}=q=2$ as suggested by Penegini and Polizzi [PP, Remark 2.2] does exist.

Proposition 1. Let X be an Abelian, K3 or Enriques surface containing n disjoint (-2 -curves $A_{1}, \ldots, A_{n}, n=0,16$ or 8 , respectively. Assume that X contains a reduced curve B and a divisor L such that

$$
B+\sum_{1}^{n} A_{i} \equiv 2 L
$$

B is disjoint from $\sum_{1}^{n} A_{i}, B^{2}=16$ and B contains a (3,3)-point and no other singularity. Let S be the smooth minimal model of the double cover of X with branch locus $B+\sum_{1}^{n} A_{i}$. Then $\chi\left(\mathcal{O}_{S}\right)=1$ and $K_{S}^{2}=7$.

Proof. This follows from the double cover formulas (see e.g. [BHPV, V.22]) and the fact that a (3,3)-point decreases both χ and K^{2} by 1 (see e.g. [Pe, p. 185]):

$$
\begin{gathered}
\chi\left(\mathcal{O}_{S}\right)=2 \chi\left(\mathcal{O}_{X}\right)+\frac{1}{2} L\left(K_{X}+L\right)-1=1 \\
K_{S}^{2}=2\left(K_{X}+L\right)^{2}+n-1=7
\end{gathered}
$$

Notation. We work over the complex numbers. All varieties are assumed to be projective algebraic. A $(-n)$-curve on a surface is a curve isomorphic to \mathbb{P}^{1} with self-intersection $-n$. An (m_{1}, m_{2})-point of a curve, or point of type (m_{1}, m_{2}), is a singular point of multiplicity m_{1} which resolves to a point of multiplicity m_{2} after one blow-up. Linear equivalence of divisors is denoted by \equiv. The rest of the notation is standard in Algebraic Geometry.

Acknowledgements. The author is a member of the Center for Mathematics of the University of Porto. This research was partially supported by FCT (Portugal) under the project PTDC/MAT-GEO/0675/2012 and by CMUP (UID/MAT/00144/2013), which is funded by FCT with national (MEC) and European structural funds through the programs FEDER, under the partnership agreement PT2020.
2. Bidouble covers. A bidouble cover is a finite flat Galois morphism with Galois group \mathbb{Z}_{2}^{2}. Following [Ca] or [Pa], to define a bidouble cover $\pi: V \rightarrow X$, with V, X smooth surfaces, it suffices to present:

- smooth effective divisors $D_{1}, D_{2}, D_{3} \subset X$ with pairwise transverse intersections and no common intersection;
- line bundles L_{1}, L_{2}, L_{3} such that $L_{g}+D_{g} \equiv L_{j}+L_{k}$ for each permutation (g, j, k) of (1,2,3).
One has

$$
\begin{gathered}
\chi\left(\mathcal{O}_{V}\right)=4 \chi\left(\mathcal{O}_{X}\right)+\frac{1}{2} \sum_{1}^{3} L_{i}\left(K_{X}+L_{i}\right), \\
p_{g}(V)=p_{g}(X)+\sum_{1}^{3} h^{0}\left(X, \mathcal{O}_{X}\left(K_{X}+L_{i}\right)\right)
\end{gathered}
$$

and

$$
2 K_{V} \equiv \pi^{*}\left(2 K_{X}+\sum_{1}^{3} L_{i}\right)
$$

which implies

$$
K_{V}^{2}=\left(2 K_{X}+\sum_{1}^{3} L_{i}\right)^{2}
$$

3. Example with $p_{g}=q=2$.

Step 1. Let $T_{1}, \ldots, T_{4} \subset \mathbb{P}^{2}$ be distinct lines through a point p_{0}, let $p_{1}, p_{2} \neq p_{0}$ be points in T_{1}, T_{2}, respectively, and C_{1}, C_{2} be distinct smooth conics tangent to T_{1}, T_{2} at p_{1}, p_{2}. Consider the map

$$
\mu: X \longrightarrow \mathbb{P}^{2}
$$

which resolves the singularities of the divisor $C_{1}+C_{2}+T_{1}+\cdots+T_{4}$. Then μ is given by blow-ups at

