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THE quot FUNCTOR OF A QUASI-COHERENT SHEAF∗

GENNARO DI BRINO†

Abstract. We build an infinite dimensional scheme parametrizing isomorphism classes of co-

herent quotients of a quasi-coherent sheaf on a projective scheme. The main tool to achieve the
construction is a version of Grothendieck’s Grassmannian embedding combined with a result of
Deligne, realizing quasi-coherent sheaves as ind-objects in the category of quasi-coherent sheaves of
finite presentation. We end our treatment with the discussion of a special case in which we can retain
an analog of the Grassmannian embedding.
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1. Introduction.

The original construction and our leading question. Since their introduc-
tion in [Gro95], Quot schemes have played a fundamental role in algebraic geometry
and, in particular, in deformation theory. For instance, they provide natural com-
pactifications of spaces of morphisms between certain schemes ([Gro95]), they are
used to give a presentation of the stack of coherent sheaves over a projective scheme
([LMB00]), and their derived version ([CFK01], [Pri13]) is of fundamental importance
in derived algebraic geometry.
Recall that, given a Hilbert polynomial h, a projective scheme X over an algebraically
closed field k and a quasi-coherent sheaf E , one defines the contravariant functor
quotXh (E(−)) : (Sch/k)

◦ → Set as

quotXh (ET ) :=

{
K ⊂ ET |

ET /K is coherent, f lat over OT ,
and has Hilbert polynomial h

}
(1)

where ET := E ⊗k OT , and as pullback on morphisms. Note also that coherence,
flatness and the Hilbert polynomial condition are imposed on quotients. In his original
outline of the construction, Grothendieck proves the representability of the above
functor only in the case when E is coherent.
The question we address in this work concerns the representability of the quot functor
when the sheaf E in (1) is only assumed to be quasi-coherent. In particular, our main
result (Theorem 4.2.11) implies the statement below.

Theorem 2. Let E be a quasi-coherent OX-module and let X and h be as above.
Then there is a scheme QuotXh (E) representing the functor quotXh (E(−)).

In the following two paragraphs we give an idea of our construction of the scheme
QuotXh (E) and outline the other results contained in this work. In the rest of this
Introduction E will always denote a quasi-coherent sheaf over the projective scheme
X and we may sometimes refer to QuotXh (E) as the quasi-coherent Quot scheme.
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The filtering schematic Grassmannian. The main idea in Grothendieck’s
paper is that the representability of the quot functor and the resulting universal
property of the Quot scheme are inherited from the corresponding properties of a
certain Grassmannian, in which the quot functor lives. Motivated by this, in Section 3
we provide a filtering construction for the Grassmannian. More in detail, if Grassn(F)
denotes the Grassmannian of locally free rank n quotients of a quasi-coherent sheaf
F [EGAS], we prove the following proposition (see Lemma 3.2.7).

Proposition 3. Let F be a quasi-coherent sheaf over a scheme S. Then
Grassn(F) is the filtering inductive limit over i of an increasing sequence of quasi-

compact open subschemes
(
G←−(n,F)i

)
i∈I

.

The schemes G←−(n,F)i in the statement are constructed as projective limits of
diagrams consisting of certain subschemes of Grassmannians of finite type and affine
morphisms between them (see Lemma 3.2.3 for the proof of affineness). Also, note
that a crucial ingredient in the proof of Proposition 3 is the following theorem of
Deligne.

Lemma 4 ([Del66]). Let X be a quasi-compact quasi-separated scheme (not nec-
essarily Noetherian). Then the category QCoh(X) of quasi-coherent sheaves on X
is equivalent to that of ind-objects in the category of quasi-coherent sheaves of finite
presentation on X.

For the sake of the reader, we briefly review the concepts involved the above
statement in Subsection 2.2.

Two uses of the Grassmannian embedding. The filtering construction from
Section 3 will be of twofold interest to us. First, in building the Quot scheme of
E we will proceed in a way that follows the same “ind-pro principle”, to get an in-
finite dimensional analog of the classical scheme of [Gro95] which we denote again
by QuotXh (E). More precisely, we construct a candidate for the scheme represent-
ing the functor quotXh (E(−)) as a filtering inductive limit of certain schemes denoted
Q
←−
(h, E)i. In order to obtain the Q

←−
(h, E)i’s, we take the projective limit of a filtering

projective system consisting of some open subschemes of ordinary Quot schemes and
affine morphisms between them. Roughly speaking, the affineness of such morphisms
will be proved by viewing them as restrictions of morphisms between Grassmannians
(Lemma 4.2.1).

In the last part of this work, we introduce uniformly regular sheaves over a pro-
jective scheme X . These are quasi-coherent sheaves all of whose coherent approxima-
tions in the sense of Proposition 2.2.1 (and the following Remarks) have Castelnuovo-
Mumford regularities [Mum66] bounded by a given integer m. This said, the other
way in which we use the filtering construction from Proposition 3 is to show that
QuotXh (E) can be embedded in some schematic Grassmannian. The precise statement
is as follows (see Definition 4.3.4).

Theorem 5. Let E be a uniformly m-regular quasi-coherent sheaf on a projective
k-scheme X. Then there is a quasi-closed embedding

QuotXh (E) ↪→ Grassh(m)

(
lim
−→
j

H0(X, Ej(m))

)
.
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Further directions of research. Assume k = C. Recall that given nonnegative

integers d, r and m, with r < m, the ordinary Quot scheme QuotP
1

r,d(O
m
P1) of quotients

of Om
P1 of rank r and degree d, can be used to compactify the space

M
m
d := Ratd(P

1,Grassr(O
m
P1)),

of maps of degree d from P1 to Grassr(O
m
P1). To see this, one can note that giving

a morphism P1 → Grassr(O
m
P1) of degree d is equivalent to the datum of a quotient

bundle of Om
P1 of rank r and degree d. Similarly, letting m approach ∞, one could use

the Quot scheme we construct here to study the topology of the spaces

M
∞
d = Ratd(P

1,Grassr(O
⊕∞
P1 )),

of rational curves of degree d in the schematic Grassmannian.

Relations to other work. An instance of the quasi-coherent Quot scheme of
length 1 quotients appeared in the work of S. Kleiman [Kle90], we refer the reader to
Remark 4.2.14 for further details.

