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THE GENERICITY OF ARNOLD DIFFUSION IN NEARLY
INTEGRABLE HAMILTONIAN SYSTEMS∗

CHONG-QING CHENG†

Abstract. In this paper, we prove that the net of transition chain is δ-dense for nearly integrable
positive definite Hamiltonian systems with 3 degrees of freedom in the cusp-residual generic sense in
Cr-topology, r ≥ 6. The main ingredients of the proof existed in [CZ, C17a, C17b]. As an immediate
consequence, Arnold diffusion exists among this class of Hamiltonian systems. The question of [C17c]
is answered in Section 9 of the paper.
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1. Introduction. After he constructed the celebrated example of a priori unsta-
ble systems in [A64], Arnold raised the conjecture in [A66] on the dynamical instability
of nearly integrable Hamiltonian

H(p, q) = h(p) + εP (p, q), (p, q) ∈ Rn × Tn. (1.1)

Conjecture. The “general case” for a Hamiltonian system (1.1) with n ≥ 3
is represented by the situation that for an arbitrary pair of neighborhoods of toruses
p = p′, p = p′′ in one component of the level set h(p′) = h(p′′), there exists, for
sufficiently small ε, an orbit intersecting both neighborhoods.

The research on the conjecture has two stages: a priori unstable and a priori
stable cases. After the problem in a priori unstable case was solved, one has to study
how to cross double resonance. It was pointed out by Arnold in [A66] that in order
to take the final step in the proof of the above conjecture, it is necessary to examine
the transition from single to double resonance. Indeed, one was able to establish the
existence of global transition chain (Theorem 5.1 in [C17b]) after the double resonance
problem was solved there. A positive answer to the conjecture for smooth and positive
definite Hamiltonian with n = 3 is an immediate consequence, see Section 9.

The main part of the paper is to prove the existence of the δ-dense transition
chain (Theorem 2.1), a slightly stronger form of Theorem 5.1 in Section 5 of [C17b].
The main ingredients of the proof are included in [CZ, C17a, C17b].

To study the problem, one needs to specify what is the genericity. Mather used
the cusp-residual genericity [M04], we follow him.

Definition 1.1. Let BD = {p ∈ R3 : ‖p‖ ≤ D}. Let Sa,Ba ⊂ Cr(BD × T3,R)
denote the sphere and the ball about the origin of radius a > 0 respectively: F ∈ Sa

if and only ‖F‖Cr = a and F ∈ Ba if and only ‖F‖Cr ≤ a. They inherit the topology
from Cr(BD × T3,R).

Let Ra be a set residual in Sa, each P ∈ Ra is associated with a set RP residual
in the interval [0, aP ] with 0 < aP ≤ a. A set Ca is said to be cusp-residual in Ba if

Ca = {λP : P ∈ Ra, λ ∈ RP }.
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A function h is called positive definite if its Hessian matrix ∂2h is positive definite.

Theorem 1.1. Assume h ∈ Cr(BD,R) is positive definite, r ≥ 6. For any small
δ > 0, E > minh with h−1(E) ⊂ BD and any two points p�, p∗ ∈ h−1(E), there exists
a cusp-residual set Cε0 ⊂ Cr(BD × T3,R) such that for each εP ∈ Cε0 there exists an
orbit (p(t), q(t)) of Φt

H which intersects the δ-neighborhood of p� and of p∗, namely,
some t�, t∗ ∈ R exist such that ‖p(t�)− p�‖ < δ and ‖p(t∗)− p∗‖ < δ.

This theorem proves the conjecture for positive definite Hamiltonian systems with
three degrees of freedom in the cusp-residual generic sense in Cr-topology with r ≥ 6.
We apply the variational method for the proof, it is based on Mather’s theory and the
weak KAM theory [M91, M93, Fa]. Since we study the dynamics on the energy level
set {H−1(E)}, we can modify h outside of a neighborhood of {h−1(E)} such that h
is Tonelli. A Hamiltonian H(p, q, t) is called Tonelli if it satisfies the conditions:

(1) its Hessian matrix ∂2
pipj

H in p is positive definite everywhere;
(2) for each (q, t) it holds that H(p, q, t)/‖p‖ → ∞ as ‖p‖ → ∞;
(3) each solution of the Hamilton’s equation has all of R as its domain of defini-

tion.

For autonomous system, the third condition is automatically satisfied since each orbit
lie on compact energy level set.

The definition of transition chain is recalled and the theorem of global transition
chain is stated in Section 2 (Theorem 2.1). In Section 3, we derive the normal form
of H when it is restricted in a neighborhood of double resonant point. In Section 4,
we show that as a path, the candidate of transition chain is covered by discs around
double resonances with controlled periods. In each disc, one Hamiltonian normal
form holds. In Section 5, we distinguish strong from weak double resonances and
prove that there are only finitely many strong double resonances. The weak double
resonance can be reduced to a priori unstable case such the problem is reduced to the
finite number of strong double resonances. In Section 6, we construct transition chain
crossing strong double resonances by applying the main results of [CZ, C17a, C17b].
By preparing some technical estimates for the nearly integrable system including the
deviation of the rotation vectors, the location of the flat and the estimate of orbits
in the Aubry sets in Section 7, we prove Theorem 2.1 in Section 8. As an immediate
consequence, Theorem 1.1 is proved in Section 9.

A lot of works have been contributed to the topic since the conjecture was raised
half a century ago. Normally hyperbolic invariant cylinder is assumed by the a priori
unstable condition, along which the diffusion is well understood, by variational method
and geometric methods, cf. [B08, CY1, CY2, DLS1, LC, Tr, Zh1]. There are also
many works for the problem, for instance, see [Bs, BCV, DH1, DH2, DLS2, FM, GL,
GR1, GR2, KL1, KL2, X].

Nearly integrable Hamiltonian is also called a priori stable system. Unlike a
priori unstable system, multiple resonant points destruct the cylinder into many small
pieces. Away from the multiple resonant points, some piece of invariant cylinder was
found in [B10] and the method for a priori unstable system was applied in [BKZ]
to obtain local diffusion. Restricted in a neighborhood of multiple resonant point
p′′, {‖p − p′′‖ ≤ K

√
ε} with K 
 1, the normal form is non-integrable. So, it is

a challenge to construct cylinder in such a disc. The condition n = 3 allows us to
apply a variational method to construct cylinder which extends o(

√
ε)-close to double

resonant point, see [CZ, C17a]. Because of the result and by a new cohomology
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equivalence, we found a way in [C17b] to pass through the small neighborhood by
turning around the strong double resonant point and joining two cylinders.

Earlier than us, Mather suggested a way to cross the double resonance [M04],
which is based on an observation that the periodic orbits of the averaged system
(6.3) may approach two homoclinics simultaneously. He suggested to move the first
cohomology class in the channel determined by the prescribed homology class and
switch it to the channel determined by one of the homoclinics when it is getting close to
the double resonance. From geometric point of view, one expects to construct diffusion
orbit that moves along the cylinder with the prescribed homology class, jumps to the
cylinder with hole and passes through the neighborhood of double resonance in a way
similar to a priori unstable case, as it was announced in [KZ2], see [KZ1, Mar] also.
For this approach one needs to prove that the cylinder is C1-differentiable.