$$
p_{0}, p_{1}, p_{1}^{\prime}, p_{2}, p_{2}^{\prime}, p_{3}, \ldots, p_{10}
$$

where p_{i}^{\prime} is the point infinitely near to p_{i} corresponding to the line T_{i}, and p_{3}, \ldots, p_{10} are nodes of $C_{1}+C_{2}+T_{3}+T_{4}$. Let $E_{0}, E_{1}, E_{1}^{\prime}, E_{2}, E_{2}^{\prime}, E_{3}, \ldots, E_{10}$ be the corresponding exceptional divisors (with self-intersection -1) and let

$$
\pi: V \longrightarrow X
$$

be the bidouble cover defined by the divisors

$$
\begin{aligned}
& D_{1}:=\left(\widetilde{T_{1}}+\widetilde{T_{2}}-2 E_{0}-2 E_{1}^{\prime}-2 E_{2}^{\prime}\right)+\sum_{3}^{10} E_{i}, \\
& D_{2}:=\widetilde{T_{3}}+\widetilde{T_{4}}-2 E_{0}-\sum_{3}^{10} E_{i}, \\
& D_{3}:=\widetilde{C_{1}}+\widetilde{C_{2}}-2 E_{1}-2 E_{1}^{\prime}-2 E_{2}-2 E_{2}^{\prime}-\sum_{3}^{10} E_{i},
\end{aligned}
$$

where the notation $\widetilde{\sim}$ stands for the total transform $\mu^{*}(\cdot)$.
Notice that D_{1} is the union of $\sum_{3}^{10} E_{i}$ with four (-2)-curves contained in the pullback of $T_{1}+T_{2}$, and D_{2}, D_{3} are just the strict transforms of $T_{3}+T_{4}, C_{1}+C_{2}$, respectively.

One can easily see that the divisors D_{1}, D_{2} and D_{3} have pairwise transverse intersections and no common intersection.

Denote by T a general line of \mathbb{P}^{2} and let

$$
\begin{aligned}
& L_{1}:=3 \widetilde{T}-E_{0}-E_{1}-E_{1}^{\prime}-E_{2}-E_{2}^{\prime}-\sum_{3}^{10} E_{i}, \\
& L_{2}:=3 \widetilde{T}-E_{0}-E_{1}-2 E_{1}^{\prime}-E_{2}-2 E_{2}^{\prime}, \\
& L_{3}:=2 \widetilde{T}-2 E_{0}-E_{1}^{\prime}-E_{2}^{\prime} .
\end{aligned}
$$

Then

$$
\begin{aligned}
& K_{X}+L_{1} \equiv 0 \\
& K_{X}+L_{2} \equiv-E_{1}^{\prime}-E_{2}^{\prime}+\sum_{3}^{10} E_{i}, \\
& K_{X}+L_{3} \equiv-\widetilde{T}-E_{0}+E_{1}+E_{2}+\sum_{3}^{10} E_{i}
\end{aligned}
$$

and

$$
\begin{gathered}
\chi\left(\mathcal{O}_{V}\right)=4+\frac{1}{2}(0-4-4)=0 \\
p_{g}(V)=0+1+0+0=1
\end{gathered}
$$

Let X_{1} be the surface given by the double covering $\phi: X_{1} \longrightarrow X$ with branch locus $D_{2}+D_{3}$. The divisor $\phi^{*}\left(\widetilde{T_{1}}+\widetilde{T_{2}}-2 E_{0}-2 E_{1}^{\prime}-2 E_{2}^{\prime}\right)$ is a disjoint union of 8 (-2)-curves, and the divisor $\phi^{*}\left(\sum_{3}^{10} E_{i}\right)$ is also a disjoint union of $8(-2)$-curves. Hence $\phi^{*}\left(D_{1}\right)$ is a disjoint union of $16(-2)$-curves. The canonical divisor K_{V} of V is the support of the pullback of D_{1}, a disjoint union of $16(-1)$-curves. So the minimal model V^{\prime} of V is an abelian surface, with Kummer surface X_{1}. Notice that the lines T_{1}, \ldots, T_{4} give rise to elliptic fibres of type I_{0}^{*} in X_{1} (four disjoint (-2)-curves plus an elliptic curve with multiplicity 2).