More recently, keeping E quasi-coherent, a generalization of Grothendieck’s the-
orem in another direction has been carried out by R. Skjelnes, applying different
techniques from the ones used here. More precisely, in [Skj11] it is showed that if one
replaces the projective scheme X with an algebraic space and requires the quotients
to be flat, with finite support and of relative rank n, then the object representing the
quot functor is again an algebraic space ([Skj11, Theorem 6.11]).

Finally, while a second version of this paper was being prepared, the author
learned from David Rydh that a construction for general quot functors was being
carried out independently by Hall and Rydh in what is now available as [HR13]. In
their case, starting from an algebraic stackX with finite diagonal and a quasi-coherent
sheaf on it, one obtains a separated algebraic space representing the quot functor in
the sense of algebraic spaces.

Acknowledgments. The author would like to thank his Ph.D. advisor, Mikhail
Kapranov, for suggesting the problem and for his constant support and encourage-
ment. Besides, the author wishes to express his gratitude to David Rydh for kindly
sharing a draft of his joint work with Hall, and to Roy Skjelnes and Angelo Vistoli for
helpful comments and suggestions. Finally, the author is grateful to the Mathematics
Department of the KTH, Stockholm, for the warm hospitality during the preparation
of a second version of this paper.

2. Some background material. We recall here some results that we will need
in the rest of our work.

2.1. Limits and quasi-compact schemes. Recall that a filtering inductive
limit is defined as the inductive limit of a covariant functor F : I → C where C is
any category and I is a filtering poset, i. e., every two objects have a common upper
bound. In case no confusion can arise, we may refer to I simply as the indexing
category. A filtering projective limit is defined dually, assuming that the functor F
above is contravariant.

The following result will be used to construct quasi-compact schemes that will
form two filtering covers for the schematic Grassmannian and the quasi-coherent Quot
scheme, respectively. The statements from which it follows are scattered throughout
[EGAIV3] to which the reader is referred. We remark that affineness of the morphisms



4 G. DI BRINO

in the statement below ensures that the limit is a scheme, whereas quasi-compactness
of the limit follows from Tychonoff’s Theorem.

Proposition 2.1.1. Let S be a scheme and let (Xi)i be a filtering projective
system of quasi-compact S-schemes and affine morphisms between them. Then the
projective limit

X := lim
←−
i

Sch/SXi

is a quasi-compact S-scheme.

2.2. Ind-objects and a theorem of Deligne. An ind-object in a category C
is by definition a filtering inductive limit in Ĉ := Fun(C◦,Set) of presheaves of sets of

C. One denotes by Ind(C) the full subcategory of Ĉ whose objects are the ind-objects
of C (see [Del66] or more extensively [SGAIV2] for further details).

The proposition below will be of crucial importance in what follows.

Proposition 2.2.1 ([Del66, Prop. 2]). Let X be a quasi-compact quasi-separated
scheme (not necessarily Noetherian). Then the category QCoh(X) of quasi-coherent
sheaves on X is equivalent to that of ind-objects in the category of quasi-coherent
sheaves of finite presentation on X.

Remark 2.2.2. A quasi-coherent sheaf E on a quasi-compact quasi-separated
scheme X is therefore given by the inductive limit in QCoh(X) of a filtering inductive
diagram (

E i, αi,j : E i → Ej
)
i,j∈I

(2.2.3)

of finitely-presented sheaves and morphisms between them.

Next, the lemma below shows that on a Noetherian scheme the notion of sheaf of
finite presentation reduces to that of coherent sheaf.

Lemma 2.2.4. Let X be a Noetherian scheme and let F be a finitely presented
quasi-coherent sheaf on X. Then F is coherent.

Proof. Using the definition of coherent sheaves from [EGAS], we need to check
that F is of finite type and that for all opens U and for all integers n, the kernel of any
homomorphisms On

X |U → F|U is of finite type. The first condition being automati-
cally satisfied, we need only check that kernels are of finite type. But this follows from
the fact that the submodules of a Noetherian module are finitely generated, which in
turn holds since a finitely generated module over a Noetherian ring, such as OX |U , is
again Noetherian.

Remark 2.2.5. Assuming that X is Noetherian, Proposition 2.2.1 together with
Lemma 2.2.4 imply that there is an equivalence of categories between the category
QCoh(X) and Ind(Coh(X)), the ind-category of the category of coherent sheaves on
X . We will sometimes refer to the coherent sheaves E i in the diagram (2.2.3) as to
the i-th coherent approximation of E .
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2.3. Representable functors. Let S be a scheme, for any contravariant functor

ϕ : (Sch/S)◦ → Set,

the datum U �→ ϕ(U), with U ⊂ X open, defines in the obvious way a presheaf of sets
on every S-scheme X . The functor ϕ is then called a sheaf in the Zariski topology if
for any S-scheme X and for any cover {Uα}α of X the sequence

ϕ(X) →
∏
α

ϕ(Uα) ⇒
∏
α,β

ϕ(Uα ×X Uβ)

is exact, i.e., if {fα ∈ ϕ(Uα)}α are such that fα and fβ agree in ϕ(Uα ×X Uβ) then
there exists a unique f ∈ ϕ(X) mapping to each fα via the restriction ϕ(X) → ϕ(Uα).

It is well known that being a sheaf in the Zariski topology is a necessary condition
for the functor ϕ to be representable. Moreover, once one is able to prove that ϕ is a
sheaf one can reduce to showing representability over the category of affine schemes.
The following Lemma provides a criterion for ϕ to be representable, we recall it here
for the reader’s convenience (see, e.g., [Ser06, Appendix E]).

Lemma 2.3.1. Let S and ϕ be as above. Assume that
a) ϕ is a sheaf;
b) ϕ admits a covering by representable open subfunctors ϕα.

Then ϕ is representable by an S-scheme.

2.4. Preliminaries to the classical Quot scheme. In this subsection we
summarize Grothendieck’s construction of the Quot scheme and the main results
needed. Besides [Gro95], the more extensive treatments we refer the reader to are
[Mum66], [Vie95] and [HL10]. The first section of [CFK01] also contains a brief
outline of the construction, and some of the statements we will need are closer in
spirit to those.

Let k be an algebraically closed field and let X be a projective k-scheme, consid-
ered together with a fixed very ample invertible sheaf OX(1).