2. The definition of the transition chain. The terminology (generalized)
transition chain used in the paper is defined in [CY1, CY2, LC], borrowed from [A64]
where it is defined by geometrical language. Definition in our setting is in a variational
language.

For the definition, let π̌ : M̌ → Tn be a finite covering of Tn, let N (c, M̌), A(c, M̌)
denote the Mañé set, Aubry set with respect to M̌ . The condition (HA) (hypothesis
of Arnold) is a variational version of Arnold’s condition, the stable manifold of a circle
intersects its unstable manifold transversally. Such intersection points lie in the Mañé
set, but not in the Aubry set.

(HA): there exists a finite covering π̌ : M̌ → M such that
(1) in time-periodic case: π̌N (c, M̌)|t=0\(A(c, M̌)|t=0 + δ) �= ∅ is totally discon-

nected, where A(c, M̌)|t=0 + δ = {x : dist(x,A(c, M̌)|t=0) ≤ δ};
(2) in autonomous case: π̌N (c, M̌)|Σ\(A(c, M̌) + δ) �= ∅ is totally disconnected,

where Σ is a section of M̌ .
It is not necessary to work always in nontrivial finite covering space. If the Aubry set
contains more than one class, one can choose M̌ = Tn.

To state the definition of transition chain, we also need the concept of cohomology
equivalence. The first version was introduced in [M93], however, it does not apply to
interesting problem in autonomous systems (cf. [B02]). A new version of cohomology
equivalence was introduced for autonomous system in [LC]. For a Tonelli Lagrangian
defined on TTn, it is defined not with respect to the whole Tn as in [M93], but to a
section. For n-torus Tn, the section is chosen as a non-degenerately embedded section
(n−1)-dimensional torus. We call Σc non-degenerately embedded (n−1)-dimensional
torus by assuming a smooth injection ϕ: Tn−1 → Tn such that Σc is the image of ϕ,
and the induced map ϕ∗: H1(Tn−1,Z) → H1(Tn,Z) is an injection.

For a first cohomology class c, we assume that there is a non-degenerate embedded
(n− 1)-dimensional torus Σc ⊂ Tn such that each c-semi static curve γ transversally
intersects Σc. Let

Vc =
⋂
U

{iU∗H1(U,R) : U is a neighborhood ofN (c) ∩ Σc},

here iU : U → M denotes inclusion map. V⊥
c is defined to be the annihilator of Vc,

i.e. if c′ ∈ H1(Tn,R), then c′ ∈ V⊥
c if and only if 〈c′, h〉 = 0 for all h ∈ Vc. Clearly,

V⊥
c =

⋃
U

{ker i∗U : U is a neighborhood ofN (c) ∩ Σc}.
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There is a neighborhood U of N (c)∩Σc such that Vc = iU∗H1(U,R) and V⊥
c = keri∗U .

Definition 2.1. In autonomous case, c, c′ ∈ H1(Tn,R) are said to be cohomo-
logically equivalent if there is a continuous curve Γ: [0, 1] → H1(Tn,R) such that
Γ(0) = c, Γ(1) = c′, α(Γ(s)) keeps constant along Γ, and for each s0 ∈ [0, 1] there
exists δ > 0 such that Γ(s)− Γ(s0) ∈ V⊥

Γ(s0)
whenever s ∈ [0, 1] and |s− s0| < δ.

With the terminologies introduced as above, we are able to state the definition of
transition chain for autonomous system.

Definition 2.2. Two cohomolgy classes c, c′ ∈ H1(M,R) are joined by a gen-
eralized transition chain if a continuous curve Γ: [0, 1] → H1(M,R) exists such that
α(Γ(s)) keeps constant and for each s ∈ [0, 1] at least one of the following cases takes
place:

(1) the condition (HA) holds for Γ(s), A(Γ(s′)) lies in a small neighborhood of
A(Γ(s)) provided |s′ − s| is small;

(2) there is δs > 0, for each s′ ∈ (s−δs, s+δs), Γ(s
′) is cohomologically equivalent

to Γ(s).

It is proved in Theorem 3.1 of [LC] for autonomous case that Ã(Γ(0)) is dy-
namically connected to Ã(Γ(1)), namely, there is an orbit of the system which takes
Ã(Γ(0)) and Ã(Γ(1)) as its α-limit and ω-limit set respectively.

A Tonelli Lagrangian L is uniquely related to a Tonelli Hamiltonian H through
Legendre transformation L(q, q̇, t) = maxp〈q̇, p〉 −H(p, q, t), which determines a map
LH : T ∗Tn × T → TTn × T: (p, q, t) → (q̇, q, t) with q̇ = ∂pH(p, q, t).

Definition 2.3. An orbit (p(t), q(t), t) ⊂ T ∗Tn × T is said to be c̃-semi-static
(static) if LH(p(t), q(t), t) = (q̇(t), q(t), t) is c̃-semi-static (static). If the system is
autonomous, we skip the component of t (see [Man, M93]).

Since H1(T3,R) = R3, we treat the first cohomology class c̃ ∈ H1(T3,R) as a
point c̃ ∈ R3. In this case, the choice of diffusion path relies on the observation as
follows. It holds along each c̃-semi-static orbit of the integrable Hamiltonian h(p) that
p(t) ≡ c̃. Since Mañé set is upper semi-continuous with respect to the perturbation
(see Lemma 2.3 of [CY2] and follow the proof there), ‖p(t)− c̃‖ � 1 holds along any
c̃-semi static orbit for the perturbed system.

Given two points p�, p∗ ∈ h−1(E) and small δ > 0, ∃ points p̄�, p̄∗ ∈ h−1(E) and
vectors k�, k∗ ∈ Z3\{0} such that ‖p� − p̄�‖ < δ

2 , ‖p∗ − p̄∗‖ < δ
2 , 〈k�, ∂h(p̄�)〉 = 0 and

〈k∗, ∂h(p̄∗)〉 = 0. One can choose (p̄�, k�) and (p̄∗, k∗) such that k� and k∗ are totally
irreducible. A vector k = (k1, k2, k3) ∈ Z\{0} is said to be totally irreducible if the
greatest common divisor of ki and kj is equal to 1 for any i �= j and i, j = 1, 2, 3. It is
based on the observation that, for any k ∈ Z3\{0}, one can choose totally irreducible
k′ ∈ Z3\{0} such that 〈k, k′〉/‖k‖‖k′‖ is close to 1. For a point p = (p1, p2, p3) ∈ R3,
we adopt the following notation for its maximum and Euclidean norm respectively

|p| = max{|p1|, |p2|, |p3|}, ‖p‖ =
( 3∑

i=1

p2i

) 1
2

.