Step 2. Now let R be the tangent line to C_{1} at $p_{3} \in C_{1} \cap T_{3}$. We claim that the strict transform $\widehat{R} \subset V^{\prime}$ of R is a curve with a tacnode (singularity of type (2,2)) at the pullback of p_{3} and with self-intersection $\widehat{R}^{2}=8$. In fact, the covering π factors as

$$
V \xrightarrow{\varphi} X_{1} \xrightarrow{\phi} X .
$$

The strict transforms $R^{\prime}, C_{1}^{\prime} \subset X$ of R, C_{1} meet at a point in the (-1)-curve E_{3}. Since C_{1}^{\prime} is contained in the branch locus of the covering ϕ, then the curve $R^{\prime \prime}:=\phi^{*}\left(R^{\prime}\right)$ is tangent to the (-2)-curve $\phi^{*}\left(E_{3}\right)$. This curve is in the branch locus of φ, hence the curve $R^{\prime \prime \prime}:=\varphi^{*}\left(R^{\prime \prime}\right)$ has a node at a point p in the (-1)-curve

$$
\bar{E}_{3}:=\frac{1}{2}(\phi \circ \varphi)^{*}\left(E_{3}\right) .
$$

So the image of $R^{\prime \prime \prime}$ in the minimal model V^{\prime} of V is a curve \widehat{R} with a tacnode.
The reduced strict transform of the conic C_{1} passes through p, hence its image $\widehat{C}_{1} \subset V^{\prime}$ is tangent to \widehat{R} at the tacnode. So the divisor $\widehat{R}+\widehat{C}_{1}$ is reduced and has

a singularity of type $(3,3)$. We want to show that it is even, i.e. there is a divisor L such that

$$
\widehat{R}+\widehat{C}_{1} \equiv 2 L
$$

and that

$$
\left(\widehat{R}+\widehat{C}_{1}\right)^{2}=16 .
$$

Step 3. The pencil of lines through the point p_{0} induces an elliptic fibration of the surface V. For $i=1,2$, the line T_{i} gives rise to a fibre (counted twice) which is the union of disjoint (-1)-curves $\xi_{1}^{i}, \ldots, \xi_{4}^{i}$ with an elliptic curve T_{i}^{\prime} such that $\xi_{j}^{i} T_{i}^{\prime}=1$. These curves can be labeled such that ξ_{1}^{i}, ξ_{2}^{i} correspond to the strict transform of T_{i} and ξ_{3}^{i}, ξ_{4}^{i} correspond to the (-2)-curve $E_{i}-E_{i}^{\prime}$. The curve $R^{\prime \prime \prime}$ meets $\xi_{1}^{1}, \xi_{2}^{1}, \xi_{1}^{2}, \xi_{2}^{2}$, thus $\widehat{R}^{2}=4+4=8$ and then $\left(\widehat{R}+\widehat{C}_{1}\right)^{2}=8+0+2 \times 4=16$.

Let H be the line through the points p_{1} and p_{2}. We have

$$
\pi^{*}(R+H)=R^{\prime \prime \prime}+H^{\prime}+2 \bar{E}_{3}+\sum_{1}^{2}\left(T_{i}^{\prime}+2 \xi_{3}^{i}+2 \xi_{4}^{i}\right)
$$

where $H^{\prime} \subset V$ is the strict transform of H. Denote by $\widehat{R}, \widehat{H}, \widehat{T}_{1}$ and \widehat{T}_{2} the projections of $R^{\prime \prime \prime}, H^{\prime}, T_{1}^{\prime}$ and T_{2}^{\prime} into the minimal model V^{\prime} of V. Then there is a divisor L^{\prime} such that

$$
\widehat{R}+\widehat{H}+\widehat{T}_{1}+\widehat{T}_{2} \equiv 2 L^{\prime}
$$