The theorem of Serre (see [FAC] or [CFK01]) below already contains the notion
of what is usually referred to as Castelnuovo-Mumford regularity.

Theorem 2.4.1. For any coherent sheaf G ∈ Coh(X) there exists an interger
m = m(G) such that Hj(X,G(m)) = 0 for all j > 0 and all d ≥ m. Moreover, the
multiplication map

H0(X,OX(i))⊗H0(X,G(d)) −→ H0(X,G(d+ i))

is surjective for all i ≥ 0 and all d ≥ m.

More precisely, let m ∈ Z. Recall that a coherent sheaf G on a polarized projective
Spec(k)-scheme X is said to be m-regular – or of Castelnuovo-Mumford regularity m
– if

Hα(X,G(m− α)) = 0,

for all integers α > 0. Now, if

0 → F ′ −→ F −→ F ′′ → 0



6 G. DI BRINO

is a short exact sequence of coherent sheaves overX , additivity of the Euler character-
istic on exact sequences implies that the regularity of F is bounded by the maximum
of the regularities of F ′ and F ′′ (see, e.g., [Mum66, Lecture 14]).

Along the same lines, one can prove the following Theorem. We recall that the
Hilbert polynomial hG of G ∈ Coh(X) is defined as hG(t) := χ(G(t)). It is well known
that hG ∈ Q[t].

Theorem 2.4.2 (“Uniform Regularity Lemma”, [Mum66]). Let G be as above
and let h be a fixed Hilbert polynomial. Then the integer m can be chosen so that all
quotients of G with Hilbert polynomial h and all of their kernels are m-regular.

Finally, we collect in the following Theorem two fundamental results that we will
use later on.

Theorem 2.4.3. (a) [EGAIV2] Let T be a k-scheme of finite type and let πT :
X × T → T be the projection. If F is an OT -flat coherent sheaf on X × T , then for
d 
 0 the direct images

R0πT ∗F(d)

are finite rank locally free sheaves on T .
(b) (see [Mum66] for the statement in this form) Let W and Z be any two algebraic

k-schemes and let H and K be quasi-coherent sheaves on W and Z, respectively.
Denote by πW and πZ the respective projections from the product W × Z, then

πW ∗(π
∗
WH⊗ π∗ZK) � H⊗k H0(Z,K).

Remark 2.4.4. In the notation of Theorem 2.4.3, part (a), Theorem 2.4.1 implies
that if F is a(n m-regular) quotient of πX

∗G, then πT ∗F(m) uniquely determines
the sheaf

⊕
d≥m πT ∗F(d), which in turn determines F by the usual equivalence of

categories between finitely generated graded modules and coherent sheaves on X
([FAC]).

3. A filtering cover for the schematic Grassmannian.

3.1. Reminder on the classical construction. We start by recalling the con-
struction of the Grassmannian. For an integer n ≥ 1, a scheme S and quasi-coherent
OS-module E , we denote by grassn(E) the set of locally free rank n quotient OS-
modules of E .

Theorem 3.1.1 ([EGAS]). For every scheme S and every quasi-coherent OS-
module E, the functor γn,E : (Sch/S)◦ → Set given on objects by

γn,E(T ) := grassn(ET ),

where ET is the base change along the structure morphism T → S, and as pullback on
morphisms, is represented by a separated S-scheme Grassn(E). Moreover, there exists
a locally free rank n quotient OGrassn(E)-module Q of EGrassn(E), determined up to a
unique isomorphism, such that

g �→ g∗(Q) : HomS(T,Grassn(E))
∼
−→ γn,E(T )

is a natural isomorphism.
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The vector bundle Q in the statement is the universal quotient bundle of the
Grassmannian. Note that if we do not assume that E in Theorem 3.1.1 is of finite
type or finitely presented, then the scheme Grassn(E) will not in general be of finite
type nor will it be quasi-compact. We will refer to Grassn(E) as the schematic, or
quasi-coherent, Grassmannian when E is not assumed to have any finiteness properties.

Taking Theorem 3.1.1 for granted when E is a finitely presented sheaf, we provide
a construction of the schematic Grassmannian which is a filtering version of that of
[EGAS]. Our construction of the Quot scheme of a quasi-coherent sheaf in the second
part of this paper will partly follow the same pattern.

In the rest of this Section, we briefly review the part of the proof of Theorem
3.1.1 which we will need in the sequel. First, we have

Lemma 3.1.2 ([EGAS]). The functor γn,E is a sheaf of sets.

Therefore, we can reduce to proving its representability over the category of affine
schemes. We will make such an assumption until the end of this section.

Let then T be an S-scheme. For some index i, denote by γn,E,i(T ) the subset
of γn,E(T ) consisting of the quotients H of ET such that, for some finitely-presented
subsheaf E i of E , we have a surjective composition

E i
T → ET � H, (3.1.3)

where the second arrow is the canonical quotient map. Note that the existence of an i
such that a surjective composition as in (3.1.3) exists follows from the Lemma below.

Lemma 3.1.4 ([EGAS, (0, 5.2.3)]). Let T be a quasi-compact scheme and let E
and H be two OT modules. Assume H is of finite type and let moreover u : E → H
be a surjective homomorphism. If E is a filtering inductive limit of a system (E i)i of
OT -modules, then there exists an index i such that there is a surjection E i → H.

Therefore we have that

T �→ γn,E,i(T ),

together with the usual pull-back on morphisms, defines a subfunctor of γn,E .

Notation 3.1.5. To simplify the notation, from now on we will write γ and γi
instead of γn,E and γn,E,i, respectively, if no confusion can arise.

Since we can now assume that S is affine, the sheaf E is completely determined
by a Γ(S,OS)-module E via Serre’s equivalence of categories: E = Ẽ. Thus E is
generated by a (possibly infinite) family of sections (ta)a∈Ω. For an S-scheme T ,
denote by ta,T the pullback of ta along the structure morphism T → S. Let then H
be a subset of Ω consisting of n elements, using the sections (ta,T )a∈H we can define
a homomorphism of OT -modules

ϕH,T : On
T → ET .