An integer k ∈ Z3\{0} determines a path of single resonance (a circle on a sphere)

Γk = {p ∈ R3 : h(p) = E > minh; 〈k, ∂h(p)〉 = 0}.
As h is positive definite, ∂h maps {p ∈ R3 : h(p) ≤ E} to a ball containing the origin.
The circles Γk� and Γk∗ intersect at two points if k� is independent of k∗, otherwise
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Γk∗ = Γk� . In both cases, one has a path Γ connecting p̄� to p̄∗. If Γk� intersects Γk∗ ,
it starts from the point p̄�, moves along the circle Γk� until it reaches the intersection
point of Γk� with Γk∗ , after that, it moves along the circle Γk∗ until it arrives at the
point p̄∗. If Γk� = Γk∗ , Γ is just a piece of the circle, connecting p̄� to p̄∗, see the
figure below.

Treating Γ as a path in H1(T3,R), we have a candidate of the transition chain.
We shall show that the transition chain lies in a small neighborhood of Γ.

The following theorem is a slightly stronger version of Theorem 5.1 of [C17b], the
main part of this paper is for the proof of this theorem.

Theorem 2.1. Assume h ∈ Cr(BD,R) is positive definite with r ≥ 6. For
any small δ > 0, E > minh with h−1(E) ⊂ BD, there is a cusp-residual set Cε0 ⊂
Cr(BD × T3,R) such that for each εP ∈ Cε0 and any two points p�, p∗ ∈ h−1(E),
there is a transition chain that connects the class c̃ to the class c̃′ which satisfy the
condition α(c̃) = α(c̃′) = E, |p� − c̃| < δ and |p∗ − c̃′| < δ.

The definition of cohomology equivalence can be further extended to more gen-
eral version if we treat the time t as an angle variable and choose a section in the
extended configuration space Tn+1 where the extra dimension is for t. If we write the
cohomology class in coordinates c̃ = (c,−α(c)), the section Σc̃ is chosen for Tn+1, Vc̃

and V⊥
c̃ are defined in H1(Tn+1,R) and H1(Tn+1,R) respectively.

Definition 2.4. In time-periodic case, c, c′ ∈ H1(Tn,R) are said to be cohomo-
logically equivalent if there exists a continuous curve Γ̃: [0, 1] → H1(Tn+1,R) such
that Γ̃(0) = (c,−α(c)), Γ̃(1) = (c′,−α(c′)), and for each s0 ∈ [0, 1] there exists δ > 0
such that Γ̃(s)− Γ̃(s0) ∈ V⊥

Γ̃(s0)
whenever s ∈ [0, 1] and |s− s0| < δ.

3. Normal form. Given an irreducible integer vector k′ ∈ Z3\{0}, one has a
path of single resonance Γk′ = {p ∈ H−1(E) : 〈k′, ∂h(p)〉 = 0}. A point p′′ ∈ Γk′ is
said to be double resonant if there is an additional vector k′′ ∈ Z3\{0} independent of
k′ such that 〈k′′, ∂h(p′′)〉 = 0. Along each resonant path Γk′ , there are many double
resonant points.

We assume that k′ = (k′1, k
′
2, k

′
3) ∈ Z3\{0} is totally irreducible. In this case, there

exist k∗, k� ∈ Z3 such that the matrix M t
0 = (k′, k∗, k�) is uni-modular. Indeed, if k′

contains two non-zero entries, e.g. k′1, k
′
2 �= 0, we set k� = (0, 0, 1) and k∗ = (k∗1 , k

∗
2 , 0)

such that k′1k
∗
2 − k′2k

∗
1 = 1. If k′ = e1, we set k∗ = e2 and k� = e3, where we use the

notation that all other entries of ei are equal to zero except for the i-th entry, which
is equal to 1. Other cases can be handled similarly.

Under a linear canonical transformation M0: (p̄, q̄) → (p, q) such that q = M−1
0 q̄,

p = M t
0p̄, we obtain the Hamiltonian H̄ = h̄ + εP̄ where h̄ = M ∗

0 h and P̄ = M ∗
0 P .

It holds along the path Γ̄k′ = M−t
0 Γk′ that ∂h̄(p̄) = (0, ω2, ω3).
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In this case, the first and the second resonant condition are M−t
0 k′ = k̄′ = e1 and

M−t
0 k′′ = k̄′′ = (0, k̄′′2 , k̄

′′
3 ) respectively. If we introduce the canonical transformation

of coordinates M 1 (u, v) → (p̄, q̄) further

q̄ = M−1u, p̄ = M tv, (3.1)

where

M t =

⎡
⎢⎣
1 0 0
0 1 0

0
k̄′′
3

k̄′′
2

1

⎤
⎥⎦ , M−1 =

⎡
⎢⎣
1 0 0

0 1
−k̄′′

3

k̄′′
2

0 0 1

⎤
⎥⎦

if |k̄′′2 | ≥ |k̄′′3 | and

M t =

⎡
⎢⎣
1 0 0

0 1
k̄′′
2

k̄′′
3

0 0 1

⎤
⎥⎦ , M−1 =

⎡
⎢⎣
1 0 0
0 1 0

0
−k̄′′

2

k̄′′
3

1

⎤
⎥⎦

if |k̄′′2 | ≤ |k̄′′3 |. The function M ∗H̄ is 2π-periodic in (u1, u2), 2|k̄′′|π in u3 if |k̄′′2 | ≥ |k̄′′3 |
and it is 2π-periodic in (u1, u3), 2|k̄′′|π in u2 if |k̄′′3 | ≥ |k̄′′2 |.

By the construction of M which may not be uni-modular, we see that the function
M ∗H respects two symmetries in u.

Definition 3.1. Let M be a non-degenerate matrix. A function f(u) ∈
Cr(Rn,R) is said to respect the symmetry M if

f(u+ 2πMei) = f(u), ∀ u ∈ Rn, ei ∈ Zn.

Since M ∗H̄ is 2π-periodic in (u1, u2), 2|k̄′′|π-periodic in u3 in the case that |k̄′′2 | ≥
|k̄′′3 | and 2π-periodic in (u1, u3), 2|k̄′′|π in u2 in the case that |k̄′′3 | ≥ |k̄′′2 |

M ∗H̄(u, v) =
∑
k∈Z3

H̄k(M
tv)ei〈k,M

−1u〉,

M ∗H̄ respects two symmetries in the variable u, M and diag{1, 1, |k̄′′|} for |k̄′′2 | ≥ |k̄′′3 |,
M and diag{1, |k̄′′|, 1} for |k̄′′2 | ≤ |k̄′′3 | respectively.

At a double point p̄′′, the rotation vector ω̄ = (0, ω̄2, ω̄3) = ∂h̄(p̄′′) is rational,
i.e. ∃ T > 0 so that Tω ∈ Zn\{0}. If tω /∈ Zn ∀ t ∈ (0, T ), T = T (ω) is called
the (minimal) period. Since k̄′′2 ω̄2 + k̄′′3 ω̄3 = 0, T = |k̄′′|. We consider those double

resonant points {p̄′′ ∈ Γ̄k′} such that T = T (∂h̄(p̄′′)) ≤ K∗ε−
1
3 (1−3κ) with κ ∈ (0, 1

6 )
and K∗ > 0 is independent of ε. In this case, |k̄′′|√ε → 0 as ε → 0.