The pencil of conics tangent to the lines T_{1}, T_{2} at p_{1}, p_{2} induces another elliptic fibration of the surface V^{\prime}. The curves \widehat{C}_{1} and \widehat{H} are fibres of this fibration. We have

$$
\widehat{R}+\widehat{C}_{1}+\widehat{H}+\widehat{C}_{1}+\widehat{T}_{1}+\widehat{T}_{2} \equiv 2\left(L^{\prime}+\widehat{C}_{1}\right) .
$$

Since the above fibrations have elliptic bases, the sums $\widehat{H}+\widehat{C}_{1}$ and $\widehat{T}_{1}+\widehat{T}_{2}$ are even, thus there exists a divisor L such that $\widehat{R}+\widehat{C}_{1} \equiv 2 L$.

Step 4. Finally, consider the double cover

$$
\rho: S^{\prime} \longrightarrow V^{\prime}
$$

with branch locus $\widehat{R}+\widehat{C}_{1}$, determined by L. It follows from Proposition 1 that the smooth minimal model S of S^{\prime} is a surface of general type with $\chi=1$ and $K^{2}=7$. It is known that there is no smooth minimal surface of general type with $\chi=1, K^{2}=7$ and $q>2$ (see [HP] and the Beauville Appendix in [De]). Since $q(S) \geq q\left(V^{\prime}\right)=2$, we conclude that $p_{g}(S)=q(S)=2$.

Recall that $p_{3} \in C_{1} \cap T_{3}$ and assume that $p_{4} \in C_{2} \cap T_{4}$. The branch curve $C_{1}+C_{2}+T_{1}+\cdots+T_{4}$ is determined by the points p_{0}, \ldots, p_{4}. Since any two sequences of 4 points in \mathbb{P}^{2}, in general position, are projectively equivalent, we can fix p_{0}, \ldots, p_{3}. This implies that our family of examples is parametrized by a 2 -dimensional open subset of \mathbb{P}^{2}.
4. Example with $p_{g}=q=1$. Let $T_{1}, T_{2}, T_{3} \subset \mathbb{P}^{2}$ be distinct lines through a point p_{0} and $p_{1}, p_{2}, p_{3} \neq p_{0}$ be non-collinear points in T_{1}, T_{2}, T_{3}, respectively. For the construction of an example with $p_{g}=q=0$ and $K^{2}=7$, Y. Chen has shown that for a general point $p_{4} \neq p_{0}, \ldots, p_{3}$, there exist:

- an irreducible sextic curve C_{6} with a node at p_{0}, a tacnode at p_{i} with tangent line $T_{i}, i=1,2,3$, and having a triple point at p_{4};
- an irreducible quintic curve C_{5} through p_{0}, p_{4} and with a tacnode at p_{i} with tangent line $T_{i}, i=1,2,3$.
The curves C_{5}, C_{6} correspond to the curves $\tilde{B}_{2}, \tilde{B}_{3}$ given in [Ch1, Proposition 2.5].
Let T be a general line through p_{0}. Keeping a notation analogous to the one in Section 3, consider the map

$$
\mu: X \longrightarrow \mathbb{P}^{2}
$$

which resolves the singularities of the curve C_{6} and let

$$
\pi: V \longrightarrow X
$$

be the bidouble cover defined by the divisors

$$
\begin{aligned}
& D_{1}:=\widetilde{T}-E_{0}+E_{4}, \\
& D_{2}:=\left(\widetilde{T_{1}}+\widetilde{T_{2}}+\widetilde{T_{3}}-3 E_{0}-\sum_{1}^{3} 2 E_{i}^{\prime}\right)+\left(\widetilde{C_{6}}-2 E_{0}-\sum_{1}^{3}\left(2 E_{i}+2 E_{i}^{\prime}\right)-3 E_{4}\right), \\
& D_{3}:=\widetilde{C_{5}}-E_{0}-\sum_{1}^{3}\left(2 E_{i}+2 E_{i}^{\prime}\right)-E_{4} .
\end{aligned}
$$

Notice that D_{2} is the union of the strict transform of C_{6} with six (-2)-curves contained in the pullback of $T_{1}+T_{2}+T_{3}$, and D_{3} is the strict transform of C_{5}.