Now, consider the subset FH(T ) of γ(T ) consisting of the quotients H of ET such that
we have a surjective composition

On
T

ϕH,T

−−−→ ET
q

−→ H, (3.1.6)

where the second arrow is the canonical quotient map. For future reference we denote
by sa the canonical image in Γ(T,H) of the section ta,T .
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The datum T �→ FH(T ) together with pullback on morphisms defines a subfunctor
of γ, and the main step in Grothendieck’s construction consists in proving that such
a functor is represented by a scheme XH (which one could call the inverse Plücker
subscheme) which is affine over S, and that FH is an open subfunctor of γ. The
functors Gj

i in the Lemma 3.2.3 below are essentially unions of the functors FH as H
ranges over the set of sections of E i.

3.2. The schematic Grassmannian as a filtering inductive limit. The
following Lemma in the spirit of [EGAS] collects a few results which we will need in
the rest of the paper.

Lemma 3.2.1. Let Z and Z ′ be two locally ringed spaces and let u : F → G
be a homomorphism of quasi-coherent OZ-modules of finite presentation. Then the
following statements hold.

(a) The set of points z of Z where the localization uz : Fz → Gz is surjective is
open in Z.

(b) The homomorphism uz : Fz → Gz is surjective if and only if the homomor-
phism uz ⊗ 1 : Fz/mzFz → Gz/mzGz is surjective.

(c) Let f : Z ′ → Z be a morphism of locally ringed spaces and put F ′ = f∗(F),
G′ = f∗(G) and u′ = f∗(u) : F ′ → G′. Then the localization u′z′ at a point z′

of Z ′ is surjective if and only if the localization uz is surjective at the point
z = f(z′).

Proof. (a) Assume uz to be surjective at the point z. We will find a neighborhood
V of z such that uz′′ is surjective at z′′ for all z′′ ∈ V . For this, since F and G
are of finite presentation, there exists a neighborhood U of z such that we have a
commutative ladder diagram with exact rows

Os
Z |U −−−−→ Or

Z |U
v

−−−−→ F −−−−→ 0⏐⏐� ⏐⏐� ⏐⏐�u

Os1
Z |U −−−−→ Or1

Z |U −−−−→ G −−−−→ 0,

for some positive integers r, r1, s, s1. By exactness of the top row, the surjectivity of
u is equivalent to the surjectivity of the composition ϕ := u ◦ v : Or

Z |U → G and the
same statement holds for the localized homomorphism ϕz. In order to conclude, we
claim that ϕz is surjective if and only if there exists a neighborhood V of z such that
the localization ϕz′′ is surjective for all z′′ in V .

The question being local, consider instead a ring A, an A-module N , and a
homomorphism ϕ : Ar → N such that at some point p the elements n1, . . . , nr ∈ N
generate Np over Ap. Moreover, let l1, . . . , lt be generators for N so that we have

li =
r∑

j=1

aijnj (3.2.2)

where aij ∈ Ap for all i and j.
Now, the localization of A at p is a filtering inductive limit

Ap = A[(A \ p)−1] = lim
−→
S �⊃p

A[S−1]

and, since the aij ’s are finite in number, there exists a multiplicatively closed subset
S0 ⊃ p of A such that aij ∈ A[S−1

0 ] for all i, j. It follows that we can localize (3.2.2)
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again at other points around p and get every time a surjective localized homomor-
phism.

(b) The question is again local, so consider a homomorphism of modules up :
Mp → Np and the canonical quotient morphism wN : Np → Np/pNp. Suppose
up ⊗ 1 : Mp/pMp → Np/pNp is surjective. Then, composing the other canonical
surjection wM : Mp → Mp/pMp with up ⊗ 1 we get a surjective homomorphism
Mp → Np/pNp. By Nakayama’s Lemma, the module Np has the same generators of
Np/pNp, whence our claim. The other direction of the argument is clear.

(c) We have F ′z′ = Fz ⊗OZ,z
OZ,z′ and G′z′ = Gz ⊗OZ,z

OZ,z′ and u′z′ is obtained
from uz by base change from OZ,z to OZ,z′ . Let κ and κ′ be the residue fields of
z ∈ Z and z′ ∈ Z ′, then F ′z′ ⊗ κ′ = (Fz ⊗ κ′)⊗ κ′ and G′z′ ⊗ κ′ = (Gz ⊗ κ′)⊗ κ′, and
we get uz′ ⊗ 1κ′ : F ′z′ ⊗κ′ → G′z′ ⊗κ′ by base changing uz⊗ 1κ : Fz ⊗κ → Gz ⊗κ from
κ to κ′. Now, since such a base change is faithfully flat one can conclude by applying
Nakayama’s Lemma and part (b).

Lemma 3.2.3. Let S and T be as in Section 3.1 and let E i αi,j

−→ Ej be a homo-
morphism of finitely presented OS-modules. Denote by q : Ej

T −→ H the canonical
quotient map. Then the functor

Gj
i : (Sch/S)◦ → Set

defined by

Gj
i (T ) : = γn,Ej ,i(T )

=

{
H ∈ γn,Ej (T )| the composition E i

T

αi,j

T−→ Ej
T

q
−→ H

is surjective

}
(3.2.4)

is an open subfunctor of γn,Ej . Moreover, if we let Gj
i be the open subscheme of

Grassn(E
j) representing the above subfunctor, we have that there is an affine mor-

phism

vij : G
j
i → Grassn(E

i).

Proof. We start by proving that Gj
i is an open subfunctor of γn,Ej . Let thus Z be

an S-scheme, we need to show that the fiber product functor

T �→ Gj
i (T )×γ

n,Ej (T ) HomS(T, Z)

is represented by an open subscheme of Z. Yoneda’s lemma implies that a natural
transformation HomS(−, Z) ⇒ γn,Ej is completely determined by an element F ∈
γn,Ej (Z) as a pullback: HomS(T, Z) � g �→ g∗(F) ∈ γn,Ej(T ). By Lemma 3.2.1(a) we

have that the set of points of Z where the localization of the composition q ◦ αi,j
Z is

surjective is an open subset

U := UZ,i,F (3.2.5)

of Z. Moreover if Y is another scheme, the set of S-morphisms g : Y → Z such that
g∗(F) ∈ Gj

i (Y ) is equal to the set of S-morphisms such that g(Y ) ⊂ U . In fact, the

set of points y of Y where (g∗(q) ◦ αi,j
Z )y is surjective is equal to g−1(U) by Lemma

3.2.1(c). On the other hand, saying that g∗(F) ∈ Gj
i (Y ) means that g−1(U) must
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coincide with all of Y . We have just proved that the above fiber product of functors
is represented by an open subscheme of Z.