Lemma 3.1. Assume the second resonant condition at p̄′′ ∈ Γ̄k′ is k̄′′ =
(0, k̄′′2 , k̄

′′
3 ), δ′ ∈ (0, 1/2). Then, there exists a small number ε0 > 0 such that for

each ε ∈ (0, ε0], restricted on the level set H̄−1(E) contained in Σ̃ε × T3 with

Σ̃ε = {p̄ : |p̄− p̄′′| ≤ K−1εκ},
where K = ηT , η ∈ (0, 1] is independent of ε, the Hamiltonian H̄ is reduced, by a
symplectic transformation and an energetic reduction, to a time-periodic perturbation
of mechanical system with two degrees of freedom

Gε(x, y, θ) =
1

2
〈By, y〉 − V (x1, |k̄′′|x2) +Rε

(
x, y,

ω3√
ε
θ
)
, (3.2)

1In [C17a], the matrix M0M is set to be uni-modular. It is not always possible and not necessary.
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where the 2 × 2 matrix B is positive definite, V ∈ Cr is 2π-periodic in (x1, |k̄′′|x2),

Rε(x, y, ϑ) ∈ Cr−2(T2 × Σ′
ε × |k̄′′|T,R), ϑ = ω3

√
ε
−1

θ and Σ′
ε satisfies the condition

{y : |y| ≤ (1− δ′)K−1εκ−
1
2 } ⊆ Σ′

ε ⊆ {y : |y| ≤ (1 + δ′)K−1εκ−
1
2 }.

Restricted in T2 ×Σ′
ε × |k̄′′|T, some number a0 = a0(h,E, k′) > 0 exists, independent

of T and P , such that for each P ∈ B1 one has

‖Rε‖Cr−2(T2×Σ′
ε×|k̄′′|T,R) ≤ a0ε

κ,

if it is treated as a function in (x, y, ϑ). Finally, the remainder Rε(x, y, ϑ) respects
the symmetries M and diag{1, 1, |k̄′′|} in (x, ϑ) and the symplectic transformation is
uniformly bounded for any second resonant condition k̄′′.

Remark. Because V is independent of ϑ, the symmetries M and diag{1, 1, |k̄′′|}
for V are the same as the identity.

Proof of Lemma 3.1. To get the normal form, we introduce a coordinate transfor-
mation ΦεF which is defined as the time-2π-map ΦεF = Φt

εF |t=2π of the Hamiltonian
flow generated by the function εF (p, q). The function F solves the homological equa-
tion

〈∂h̄
∂p̄

(p̄′′),
∂F

∂q̄

〉
= −P̄ (p̄, q̄) + Z(p̄, q̄)

where

Z(p̄, q̄) =
1

T

∫ T

0

P̄ (p̄, q̄ + ω̄t)dt =
∑

(�1,�2)∈Z2

P̄�(p̄)e
i(�1〈k̄′,q̄〉+�2〈k̄′′,q̄〉), (3.3)

Clearly, the function

F (p, q) =
1

T

∫ T

0

P̄ (p̄, q̄ + ω̄t)tdt

solves the homological equation and ‖F‖ < T‖P̄‖.
Under the transformation ΦεF we obtain a new Hamiltonian

Φ∗
εF H̄ =h̄(p̄) + εZ(p̄, q̄) + ε

〈∂h̄
∂p̄

(p̄)− ∂h̄

∂p̄
(p̄′′),

∂F

∂q̄

〉

+
ε2

2

∫ 1

0

(1− t){{H̄, F}, F} ◦ Φt
εF dt.

(3.4)

To simplify the situation further, we introduce another canonical transformation
of coordinates M : (u, v) → (p̄, q̄) defined in (3.1). Although the norm ‖k̄′′‖ will be
large if the second resonant condition is weak, the linear coordinate transformation
(3.1) is uniformly bounded in the second resonant condition since |k̄′′3/k̄′′2 | ≤ 1 in the
first case and |k̄′′2/k̄′′3 | ≤ 1 in the second case.

We consider the case that |k̄′′2 | ≥ |k̄′′3 |. In the new coordinates (u, v), the rotation
vector takes the form of (0, 0, ω3). Clearly, |ω3| is uniformly lower bounded above zero
for all double resonant points on Γk′ . Because (k̄′′2 , k̄

′′
3 ) is irreducible, it follows from

(3.1) that M ∗Φ∗
εF H̄ is 2π-periodic in (u1, u2) and 2|k̄′′|π-periodic in u3.
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By the construction, the function M ∗Φ∗
εF H̄ possesses the symmetries of M and

diag{1, 1, |k̄′′|}. We need to be careful when a perturbation is added, it should respect
the symmetries as well. By the relation (3.1) one has

〈k′, q〉 = 〈k′, (MM0)
−1u〉 = u1, 〈k′′, q〉 = 〈k′′, (MM0)

−1u〉 = k̄′′2u2.

It follows from Formula (3.3) and the transformation (3.1) that the resonant term has
the form of M ∗M ∗

0 Z(p, 〈k′, q〉, 〈k′′, q〉) = Z ′(v, u1, k̄
′′
2u2).

Let h′ = M ∗h̄, F ′ = M ∗F and H ′ = M ∗Φ∗
εF H̄. Since the transformations (3.1)

is canonical, it preserves the Poison bracket. We obtain from Formula (3.4) that

H ′ =h′(v) + εZ ′(v, u1, |k̄′′|u2) + ε
〈∂h′

∂v
(v)− ∂h′

∂v
(v′′),

∂F ′

∂u

〉

+
ε2

2
M ∗

∫ 1

0

(1− t){{H,F}, F} ◦ Φt
εF dt,

where v′′ = (M0M)−1p′′. The function H ′ determines its Hamiltonian equation

du

dt
=

∂

∂v
H ′(u, v),

dv

dt
= − ∂

∂u
H ′(u, v). (3.5)

For this equation we introduce another transformation

G̃ε =
1

ε
H ′, ỹ =

1√
ε

(
v − v′′

)
, x̃ = u, s =

√
εt, (3.6)

where we use the notation ỹ = (y1, y2, y3) = (y, y3) and x̃ = (x1, x2, x3) = (x, x3). In
the new canonical variables (x̃, ỹ) and the new time s, Equation (3.5) turns out to be
the Hamiltonian equation with the generating function as the following:

G̃ε =
1

ε

(
h′(v′′ +

√
εỹ)− h′(v′′)

)
− V (x1, |k̄′′|x2) + R̃ε(x̃, ỹ), (3.7)

where V (x1, |k̄′′|x2) = −Z ′(v′′, x1, |k̄′′|x2) and R̃ε = R̃ε,1 + R̃ε,2 + R̃ε,3 with

R̃ε,1 = Z ′(v′′ +
√
εỹ, x̃)− Z ′(v′′, x̃),

R̃ε,2 =
〈∂h′

∂v

(
v′′ +

√
εỹ
)
− ∂h′

∂v
(v′′),

∂F ′

∂u

〉
,

R̃ε,3 =
ε

2
M ∗

∫ 1

0

(1− t){{H̄, F}, F} ◦ Φt
εF dt.