We verify that the divisors D_{1}, D_{2} and D_{3} have pairwise transverse intersections and no common intersection. Let $\widehat{C}_{5}, \widehat{C}_{6}$ be the strict transforms of C_{5}, C_{6}. These curves are disjoint from the (-2)-curves contained in the pullback of $T_{1}+T_{2}+T_{3}$. It is shown in [Ch1, Proposition 2.5] that the divisor $\widehat{C}_{5}+\widehat{C}_{6}+E_{4}$ has at most nodal singularities. Since the line T through p_{0} is generic, the result follows.

We have

$$
\begin{aligned}
& L_{1}:=7 \widetilde{T}-3 E_{0}-\sum_{1}^{3}\left(2 E_{i}+3 E_{i}^{\prime}\right)-2 E_{4} \\
& L_{2}:=3 \widetilde{T}-E_{0}-\sum_{1}^{3}\left(E_{i}+E_{i}^{\prime}\right) \\
& L_{3}:=5 \widetilde{T}-3 E_{0}-\sum_{1}^{3}\left(E_{i}+2 E_{i}^{\prime}\right)-E_{4} \\
& \\
& K_{X}+L_{1} \equiv 4 \widetilde{T}-2 E_{0}-\sum_{1}^{3}\left(E_{i}+2 E_{i}^{\prime}\right)-E_{4} \\
& K_{X}+L_{2} \equiv E_{4} \\
& K_{X}+L_{3} \equiv 2 \widetilde{T}-2 E_{0}-\sum_{1}^{3} E_{i}^{\prime}
\end{aligned}
$$

and

$$
2 K_{X}+\sum_{1}^{3} L_{i} \equiv 9 \widetilde{T}-5 E_{0}-\sum_{1}^{3}\left(2 E_{i}+4 E_{i}^{\prime}\right)-E_{4} .
$$

Thus

$$
\begin{gathered}
\chi\left(\mathcal{O}_{V}\right)=4+\frac{1}{2}(-4+0-2)=1, \\
p_{g}(V)=0+0+1+0=1
\end{gathered}
$$

and

$$
K_{V}^{2}=-5
$$

Since the minimal model V^{\prime} of V is obtained contracting the $12(-1)$-curves contained in $\pi^{*}\left(\widetilde{T_{1}}+\widetilde{T_{2}}+\widetilde{T_{3}}\right)$, then $K_{V^{\prime}}^{2}=7$.

Notice that the minimal smooth resolution of the double plane $Q \rightarrow X$ with branch locus $D_{1}+D_{3}$ is a K_{3} surface with 16 disjoint (-2)-curves, and one can obtain the surface V as a double cover of Q with a branch curve B as in Proposition 1. It can be shown that the bicanonical map of V factors through this double covering. In fact, it follows from [Zh] that the bicanonical map is of degree 2 onto a Kummer surface.

Finally we can see, as in [Ch1, Section 3], that this family of examples is parametrized by a 3 -dimensional open subset of $\mathbb{P}^{2} \times \mathbb{P}^{1}$: the point p_{4} moves in an open subset of \mathbb{P}^{2} and $\widetilde{T}-E_{0}$ moves in a pencil.
5. Example with $p_{g}=q=0$. In [Ri2, §4.6], the author has computed points $p_{0}, \ldots, p_{5} \in \mathbb{P}^{2}$ such that there exist:

- an irreducible curve C_{7} of degree 7 with triple points at p_{0}, p_{5} and tacnodes at p_{1}, \ldots, p_{4} with tangent line the line T_{i} through $p_{0}, p_{i}, i=1, \ldots, 4$;
- an irreducible curve C_{6} of degree 6 with a node at p_{0}, tacnodes at p_{1}, \ldots, p_{4} with tangent line the line T_{i} through $p_{0}, p_{i}, i=1, \ldots, 4$, and passing through p_{5} such that the singularity of $C_{6}+C_{7}$ at p_{5} is ordinary.
For the readers convenience, we give in the Appendix the equations of the curves C_{6}, C_{7} computed in $[\mathrm{Ri} 2, \S 4.6]$ (but with a different choice of p_{0}, \ldots, p_{5} in order to get shorter equations) and we verify that the curves are exactly as stated above.