To establish the second part of the statement, consider the natural transformation

Gj
i =⇒ γn,Ei

defined by sending the quotients in Gj
i (T ) to the corresponding elements of γn,Ei(T ).

We will show that such morphism of functors is represented by the affine morphisms
of schemes vij of the statement. To see this, it remains to show that the morphism
is indeed affine. Now, replacing E with E i in (3.1.6), we still obtain subfunctors F i

H

of γn,Ei which are represented by affine subschemes X i
H . Since we are assuming S

to be affine, the schemes X i
H , as H varies over the subsets of (ta,T )a∈I of cardinality

n, can be identified with subschemes forming an open covering of Grassn(E
i). Given

one of such schemes, which we denote again X i
H by a slight abuse of notation, we

have to show that its inverse image is an open affine subscheme of Gj
i . At this point,

given the homomorphism E i αi,j

−→ Ej over S and a morphism T → S, the fact that the
composition

E i
T

αi,j
T−→ Ej

T

q
−→ H

is surjective implies that the inverse image v−1
ij (X i

H) of X i
H ⊂ Grassn(E

i) is equal to

the subscheme Xj
H of Gj

i .

Remark 3.2.6. Note that the open subset UZ,i,F in the above proof is equal to
the union of the sets UZ,H,F of [EGAS, Lemme 1,9.7.4.6], as H varies in the family
of subsets of cardinality n of (ta,Z)a∈I . See also Example 3.2.14.

Lemma 3.2.7. The functor γi is represented by the quasi-compact scheme given
by the projective limit

G←−(n, E)i := lim
←−
j>i

Gj
i .

Proof. First, we show that G←−(n, E)i is quasi-compact. The morphism in the
filtering projective system (

(Gj
i )j≥i, G

j
i

vj,j′
←− Gj′

i

)
(3.2.8)

whose target is Gi
i = Grassn(E

i), is affine by Lemma 3.2.3. Moreover, all of the
other morphisms in the system can be defined via natural transformations as in the
proof of the previous Lemma, and proved to be affine arguing similarly. Therefore,
quasi-compactness of the projective limit follows from Proposition 2.1.1.

In order to prove that γi is representable, we have to show that the functors
HomS(−, G←−(n, E)i) and γi are naturally isomorphic. Using the isomorphism

Gj
i =̃⇒HomS(−, Gj

i )

and, for any S-scheme T ,

HomS(T, G←−(n, E)i) = HomS(T, lim←−
j≥i

Gj
i ) = lim

←−
j≥i

Set HomS(T,G
j
i ),
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one can see that γi(T ) is the vertex of a left cone over the diagram formed by the sets(
HomS(T,G

j
i )
)
j
, with morphisms resulting from those of the system (3.2.8). In this

way, for every T one gets a map

γi(T )
LT−→ lim

←−
j≥i

HomS(T,G
j
i ),

which is natural in T by the universal property of the projective limit.
Furthermore, we have that a right inverse Y for L is provided by Yoneda’s Lemma,

which implies that any natural morphism from HomS(−, G←−(n, E)i) to γi is completely

determined by pulling back an element of γi(G←−
(n, E)i). Indeed, the square

HomS(T
′, lim
←−j≥i

Gj
i )

YT ′

−−−−→ γi(T
′)⏐⏐� ⏐⏐�

HomS(T, lim←−j≥i
Gj

i )
YT−−−−→ γi(T )

is commutative, thanks to the fact that pulling back anticommutes with the compo-
sition of morphisms. At this point, one can see by direct computation that, for all T ,
the composition LT ◦ YT of the two natural transformations is the identity.

On the other hand, Y is also a left inverse for L. To see this, let F j be the
universal sheaf over Gj

i , for j ≥ i, and let vj : G←−(n, E)i → Gj
i be the canonical maps.

If F denotes the universal sheaf over G←−(n, E)i, we have

F = lim
−→
j≥i

v∗jF
j .

This allows us to conclude that the composition YT ◦ LT is the identity.

Lemma 3.2.9. γi is an open subfunctor of γ.

Proof. The same argument we used in the proof of Lemma 3.2.3 to prove that Gj
i

is an open subfunctor of γn,Ej can be used to show that γi is an open subfunctor of
γ(−) := grassn(E(−)).

Lemma 3.2.10. For i < i′ we have an open embedding of quasi-compact schemes

G←−(n, E)i → G←−(n, E)i′ .

Proof. From Lemma 3.2.7 we know that for any i the quasi-compact scheme
G←−(n, E)i represents the functor γi. Therefore, proving the statement amounts to

showing that γi is an open subfunctor of γi′ whenever i < i′, namely, that the functor
(Sch/S)◦ → Set given by

T �→ γi(T )×γi′(T ) HomS(T, Z),

is represented by an open subscheme of Z. As we did in the previous proofs, after
applying Yoneda’s Lemma, the main tool we use is the following variation of [EGAS,
Lemme 1,9.7.4.6] whose proof can be obtained in essentially the same way.
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Lemma 3.2.11.

(1) Let Z be an S-scheme, F a quotient OZ-module EZ
q

−→ F of EZ such that
the composition

E i′

Z

αi′

Z−→ EZ
q

−→ F

is surjective. Then the set UZ,i→i′,F , of points of Z where the localization of
the composition

E i
Z

αi,i′

Z−→ E i′

Z

αi′

Z−→ EZ
q

−→ F

is surjective, is open in Z.
(2) Let Y be another S-scheme. Then the set of S-morphisms g : Y → Z such

that g∗(F) ∈ γi(Y ) is the set of S-morphisms such that g(Y ) ⊂ UZ,i→i′,F .

A direct application of Lemma 3.2.11 concludes the proof of Lemma 3.2.10.

Proof of Lemma 3.2.11. (1) Follows immediately from Lemma 3.2.1(a).
(2) Note that g∗(q) : EY → g∗(F) is again a quotient homomorphism and that

g∗(αi,i′

Z ) = αi,i′

Y . By Lemma 3.2.1(c), the set of points y of Y where the localization

of g∗(q) ◦αi′

Y ◦αi,i′

Y = g∗(q) ◦αi
Y is surjective is thus equal to g−1(UZ,i,F ) ⊂ Y , where

UZ,i,F is the open subset defined in (3.2.5). Now, since g∗(F) ∈ γi(Y ), it follows that
g−1(UZ,i,F ) must coincide with Y .