One step of KAM iteration makes the remainder R̃ε lose two times of differentiability.
Since the Hamiltonian H̄ is defined in Σ̃ε×T2×|k̄′′|T, we see from (3.1), (3.6) and ΦεF

that G̃ is defined on the domain that is contained in {|ỹ| ≤ 2K−1εκ−
1
2 }×T2 × |k̄′′|T.

Restricted in the domain, we claim that there exists a number a2 > 0, depending on
h,E, k′ only, such that

‖R̃ε,i‖Cr−2 ≤ a2ε
κ, i = 1, 2, 3, (3.8)

for small ε > 0. Indeed, let m′ be the upper bound of the largest eigenvalue of ∂2h(p)

for all p ∈ h−1(E). Since T ≤ K∗ε−
1
3 (1−3κ), one has

|R̃ε,1| ≤ 2‖P ′‖C1

√
εK−1εκ−

1
2 ≤ 2‖P ′‖C1K−1εκ,

|R̃ε,2| ≤ m′√εK−1εκ−
1
2T‖P ′‖C1 ≤ m′‖P ′‖C1εκ,

|(M ∗)−1R̃ε,3| ≤ ε

2
‖P ′‖2C2‖H ′‖C1T 2 =

1

2
(K∗‖P ′‖C2)2‖H ′‖C1ε

1
3+2κ.
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The estimate on the derivatives of the terms can also be done inductively.
We introduce another coordinate rescaling further

θ =

√
ε

ω3
x3, I =

ω3√
ε
y3, (3.9)

By expanding G̃ε in O(K−1εκ) neighborhood of v′′ in Taylor formula, we obtain

G̃ε(x, y, I, θ) =I +
1

2

〈
B̃
(
y,

√
ε

ω3
I
)
,
(
y,

√
ε

ω3
I
)〉

− V (x1, |k̄′′|x2)

+ R̃h

(
y,

√
ε

ω3
I
)
+ R̃ε

(
x1, x2,

ω3√
ε
θ, p′′ +

(√
εy,

ε

ω3
I
)) (3.10)

where B̃ = ∂2h′
∂v2 (v

′′) and term R̃h represents the following

1

ε

[
h′
(
v′′ +

(√
εy,

ε

ω3
I
))

−
[
h′(v′′) + εI +

ε

2

〈
B̃
(
y,

√
ε

ω3
I
)
,
(
y,

√
ε

ω3
I
)〉]]

.

By the construction, all entries of B̃ are of order O(1), independent of the period T
of the rotation vector ∂h(p′′). We write

B̃ =

[
B B′

B′t B′′

]

where B is a 2× 2 matrix, B′ is a vector with two entries and B′′ > 0.
Obviously, restricted on the domain {|y| ≤ 2K−1εκ−

1
2 , |I| ≤ 2K−1|ω3|−1εκ−1},

there exists a constant a3 = a3(h,E) > 0 such that

‖R̃h‖Cr−2 ≤ a4ε
κ. (3.11)

Let Ωε be the image of Σ̃ε × T3 under the maps ΦεF ′ , (3.1), (3.6) and (3.9).
Since the transformation ΦεF ′ is close to identity, |k′′2 | ≥ |k′′3 | is assumed, each section

of Ωε where (x, θ) keeps constant lies in {|y| ≤ 2K−1εκ−
1
2 , |I| ≤ 2K−1|ω3|−1εκ−1}.

Restricted in Ωε, we find by direct calculation that ∂IG̃ε = 1 + O(εκ). Therefore,
there exists a function Gε(x, y, θ) solves the equation G̃ε(x, y,−Gε, θ) = 0.

Indeed, restricted in the domain {|y| ≤ 2K−1εκ−
1
2 , |I| ≤ 2K−1ω−1

3 εκ−1}, a con-
stant a4 = a4(h) > 0 exists such that |√ε〈B′, y〉| ≤ a4K

−1εκ and |ε〈By, y〉| ≤
a4K

−2ε2κ. It guarantees that the solution I = −G0(x, y) of the following quadratic
equation in I

G̃0 =I +
1

2

〈
B̃
(
y,

√
ε

ω3
I
)
,
(
y,

√
ε

ω3
I
)〉

− V (x1, |k̄′′|x2)

=
(
1 +

√
ε

ω3
〈B′, y〉

)
I +

1

2
〈By, y〉+ B′′

2ω2
3

εI2 − V (x1, |k̄′′|x2) = 0

has the form of

G0 =
ω2
3(1 +

√
ε

ω3
〈B′, y〉)

B′′ε

(
1−

(
1− 2B′′ε( 12 〈By, y〉 − V (x1, |k̄′′|x2))

ω2
3(1 +

√
ε

ω3
〈B′, y〉)2

) 1
2
)

=
1

2
〈By, y〉 − V (x1, |k̄′′|x2) +R0(x, y)
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and some a5(h,E) > 0 exists such that restricted in the domain T2 × {|y| ≤
2K−1εκ−

1
2 } one has ‖R0‖Cr−2 ≤ a5ε

κ, provided P ∈ B1.
According to the estimates (3.8) and (3.11), one has

‖G̃ε − G̃0‖Cr−2 = ‖R̃h + R̃ε‖Cr−2 ≤ (3a2 + a4)ε
κ

when (x, ϑ, y, I) is restricted in T2×|k̄′′|T×{|y| ≤ 2K−1εκ−
1
2 , |I| ≤ 2K−1|ω3|−1εκ−1}

where ϑ =
√
ε
−1

ω3θ. It follows from the relations ∂IG̃ε = 1+O(εκ), ∂IG̃0 = 1+O(εκ)
and the theorem of implicit function that some a6 = a6(h, d) > 0 exists such that

‖Gε −G0‖Cr−2 ≤ a6ε
κ holds when |y| ≤ 2K−1εκ−

1
2 . Indeed, let z = (x, y, ϑ), we get

from the equations G̃0(z,−G0) = 0 and G̃ε(z,−Gε) = 0 that

∂IG̃0(z,−G0 + λ(Gε −G0))(Gε −G0)− (R̃h + R̃ε)(z,Gε) = 0, (3.12)

where λ = λ(z,Gε −G0) ∈ [0, 1]. It follows from the relation ∂IG0 = 1 + O(εκ) that
maxz |Gε − G0| ≤ 2(3a2 + a4)ε

κ. For ξ = 0, ε, the derivative of Gξ in z satisfies the
equation

∂zG̃ξ(z,−Gξ(z))− ∂IG̃ξ(z,−Gξ(z))∂zGξ(z) = 0.