We note that for generic points $p_{0}, \ldots, p_{5} \in \mathbb{P}^{2}$ there is no such curve C_{7}. This is because the dimension of the linear system of plane curves of degree 7 is 35 , and the imposition of singularities as above puts 36 conditions. We don't know how to construct C_{7} without using computer algebra. Thus here we compute just one surface, and we make no considerations about the dimension of the family of surfaces.

Keeping a notation as above, consider the map

$$
\mu: X \longrightarrow \mathbb{P}^{2}
$$

which resolves the singularities of the curve C_{7} and let

$$
\pi: V \longrightarrow X
$$

be the bidouble cover defined by the divisors

$$
\begin{aligned}
& D_{1}:=\left(\widetilde{T_{1}}-E_{0}-2 E_{1}^{\prime}\right)+E_{5}, \\
& D_{2}:=\left(\widetilde{T_{4}}-E_{0}-2 E_{4}^{\prime}\right)+\left(\widetilde{C_{6}}-2 E_{0}-\sum_{1}^{4}\left(2 E_{i}+2 E_{i}^{\prime}\right)-E_{5}\right), \\
& D_{3}:=\left(\widetilde{T_{2}}+\widetilde{T_{3}}-2 E_{0}-2 E_{2}^{\prime}-2 E_{3}^{\prime}\right)+\left(\widetilde{C_{7}}-3 E_{0}-\sum_{1}^{4}\left(2 E_{i}+2 E_{i}^{\prime}\right)-3 E_{5}\right) .
\end{aligned}
$$

Notice that D_{1} is the union of E_{5} with two (-2)-curves contained in the pullback of T_{1}, the divisor D_{2} is the union of the strict transform of C_{6} with two (-2 -curves contained in the pullback of T_{4}, and D_{3} is the union of the strict transform of C_{7} with four (-2)-curves contained in the pullback of $T_{2}+T_{3}$.

To show that the divisors D_{1}, D_{2} and D_{3} have pairwise transverse intersections and no common intersection, notice that the strict transforms $\widehat{C}_{6}, \widehat{C}_{7}$ of C_{6}, C_{7} meet at an unique point, because the intersection number of C_{6} and C_{7} at the points p_{0}, \ldots, p_{5} is $6+4 \times 8+3=41$. It suffices to show that this point is not in E_{5}. In the Appendix we compute that in fact the singularities of $C_{6}+C_{7}$ at p_{0}, \ldots, p_{5} are no worse than stated; there is an ordinary double point not in $\left\{p_{0}, \ldots, p_{5}\right\}$.

Let T be a general line through p_{0}. We have

$$
\begin{aligned}
L_{1} & :=8 \widetilde{T}-4 E_{0}-\left(2 E_{1}+2 E_{1}^{\prime}\right)-\sum_{2}^{4}\left(2 E_{i}+3 E_{i}^{\prime}\right)-2 E_{5}, \\
L_{2} & :=5 \widetilde{T}-3 E_{0}-\sum_{1}^{3}\left(E_{i}+2 E_{i}^{\prime}\right)-\left(E_{4}+E_{4}^{\prime}\right)-E_{5}, \\
L_{3} & :=4 \widetilde{T}-2 E_{0}-\left(E_{1}+2 E_{1}^{\prime}\right)-\sum_{2}^{3}\left(E_{i}+E_{i}^{\prime}\right)-\left(E_{4}+2 E_{4}^{\prime}\right), \\
K_{X}+L_{1} & \equiv\left(\widetilde{T_{2}}+\widetilde{T_{3}}+\widetilde{T_{4}}-3 E_{0}-\sum_{2}^{4} 2 E_{i}^{\prime}\right)+\left(2 \widetilde{T}-\left(E_{1}+E_{1}^{\prime}\right)-\sum_{2}^{5} E_{i}\right), \\
K_{X}+L_{2} & \equiv 2 \widetilde{T}-2 E_{0}-\sum_{1}^{3} E_{i}^{\prime}, \\
K_{X}+L_{3} & \equiv \widetilde{T}-E_{0}-E_{1}^{\prime}-E_{4}^{\prime}+E_{5}
\end{aligned}
$$

and

$$
2 K_{X}+\sum_{1}^{3} L_{i} \equiv 11 \widetilde{T}-7 E_{0}-\sum_{1}^{4}\left(2 E_{i}+4 E_{i}^{\prime}\right)-E_{5}
$$