Proposition 3.2.12. Let E be a quasi-coherent sheaf over the scheme S. Then,
as i varies, the functors γi form an open covering of the functor γ. Furthermore, we
have

Grassn(E) = lim
−→
i

G
←−
(n, E)i.

Proof. The fact that each of the γi’s is an open subfunctor of γ was established in
Lemma 3.2.9. As in the proofs of the previous Lemmas, for an S-scheme Z let UZ,i,F

be the open subscheme of Z representing the usual fiber product functor

T �→ γi(T )×γ(T ) HomS(T, Z).

We show that the UZ,i,F ’s cover Z as i varies. It is enough to show that the statement
holds on points. Let then F ∈ γ(Z) and let z be a point of Z. We have in particular
a locally free rank n sheaf Fz generated by the localization at z of the n sections sa
(which were introduced on page 7) and an n-dimensional κ(z)-vector space F ⊗OZ,z

κ(z) with basis the sa(z)’s. This said, since F is a quotient of finite type of the
inductive limit E , there must exist an index i and a surjection

E i
Z ⊗OZ,z

κ(z) → F ⊗OZ,z
κ(z).

Thus, by Lemma 3.2.1(b), we obtain a surjection E i
Z,z → Fz, hence z ∈ UZ,i,F by

definition. This concludes our argument.

Remark 3.2.13. Note that Proposition 3.2.12 implies that our construction of
the Grassmannian is independent of the particular filtration of the sheaf E which we
used.
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Example 3.2.14. Here we will make use of the Plücker embedding, which is
dealt with in detail in [EGAS, 1, 9.8].

When S = Spec(k), for some field k, we can give an explicit description of the
schemes G←−(n, E)i in terms of Plücker coordinates. For this, recall that in this case

the sheaves E and E i reduce to vector spaces, which we will denote by E and Ei, re-
spectively. Next, note that requiring the composition (3.1.3) to be surjective amounts
to requiring that all of the compositions of the form

On
T → Ei

T → ET
can

−−→→ H

be surjective, where the last arrow is the canonical surjection. Now, applying the
Plücker functor we get that the corresponding compositions

∧nOn
T → ∧nEi

T → ∧nET� ∧n H,

must be surjective, as well. That is, the scheme G←−(n, E)i is determined by the non-

vanishing of the
(
i
n

)
Plücker coordinates whose multi-index contains only indices ap-

pearing among those of the basis vectors of Ei
T .

4. Representability of the quasi-coherent quot functor. Throughout this
Section, S will be a noetherian scheme defined over a fixed algebraically closed field
k, and X will be a projective S-scheme (of finite type). By a coherent sheaf on X we
will mean a finitely presented quasi-coherent OX -module (see Lemma 2.2.4).

4.1. The coherent Quot scheme. Let now T be another S-scheme, let πX :
X ×S T → X be the projection and denote by ET the pullback π∗XE , where E is a
quasi-coherent OX -module. For a numerical polynomial h ∈ Q[t], the quot functor

ηh,E := quotXh E(−) : (Sch/S)
◦ → Set,

is defined as

ηh,E(T ) =

{
K ⊂ ET |

ET /K is coherent, flat over OT ,
and has Hilbert polynomial h

}
, (4.1.1)

together with pullback on morphisms. Without prescribing the Hilbert polynomial in
the above definition one gets the general quot functor ηE . Grothendieck’s fundamental
theorem reads as follows.

Theorem 4.1.2 ([Gro95]). Let X be a projective S-scheme and let G be a coherent
sheaf on X. Then, the functor ηh,G is represented by a projective S-scheme Quoth(G).
Moreover, there exists a coherent quotient Q ∈ ηh,G(Quoth(G)) such that, for any S-
scheme T , the morphism of functors

HomS(T,Quoth(G)) � g �−→ (IdX ×Sg)
∗Q ∈ ηh,G(T )

is a natural isomorphism.

We now briefly sketch the main idea in the proof of Theorem 4.1.2. From the
results recalled in Section 2.4, we have that m-regularity of the coherent sheaf G ∈
Coh(X) allows us to get, for any scheme T over S = Spec(k) and for any T -flat
quotient homomorphism GT → F with kernel K, a short exact sequence of sheaves
over T

0 → πT∗K(m) −→ H0(X,G(m))⊗k OT −→ πT∗F(m) → 0,
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where πT∗(π
∗
TOT ⊗ π∗XG(m)) = H0(X,G(m))⊗k OT by Theorem 2.4.3, part (b), and

each of the sheaves in the above exact sequence is locally free by part (a) of the same
Theorem. By Remark 2.4.4 we thus obtain an embedding of the functor ηh,G into the
functor γh(m),H0(X,G(m)). The main step in the proof of Theorem 4.1.2 is then the
Theorem below (see [Gro95, Mum66]).

Theorem 4.1.3. The scheme representing the functor ηh,G can be identified with
a closed subscheme of the Grassmannian Grassh(m)(H

0(X,G(m))).

In what follows we may sometimes refer to such a closed subscheme as the stratum
of the Grassmannian corresponding to the Hilbert polynomial h.

Let now E ∈ QCoh(X) be not necessarily coherent. We then have

Lemma 4.1.4. ηh,E is a sheaf in the Zariski topology on Sch/S.

Proof. Let {Uα}α be a covering of the S-scheme T and let Fα ∈ ηh,E(Uα). In the
usual notation for restrictions, suppose that Fα,β = Fβ,α ∈ ηh,E(Uα ×T Uβ), we want
to find a unique sheaf F ∈ ηh,E(T ) whose restriction to Uα coincides with Fα.
For this, all we need to check is that if Uα,β,γ := Uα ×T Uβ ×T Uγ is non empty,
then the usual cocycle condition is satisfied. But this holds for the subsheaves, and
hence for the quotients FUα,β,γ

∈ ηh,E(Uα ×T Uβ ×T Uγ), since ET itself is a sheaf.
Moreover, F has Hilbert polynomial h by semicontinuity, in particular by constance of
the Hilbert polynomial on connected components, and flatness is a local condition.