Because ∂2
I G̃0 = ω−2

3 B′′ε, |∂zGε| = |∂IG̃ε|−1|∂zG̃ε| = O(1), by taking the difference
of these equations we obtain the estimate on first derivative of Gε −G0

|∂z(Gε −G0)(z)| ≤|∂IG̃0(z,−G0)
−1|

(
|B′′ω−2

3 ε(Gε −G0)∂zGε|

+ |∂zG̃0(z,−Gε)− ∂zG̃0(z,−G0)|+
∣∣∣ d
dz

(R̃h + R̃ε)(z,−Gε)
∣∣∣)

≤2(3a2 + a4)ε
κ
(
(2|ω−2

3 B′′|ε+ 1)|∂zGε|+ 2|B′||ω−1
3 |√ε+ 1

)
.

The estimate on higher order derivatives can be done similarly.
From the formula (3.2), we see that |Gε(x, y, θ)| ≤ a4K

−2ε2κ−1 for |y| ≤
2K−1εκ−

1
2 if ε > 0 is suitably small such that |V | + |Rε| < 1

2a4K
−2ε2κ−1. Con-

sequently, the energy level set G̃−1
ε (0) intersects the domain {|y| ≤ K−1εκ−

1
2 , |I| ≤

K−1ω−1
3 εκ−1} × T3 at the place where |I| ≤ a4ε

2κ−1.
Under the composition of ΦεF ′ , (3.1), (3.6) and (3.9), Σ̃ε × T3 is mapped onto

Ωε. If ΦεF is an identity map, each section of Ωε where (x, θ) keeps constant contains

the disk {|y| ≤ K−1εκ−
1
2 , I = 0}, because |k′′2 | ≥ |k′′3 | is assumed in (3.1). Since ΦεF ′

approaches to identity and a4ε
2κ−1

K−1ω−1
3 εκ−1

= a4Kω3ε
κ → 0 as ε → 0, some ε0(δ

′) > 0

exists such that, for any ε ∈ (0, ε0], the set {|y| ≤ (1− δ′)K−1εκ−
1
2 , |I| ≤ a4ε

2κ−1} is

contained in each section of Ωε where (x, θ) is fixed, i.e. Σε ⊃ {|y| ≤ (1−δ′)K−1εκ−
1
2 }.

Similarly, we can show that Σε ⊂ {|y| ≤ (1 + δ′)K−1εκ−
1
2 }.

The transformation M of (3.1) is uniformly bounded for all resonant conditions
along Γk′ and all constants a� with 2 ≤ � ≤ 7 can be set to be independent of the
second resonant condition. Let a0 = a6+a7, we then complete the proof of the lemma
in the case that |k̄′′2 | ≥ |k̄′′3 |.

If |k̄′′2 | ≤ |k̄′′3 |, in the new coordinates (u, v), the frequency at the double resonance
has the form of M ′t∂h(p′′) = (0, ω3, 0). From (3.1) one obtains

〈k′, q〉 = 〈k′, (MM0)
−1u〉 = u1, 〈k′′, q〉 = 〈k′′, (MM0)

−1u〉 = k̄′′3u3.
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By introducing the permutation u2 ↔ u3 and v2 ↔ v3, we are again in the situation
we have handled. The rest of the proof is the same as above.

Let A = B−1. By the Legendre transformation,

Lε(ẋ, x, θ) = max
y

{〈ẋ, y〉 −Gε(x, y, θ)}.

one obtains from the Hamiltonian Gε the Lagrangian (1.1) defined in [C17b].
Treated as the set in T ∗M , it is shown in [B07] that Mather set, Aubry set and

Mañé set are symplectic invariants. Denote by M̃H(c) the Mather set of the Tonelli
Hamiltonian H : T ∗M → R in the cohomology class c ∈ H1(M,R).

Theorem 3.1 ([B07]). Let Φ : T ∗M → T ∗M be a Hamiltonian diffeomorphism.
Then one has

ΦM̃H(c) = M̃H◦Φ(Φ∗c), c ∈ H1(M,R).

Similarly for Aubry set and Mañé set.

Applying the theorem, we find that the map ΦεF does not induce the change of
the structure of the Mañé sets and the Aubry sets. The transformations M0 and
(3.1) are linear, (3.6) and (3.9) are rescaling. Therefore, the conditions (1) and (2) in
Definition 2.2 remain unchanged under the coordinate transformations.

4. The covering property. We are going to show that the whole resonant path
Γk′ can be covered by the disks where one obtains the normal form of (3.2).

Theorem 4.1 (Covering property). Some ε0 > 0 exists such that for each ε ∈
(0, ε0] there exists a finite set of double resonant points {p′′i ∈ Γk′} with the properties

(1) the period Ti of the frequency ∂h(p′′i ) is not large than Ti ≤ K∗ε−
1
3 (1−3κ)

where κ ∈ (0, 1
6 ) and K∗ is independent of ε;

(2) Γk′ is covered by the union of the disks {‖p− p′′i ‖ ≤ T−1
i εκ}.

Proof. If Γk′ is a set in Rn the theorem is proved in Chapter 3 of [Lo] with the
condition κ < (3n+3)−1. We use their idea to prove the covering property under the
condition κ < 1

6 . To do that, we use Dirichlet’s approximation theorem.
For real x, let [x] ∈ Z denote the integer part and {x} ∈ (0, 1) denote the decimal

part. So, one has

x = [x] + {x},

We use notation

‖x‖Z = min{{x}, 1− {x}} = dist(x,Z).

Proposition 4.1 (Dirichlet). Let ω ∈ R and K > 1 be a real number. There
exists an integer k, 1 ≤ k < K, such that

‖kω‖Z ≤ K−1.

For ω = (ω2, ω3) ∈ R2, let |ω| = max{|ω2|, |ω3|}. Let S1 = {ω ∈ R2 : |ω| = 1} be
the boundary of unit square, it has four sides. By applying Dirichlet’s approximation
theorem, for any ω ∈ S1 and any integer K > 0 there exists 1 ≤ k < K such that
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‖kmin{ω2, ω3}‖Z ≤ K−1. In other words, given any ω ∈ S1, some rational vector ω∗

on the same side exists such that Tω∗ ∈ Z2 with T ≤ K and

dist(Tω, Tω∗) = ‖Tω − Tω∗‖ ≤ K−1. (4.1)

To apply the inequality, we notice that ∂h(Γk′) is a circle lying on certain 2-
dimensional plane.

By the definition, Γk′ is a smooth circle. Under the transformation M0 introduced
in the last section, M−1

0 ∂h maps the circle Γk′ to a smooth circle Γω,k′ = M−1
0 ∂h(Γk′)

restricted on the plane {(ω1, ω2, ω3) : ω1 = 0}.
Since h is positive definite and h(Γk′) ≡ E > minh, each line {λ(0, ω2, ω3) : λ ∈

R} intersects the circle Γω,k′ transversally and each ω ∈ Γω,k′ determines a unique
λω > 0 such that λω(ω2, ω3) ∈ S1. Therefore, some number d > 0 exists so that the
distance between any two points ω = (0, ω2, ω3), ω

∗ = (0, ω∗
2 , ω

∗
3) ∈ Γω,k′ is upper

bounded by

‖ω − ω∗‖ ≤ d‖λωω − λω∗ω∗‖.