The divisor

$$
\widetilde{T_{2}}+\widetilde{T_{3}}+\widetilde{T_{4}}-3 E_{0}-\sum_{2}^{4} 2 E_{i}^{\prime}
$$

is a disjoint union of $6(-2)$-curves, each meeting $K_{X}+L_{1}$ with intersection number -1 . Hence $K_{X}+L_{1}$ is effective only if

$$
2 \widetilde{T}-\left(E_{1}+E_{1}^{\prime}\right)-\sum_{2}^{5} E_{i}
$$

is effective. This is not the case, we can verify that the conic through the points p_{1}, \ldots, p_{5} is not tangent to the line T_{1}. Therefore $h^{0}\left(X, \mathcal{O}_{X}\left(K_{X}+L_{1}\right)\right)=0$ and then

$$
p_{g}(V)=0+0+0+0=0 .
$$

Also

$$
\chi\left(\mathcal{O}_{V}\right)=4+\frac{1}{2}(-2-2-2)=1
$$

and

$$
K_{V}^{2}=-9
$$

Since the minimal model V^{\prime} of V is obtained contracting the $16(-1)$-curves contained in $\pi^{*}\left(\widetilde{T_{1}}+\cdots+\widetilde{T_{4}}\right)$, then $K_{V^{\prime}}^{2}=7$.

The covering π factors as

$$
V \longrightarrow Y \longrightarrow X
$$

where $Y \rightarrow X$ is the double cover with branch locus $D_{2}+D_{3}$. Using the double cover formulas, one can verify that the smooth minimal model of Y is a numerical Campedelli surface $\left(p_{g}=q=0, K^{2}=2\right)$. The double cover $V \rightarrow Y$ is ramified over the pullback of D_{1} (which contains four (-2)-curves) and over the node corresponding to the transverse intersection of D_{2} and D_{3}.

Appendix A. Here we use the computer algebra system Magma [BCP] to show that the curves C_{6} and C_{7} referred in Section 5 are exactly as stated there. This code can be tested on the online Magma calculator [MC].

```
R<i>:=PolynomialRing(Rationals());
K<i>:=ext<Rationals()|i^2+1>;
P<x,y,z>:=ProjectiveSpace(K,2);
F6:=4*x^6-273*x^4*y^2-258*x^2*y^4-481*y^6+720*x^4*y*z+1740*x^2*y^3*z+
4020*y^5*z-520*x^4*z^2-3190*x^2*y^2*z^2-12670*y^4*z^2+1200*x^2*y*z^3+
17700*y^3*z^3+900*x^2*z^4-9225*y^2*z^4;
F7:=12*x^7+(8*i+420)*x^6*y+1611*x^5*y^2+(174*i+3060)*x^4*y^3+
4086*x^3*y^4+(924*i+3360)*x^2*y^5+987*x*y^6+(-242*i+720)*y^7-560*x^6*z-
4320*x^5*y*z+(-480*i-13580)*x^4*y^2*z-23940*x^3*y^3*z+
(-5160*i-24980)*x^2*y^4*z-10620*x*y^5*z+(1320*i-6960)*y^6*z+
2760*x^5*z^2+(240*i+16200)*x^4*y*z^2+44970*x^3*y^2*z^2+
(9780*i+63900)*x^2*y^3*z^2+39210*x*y^4*z^2+(-2460*i+25200)*y^5*z^2-
4400*x^4*z^3-28800*x^3*y*z^3+(-7200*i-62300)*x^2*y^2*z^3-
60300*x*y^3*z^3+(1800*i-40400)*y^4*z^3+2700*x^3*z^4+
(1800*i+16500)*x^2*y*z^4+33075*x*y^2*z^4+(-450*i+24000)*y^3*z^4;
C6:=Curve(P,F6); C7:=Curve(P,F7);
IsAbsolutelyIrreducible(C6);
IsAbsolutelyIrreducible(C7);
p:=[P![0,0,1],P![-2,1,1],P![2,1,1],P![-1,2,1],P![1,2,1],P![3,2*i,1]];
[ResolutionGraph(C6,p[i]):i in [1..5]];
[ResolutionGraph(C7,p[i]):i in [1..6]];
[ResolutionGraph(C6 join C7,p[i]):i in [1..6]];
SingularPoints(C6 join C7);
```