Given a quasi-coherent sheaf E on X , our aim here is to construct an object
QuotXh (E), possibly in the category of S-schemes, that represents the functor ηh,E .

Adapting pullbacks to the current quot functor setting, in the notation of Lemma
3.2.3 we can define the subfunctor

ηh,E,i(T ) :=

{
K ∈ ηh,E(T ) | the composition E i

T

αi
T−→ ET

q
→ ET /K

is surjective

}
, (4.1.5)

for an index i. Since ηh,E,i is a subfunctor of ηh,E , it is also a sheaf of sets.

4.2. Main results. The following Lemma is the first main step in our construc-
tion.

Lemma 4.2.1. Let E be a quasi-coherent OX -module. Then for i ≤ a ≤ b we
have an affine morphism

Qb
i → Qa

i ,

from the scheme representing the functor ηh,Eb,i to the scheme representing ηh,Ea,i.
In particular, since Qi

i := Quoth(E
i), the morphism

Qa
i → Quoth(E

i)

is affine.

Proof. We have to show that the Grassmannian embedding of the quot functor
recalled in the previous section is compatible with our construction.

First, note that if E i, Ea and Eb are three coherent sheaves on X , we can find a
large enough integer m such that all three of them are m-regular. Next, as we recalled
above, m-regularity of the coherent sheaf E i allows us to get, for any scheme T over
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S = Spec(k) and for any T -flat quotient homomorphism E i
T → F with kernel K, a

short exact sequence of locally free sheaves over T

0 → πT∗K(m) −→ H0(X, E i(m)) ⊗k OT −→ πT∗F(m) → 0.

We thus obtain an embedding of the functor ηh,Ei := quotXh (E i
(−)) into the functor

γh(m),H0(X,Ei(m)) := grassh(m)(H
0(X, E i(m))(−)). This allows us to find a stratum of

the Grassmannian that represents the functor ηh,Ei (Theorem 4.1.3).
Next, the homomorphism E i → Ea induces a natural transformation

ηh,Ea,i ⇒ ηh,Ei ,

defined in the obvious way. The above transformation yields in turn a morphism of
schemes

Qa
i → Qi

i,

by representability of the quot functor of a coherent sheaf and Yoneda’s lemma. We
claim that such a morphism is affine. We will use the covering induced on Quoth(E

i)
by the one of the Grassmannian that was constructed in Section 3.
In fact, thanks to Remark 2.4.4, from E i → Ea we get a commutative square

Qa
i −−−−→ Qi

i⏐⏐� ⏐⏐�
Ga

i −−−−→ Gi
i,

where Ga
i is the open part of the Grassmannian Grassh(m)(H

0(X, Ea(m))) whose
points are isomorphism classes of quotients of H0(X, E i(m)), and the vertical arrows
denote the respective Grassmannian embeddings. By Lemma 3.2.3 the lower arrow is
an affine morphism, so we can conclude that Qa

i → Qi
i is also an affine morphism by

restricting the lower arrow to the respective flattening stratum.
More generally, from the homomorphism Ea → Eb, we get a natural transforma-

tion

ηh,Eb,i ⇒ ηh,Ea,i,

and a resulting morphism of schemes Qb
i → Qa

i . Keeping the notation as above we
have another commutative diagram

Qb
i −−−−→ Qa

i⏐⏐� ⏐⏐�
Gb

i −−−−→ Ga
i ,

which allows us to conclude that Qb
i → Qa

i is affine, as well, by essentially the same
argument.

Finally, let S be any noetherian scheme over k. Then the statement follows from
what we proved above plus the base change property of affine morphisms.

The next step in our construction is the Lemma below.
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Lemma 4.2.2. Let E be a quasi-coherent OX-module. Then the functor ηh,E,i is
represented by

Q
←−
(h, E)i := lim

←−
a>i

Qa
i ,

which is a quasi-compact scheme over S.

Proof. From Lemma 4.2.1 we see that all of the morphisms in the filtering pro-
jective diagram (

(Qa
i )a≥i, Q

a
i ← Qb

i

)
(4.2.3)

are affine. As in the proof of Lemma 3.2.7, we then obtain that the projective limit
is a quasi-compact scheme, by Proposition 2.1.1.

In order to conclude, it remains to prove that the scheme Q
←−
(h, E)i obtained as the

projective limit of the diagram (4.2.3) actually represents the functor ηh,E,i. For this,
the argument we used in Lemma 3.2.7 for the functors γi and the schemes G←−(n, E)i
still applies, provided that one uses Lemma 4.2.1 instead of Lemma 3.2.3.

Lemma 4.2.4. For i ≤ j we have an open embedding of schemes

Qa
i → Qa

j .

Proof. As usual, we prove the corresponding statement at the level of functors,
i.e., we show that for every S-scheme Z the fiber product functor

T �→ ηh,Ea,i(T )×ηh,Ea,j(T ) HomS(T, Z),

is represented by an open subscheme of Z. Now, by definition of ηh,Ea,i we have a
surjective composition

E i
Z → Ej

Z → Ea
Z → F , (4.2.5)

where the last homomorphism is the canonical quotient. Therefore the claim follows
from Lemma 3.2.11, after applying the Grassmannian embedding to the composition
(4.2.5) for an m large enough so that all the sheaves in question are m-regular.

Next, note that we have a commutative ladder diagram

... −−−−→
...⏐⏐� ⏐⏐�

Qb
i −−−−→ Qb

j⏐⏐� ⏐⏐�
Qa

i −−−−→ Qa
j⏐⏐� ⏐⏐�

... −−−−→
...

(4.2.6)
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where the vertical arrows are surjections and the horizontal ones are open morphisms
by Lemma 4.2.4 above. Combining the Grassmannian embedding with the argument
used in the proof of Lemma 3.2.10, we obtain the following.

Lemma 4.2.7. Taking the projective limit over the upper indices in diagram
(4.2.6) we get an open morphism of quasi-compact schemes

Q
←−
(h, E)i → Q

←−
(h, E)j . (4.2.8)

Finally, define

Quoth(E) := lim
−→
i

Q
←−

(h, E)i, (4.2.9)

where
(
Q
←−
(h, E)i

)
i
is the system of quasi-compact schemes and morphisms of the form

(4.2.8) resulting from the above Lemmas.

Theorem 4.2.10. In the above notation, the functor ηh,E is covered by the func-
tors ηh,E,i.