If ω∗ is a rational vector with period T , the period of λω∗ω∗ will be λ−1
ω∗ T .

The map ∂h establishes a diffeomorphism between Γk′ and Γω,k′ . Given an integer
K > 0, it follows from (4.1) that, for any rotation vector ω ∈ Γω,k′ , there exists some
rational rotation vector ω∗ ∈ Γω,k′ such that λωω, λω∗ω∗ lie on the same side, such
that

‖ω − ω∗‖ ≤ d‖λωω − λω∗ω∗‖ ≤ dλω∗

KT
,

where T > 0 is the period of ω∗ such that λ−1
ω∗ T < K.

For the ball BD ⊂ R3, there are positive numbers m′ = m′(D) ≥ m = m(D) > 0
such that

m‖v‖2 ≤ 〈∂2h(y)v, v〉 ≤ m′‖v‖2, ∀ y ∈ BD, v ∈ R3.

Because h is assumed strictly convex, there exist exactly two points y, y∗ ∈ BD such
that ∂h(y) = ω, ∂h(y∗) = ω∗ and ‖y − y∗‖ ≤ m−1‖ω − ω∗‖. Because λ−1

ω∗ T ≤ K, the
covering property ‖y − y∗‖ ≤ T−1εκ is guaranteed if we choose

K =
dλω∗

m
ε−κ.

Again, because λ−1
ω∗ T ≤ K, one has T ≤ K∗ε−

1
3 (1−3κ) ifK = dλω∗

m ε−κ ≤ K∗
Λ ε−

1
3 (1−3κ).

It holds for each ε ∈ (0, ε0] if ε0 satisfies the condition

ε
1−3κ

3 −κ
0 ≤ mK∗

dΛ2
,

where Λ = maxω∈Γω,k
λω. For κ < 1

6 , such ε0 > 0 exists.

5. The finiteness of strong double resonance. Because of Theorem 4.1, the
path of resonance Γk′ is covered by the discs {‖p − p′′i ‖ < T−1

i εκ}, where κ < 1
6 ,

Ti ≤ K∗ε−
1
3 (1−3κ) is the period of the double resonance at p′′i , K

∗ is independent of
ε. Therefore, the size of each disk is between O(ε1/3) and O(ε1/7). When the number
ε > 0 decreases, the number of the disks increases. We are going to distinguish strong
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double resonant points from weak resonant points by the second resonant relation,
and we will see that the number of strong double resonant points is finite, independent
of ε in generic case.

We consider the resonant term (3.3) which takes the form

Z(p, q) = Zk′(p, 〈k′, q〉) + Zk′,k′′
i
(p, 〈k′, q〉, 〈k′′i , q〉) (5.1)

where k′ = k� or k∗, k′′i is the additional resonant condition

Zk′ =
∑

j∈Z\{0}
Pjk′(p)ej〈k

′,q〉i,

Zk′,k′′
i
=

∑
(j,l)∈Z2,l �=0

Pjk′+lk′′
i
(p)e(j〈k

′,q〉+l〈k′′
i ,q〉)i.

(5.2)

Because |Pk| decrease fast as ‖k‖ increases |Pk| ≤ O(‖k‖−r), the term Zk′,k′′
i
is treated

as a small perturbation to Zk′ provided ‖k′′i ‖ is large.
Treated as a function of x = 〈k′, q〉, we consider Zk′(p, x) as a family of functions

Zk′(p, ·): T → R, where p ∈ Γk′ is treated as a parameter. Such an observation allows
us to apply the result of [Zh2].

Theorem 5.1 (Theorem 1.1 of [Zh2]). Let Fλ : T → R be a family of C4-smooth
functions so that Fλ is Lipschitz in the parameter λ ∈ [0, 1]. Then, there exists an
open-dense set V ⊂ Cr(T,R) (r ≥ 4) such that for each V ∈ V and each λ ∈ [0, 1],
every global minimal point of Fλ − V is non-degenerate.

To apply the theorem here, we notice that the path Γk′ induces a decomposition

Cr(BD × T3,R) = Cr(BD × T,R)⊕ Cr(BD × T3,R)/Cr(BD × T,R)

via

P (p, q) = Zk′(p, 〈k′, q〉) + P ′(p, q), (k′ = k�, k∗),

where Zk′ is defined in (5.2) consisting of Fourier modes of P in spanZ{k′}, and
P ′ = P − Zk′ ∈ Cr(BD × T3,R)/Cr(BD × T,R).

Therefore, there exists an open-dense set V ⊂ Cr(BD × T,R) and consequently
an open-dense set P = V ⊕ Cr(BD × T3,R)/Cr(BD × T,R) ⊂ Cr(BD × T3) such
that for all P ∈ P, it holds simultaneously for each p ∈ Γk′ that the resonant term
Zk′(p, ·), treated as a function of x, is non-degenerate at its maximal point, namely,
the second derivative ∂2

xZk′ at its maximum is uniformly upper bounded below 0.
Let y0 be a vector such that By0 = (0, 1)t. A non-degenerate maximal point x1,i

of Zk′(p′′i , ·) corresponds to a normally hyperbolic invariant cylinder (NHIC)

Πi = {(x, y) ∈ T2 × {‖y‖ ≤ K−1
i εκ−

1
2 } : x1 = x1,i, y = λy0, λ ∈ R}

of the Hamiltonian system 1
2 〈By, y〉+Zk′(p′′i , x1). In the (p, q)-coordinates, the cylin-

der passes through a neighborhood of the double resonant point p′′i . Such a phe-
nomenon allows us to distinguish strong double resonant points from weak ones by
the existence of weakly invariant cylinder.

Definition 5.1 (cf. [B10]). An open manifold is said to be weakly invariant for
a flow if its vector field is tangent to the manifold.



414 C.-Q. CHENG

Applying the theorem of normally hyperbolic invariant manifold (NHIM), we see
that, for the Hamiltonian 1

2 〈By, y〉+Zk′ +Zk′,k′′
i
, there exists some weakly invariant

cylinder Π′
i lying in a small neighborhood of Πi∩{‖y‖ ≤ K−1

i εκ−
1
2 −1} provided |k′′i |

is large enough.

Indeed, if we introduce a cut-off C∞-function χ: [0,∞) → R satisfying χ(ν) = 0

for ν ≥ K−1
i εκ−

1
2 and χ(ν) = 1 for χ ≤ K−1

i εκ−
1
2 − 1. Then by applying the

theorem of NHIM to the Hamiltonian 1
2 〈By, y〉+Zk′(p′′i , x1)+χ(‖y‖)Zk′,k′′

i
(p′′i , x) we

see that the cylinder Πi survives the small perturbation χ(‖y‖)Zk′,k′′
i
(p′′i , x) if |k′′i | is

sufficiently large. Restricted on the region {‖y‖ ≤ K−1
i εκ−

1
2 −1} the survived cylinder

is obviously weakly invariant. Since the normally hyperbolic splitting still exists on
the survived cylinder, we call it normally hyperbolic weakly invariant cylinder, or
NHWIC for short.