REFERENCES

[BHPV] W. Barth, K. Hulek, C Peters, and A. Van de Ven, Compact complex surfaces, Berlin: Springer, 2nd enlarged edition, 2004.
[BCP] W. Bosma, J. Cannon, and C. Playoust, The Magma algebra system. I. The user language, J. Symbolic Comput., 24 (1997), no. 3-4, pp. 235-265.
[CCM] F. Catanese, C. Ciliberto, and M. Mendes Lopes, On the classification of irregular surfaces of general type with nonbirational bicanonical map, Trans. Amer. Math. Soc., 350:1 (1998), pp. 275-308.
[Ca] F. Catanese, Singular bidouble covers and the construction of interesting algebraic surfaces, in "Algebraic geometry: Hirzebruch 70 (Warsaw, 1998)", volume 241 of Contemp. Math., pp. 97-120. Amer. Math. Soc., Providence, RI, 1999.
[Ch1] Y. Chen, A new family of surfaces of general type with $K^{2}=7$ and $p_{g}=0$, Math. Z., 275 (2013), no. 3-4, pp. 1275-1286.
[Ch2] Y. Chen, Commuting involutions on surfaces of general type with $p_{g}=0$ and $k^{2}=7$, Manuscripta Math., 147 (2015), no. 3-4, pp. 547-575.
[De] O. Debarre, Inégalités numériques pour les surfaces de type général, Bull. Soc. Math. France, 110:3 (1982), pp. 319-346. With an appendix by A. Beauville.
[HP] C. D. Hacon and R. Pardini, Surfaces with $p_{g}=q=3$, Trans. Amer. Math. Soc., 354:7 (2002), pp. 2631-2638.
[In] M. Inoue, Some new surfaces of general type, Tokyo J. Math., 17:2 (1994), pp. 295-319.
[MC] Magma online calculator. http://magma.maths.usyd.edu.au/calc/.
[Pa] R. Pardini, Abelian covers of algebraic varieties, J. Reine Angew. Math., 417 (1991), pp. 191-213.
[PP] M. Penegini and F. Polizzi, Surfaces with $p_{g}=q=2, K^{2}=6$, and Albanese map of degree 2, Can. J. Math., 65:1 (2013), pp. 195-221.
[Pe] U. Persson, Double coverings and surfaces of general type, in "Algebraic geometry (Proc. Sympos., Univ. Troms \varnothing, Troms \varnothing, 1977), volume 687 of Lecture Notes in Math., pp. 168-195. Springer, Berlin, 1978.
[Pi] G. P. Pirola, Surfaces with $p_{g}=q=3$, Manuscripta Math., 108:2 (2002), pp. 163-170.
[Ri2] C. Rito, Involutions on surfaces with $p_{g}=q=1$, Collect. Math., 61:1 (2010), pp. 81-106.
[Ri3] C. Rito, On equations of double planes with $p_{g}=q=1$, Math. Comp., 79:270 (2010), pp. 1091-1108.
[Ye] S.-K. Yeung, Classification of surfaces of general type with Euler number 3, J. Reine Angew. Math., 679 (2013), pp. 1-22.
[Zh] L. Zhang, Surfaces with $p_{g}=q=1, K^{2}=7$ and non-birational bicanonical maps, Geom. Dedicata, 177 (2015), pp. 293-306.

[^0]: *Received January 20, 2016; accepted for publication March 23, 2017.
 ${ }^{\dagger}$ Permanent address: Universidade de Trás-os-Montes e Alto Douro, UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal (crito@utad.pt). Current address: Departamento de Matemática, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto, Portugal (crito@fc.up.pt).