Proof. It remains to show that the subfunctors ηh,E,i cover ηh,E as i varies. As in
the case of the Grassmannian, it is enough to check this pointwise. Let F ∈ ηh,E(Z),
z ∈ Z, and consider the κ(z)-module of finite type F ⊗OZ,z

κ(z). Then there is an
index i such that we have a surjection

E i
Z ⊗OZ,z

κ(z) → F ⊗OZ,z
κ(z).

At this point, the fact that there is a surjection E i
Z,z → Fz follows from Nakayama’s

Lemma, since the quotient F is of finite type.

Now, the arguments that were used in Section 3 and what we have done so far
in the current section yield, in combination with the Grassmannian embedding, that
the functors ηh,E,i are open subfunctors of ηh,E . Taking Lemma 4.2.7 into account we
have the following.

Theorem 4.2.11. Let E be a quasi-coherent sheaf over a projective S-scheme X.
The functor ηh,E is represented by the scheme QuotXh (E) from (4.2.9).

Proof. As we said right before the statement, the functors ηh,E,i are open sub-
functors of ηh,E . Moreover, by Lemma 4.2.2 such functors are representable and, by
Lemma 4.2.10, they form an open covering of the functor ηh,E . All of the above plus
Lemma 4.1.4 allow us to conclude.

The following Remarks and Example illustrate what we have achieved so far and
relate the results to the literature.

Remark 4.2.12. From the above construction it follows that, when the sheaf E is
not assumed to be coherent but just quasi-coherent, we obtain an infinite dimensional
scheme QuotXh (E) which, in principle, could be written as the Proj of some quasi-
coherent algebra (see, e.g., [EGAII]). Thus, even though infinite dimensional, our
moduli space is an actual scheme and not an ind-scheme in the strict sense.

Example 4.2.13. Let X = S in Theorem 4.2.11 above. Then, QuotX=S
h (E)

reduces to a (relative) schematic Grassmannian of quotients of E of a certain rank
prescribed by the Hilbert polynomial h which, in this case, reduces to a constant.
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In particular, let k be a field and let X = S = Spec(k). An object V ∈
QCoh(X) is then a (possibly infinite dimensional) vector space over k and the scheme

Quot
Spec(k)
h (V) is then nothing but the usual Grassmannian Grassh(V).

Remark 4.2.14. More generally, let S be an arbitrary scheme and X be an
S-scheme, not necessarily equal to S. Further, let E ∈ QCoh(X). Then the definition
of the quot functor still makes sense.

In [Kle90, Prop. 2.2] the author proves that if we consider the quot functor of
length h ≡ 1 quotients, we obtain that η1,E is represented by the scheme

P(E) := Grass1(E).

That is, the Quot scheme provides yet another way to define the projectivization
P(E) → X of a quasi-coherent sheaf.

It is worth mentioning that, for length 1 quotients, Kleiman is able to show
representability making essentially no assumption on X and S, by exploiting an iso-
morphism between the quot and Grassmann functors.

4.3. Uniformly regular sheaves and a “large scale” Grassmannian em-

bedding. Let again E be a quasi-coherent OX -module, and let S = Spec(k). We will
show that in this case it is possible to obtain an analog of the classical Grassmannian
embedding.

Motivated by the discussion in Section 2.4, we make the following definition.

Definition 4.3.1. A quasi-coherent sheaf over a projective k-scheme X will be
said to be uniformly m-regular if there is an integer m such that the Castelnuovo-
Mumford regularities of its coherent approximations in the sense of Proposition 2.2.1
and Remark 2.2.2 are all less than or equal to m.

Lemma 4.3.2. Let E be a uniformly m-regular quasi-coherent OX-module. Then
there is a closed embedding

Q
←−
(h, E)i → G←−

(
h(m), lim

−→
j

H0
(
X, Ej(m)

))
i

. (4.3.3)

Proof. We go back to considering the components of the source and target schemes
regarded as projective limits. In our usual notation, we have a commutative ladder
diagram

... −−−−→
...⏐⏐� ⏐⏐�

Qb
i −−−−→ Gb

i⏐⏐� ⏐⏐�
Qa

i −−−−→ Ga
i⏐⏐� ⏐⏐�

... −−−−→
...
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where the vertical arrows are surjective affine morphisms and the horizontal ones are
the restrictions of the respective Grassmannian embeddings. The vertical morphisms
being affine, we can reduce to proving the statement locally.
Let then A and B be two rings such that

A = lim
−→
β

Aβ , B = lim
−→
β

Bβ,

and suppose Aβ ψβ

←− Bβ is a surjective (quotient) homomorphism for all β, i.e.,
Aβ = Bβ/Iβ where Iβ = ker(ψβ). We can then realize A as a global quotient of B
modulo the ideal

lim
−→
β

Iβ.

This allows us to establish the statement.

Writing Q
←−
(i) := Q

←−
(h, E)i and G←−(i) := G←−

(
h(m), lim

−→j
H0

(
X, Ej(m)

))
i
to sim-

plify the notation, we thus have another commutative ladder diagram

... −−−−→
...⏐⏐� ⏐⏐�

Q
←−
(i) −−−−→ G←−(i)⏐⏐� ⏐⏐�

Q
←−
(i′) −−−−→ G←−(i′)⏐⏐� ⏐⏐�
... −−−−→

...

where the horizontal arrows are the closed embeddings resulting from Lemma 4.3.2
and the vertical ones are the open embeddings resulting from Lemma 4.2.7 and Lemma
3.2.10, respectively. In analogy with the notion of quasi-projectivity in finite dimen-
sions, we make the following definition.

Definition 4.3.4. We call quasi-closed and embedding of schemes resulting from
a limit of a ladder diagram like the above one.

We thus have the following result.

Proposition 4.3.5. Let E be a uniformly m-regular quasi-coherent sheaf on a
k-projective scheme X. Then there is a quasi-closed embedding

QuotXh (E) ↪→ Grassh(m)

(
lim
−→
j

H0
(
X, Ej(m)

))
.

Proof. Follows from the argument preceding the statement.



20 G. DI BRINO

REFERENCES

[SGAIV2] M. Artin, A. Grothendieck, and J.-L. Verdier, Théorie des topos et cohomologie
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quelques classes de morphismes, IHES Publ. Math., 8 (1961), pp. 222.
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