Definition 5.2. A double resonance is said to be weak if the double resonant
term Zk′,k′′

i
is so small that can be treated as a small perturbation

1

2
〈By, y〉+ Zk′ → 1

2
〈By, y〉+ Zk′ + Zk′,k′′

i

such that one can apply the theorem of NHIM. In this case, the NHWIC survives the
perturbation. Otherwise, the double resonance is said to be strong.

Although the number of the disks {‖p− p′′i ‖ < T−1
i εκ} depends on ε, we have

Proposition 5.1. There exists a set P open-dense in S1 such that for each
P ∈ P, the number of strong double resonances along Γk′ is finite and independent of
ε.

Proof. For perturbation P , let xp be the maximal point of the single resonant
term Zk′(p, ·) with respect to the variable x. By Theorem 5.1, there exists an open-
dense set P′ ⊂ Cr(BD × T3,R), for each P ∈ P′ there exists some dP > 0 such that
the second derivative ∂2

xZk′(p, xp) < −dP holds for all p ∈ Γk′ . Since λP ∈ P′ for any
λ �= 0 if P ∈ P′, the restriction of P′ to S1 is clearly open-dense. Since the double
resonant term Zk′,k′′

i
will be sufficiently small provided ‖k′′i ‖ is sufficiently large, we

complete the proof.

Notation 5.1. Let Λε denote the set of the subscripts i such that the resonant
circles Γk� ∪ Γk∗ is covered by the disks

Γk� ∪ Γk∗ ⊂ ∪i∈Λε
{p ∈ R3 : ‖p− p′′i ‖ < T−1

i εκ}

where the period Ti of the double resonant point p′′i is not larger than K∗ε−(1−3κ)/3

with κ ∈ (0, 1
6 ). Let Λs ⊂ Λε be the subset so that the double resonance at p′′i is strong

if and only if i ∈ Λs.

6. Dynamics around double resonance. Let us apply Lemma 3.1 to the
double resonant point p′′i , where the second resonant condition is denoted by k′′i , let
k̄′′i = M−t

0 k′′i = (0, k̄′′i,2, k̄
′′
i,3). We denote by Gε,i the normal form reduced from H in

a neighborhood of p′′i , which takes the form of (3.2)

Gε,i(x, y, θ) = Ḡi(x, y) +Rε,i(x, y, ϑ(θ)), (6.1)
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where Ḡi =
1
2 〈Biy, y〉−Vi(x1, |k̄′′i |x2), Vi ∈ Cr is 2π-periodic in (x1, |k̄′′i |x2) such that

maxVi = 0, ϑ =
ωi,3√

ε
θ, Rε,i ∈ Cr−2(T2 × Σ′

ε,i × |k̄′′i |T,R) with

{|y| ≤ (1− δ′)(ηTi)
−1εκ−

1
2 } ⊂ Σ′

ε,i ⊂ {|y| ≤ (1 + δ′)(ηTi)
−1εκ−

1
2 },

η ∈ (0, 1) is independent of the period Ti, the remainder Rε,i is bounded by a0ε
κ in

Cr−2-topology if it is considered as a function of (x, y, ϑ).
Because the normal form (6.1) is obtained by the transformation (3.1) where the

matrix is denoted by Mi, the function Rε,i respects the symmetry Mi. So we have

Gε,i(x1, x2 + k̄′′i,3/k̄
′′
i,2, ϑ+ 1) = Gε,i(x1, x2, ϑ) (6.2)

Pull back to the original space of (p, q), we have Vi(x1, |k̄′′i |x2) = Vi(〈k′, q〉, 〈k′′i , q〉).
Let αε,i and βε,i denote the α- and β-function for Gε,i respectively, with which

one defines the Fenchel-Legendre transformation Lα: H1(M,R) → H1(M,R) by

c ∈ Lα(ω) ⇐⇒ α(c) + β(ω) = 〈c, ω〉.

By the definition, the β-function is the Fenchel-Legendre dual of the α-function. By
adding a constant to Gε,i, we can assume minαε,i = 0.

To understand the dynamics around strong double resonances, we apply the re-
sults obtained in [C17a, C17b, CZ].

Theorem 6.1. There exists a residual set Vi ⊂ Cr(T2,R) with r ≥ 2. Each
Vi ∈ Vi is associated with some positive numbers ΔVi

, εi such that for any ξ ∈ (0,ΔVi
),

ε ∈ [0, εi] the circle α−1
ε,i (ξ) establishes a transition chain (of cohomology equivalence).

These circles make up an annulus Ai surrounding the set Fi = {c : αε,i(c) = 0}.
Proof. If we are satisfied with the property that V ∈ Vi is 2π-periodic both in x1

and in x2, it is just an application of Theorem 1.1 of [C17b]. We are going to show that
the set Vi is residual in the space of Cr-functions which are 2π-periodic in (x1, |k̄′′i |x2).
For the purpose, we introduce a canonical transformation T : (x1, |k̄′′i |x2) → (φ1, φ2),
(y1, |k̄′′i |−1y2) → (I1, I2) and get the Hamiltonian from (6.1)

Ḡ′
i = T∗Ḡ′

i =
1

2
〈B′

iI, I〉 − Vi(φ), (φ, I) ∈ T2 × R2, (6.3)

where B′
i = diag(1, |k̄′′i |)Bidiag(1, |k̄′′i |). The theorem holds for Ḡ′

i under the condition
that Vi is residual in Cr(T2,R).

Pull Ḡ′
i back to the space of (x, y), we see that the theorem holds because Gε,i

is a small perutrbation of T ∗Ḡ′
i: Gε,i = T ∗Ḡ′

i + Rε,i and Mañé set is upper semi-
continuous with respect to small perturbation.

Given an irreducible class g ∈ H1(T2,Z)\{0}, let Ci,g = ∪ν>0Lαε,i
(νg). To

consider the Aubry set of Gε,i for c ∈ Ci,g, we consider the truncated Hamiltonian Ḡ′
i

of (6.3) and let ᾱi be the α-function for Ḡ′
i. For c ∈ Lᾱi

(λg), each c-minimal orbit is
periodic. To stress its topological information, we also call it λg-minimal orbit. The
parameter λ� is called bifurcation point, if there are two or more λ�g-minimal orbits.
Applying Theorem 2.1 of [CZ], Theorem 3.1 and the argument of Section 4 of [C17a]
we have

Proposition 6.1. Given an irreducible class g′ ∈ H1(T2,Z)\{0} and λ0 > 0,
there exists an open-dense set Vi ⊂ Cr(T2,R) with r ≥ 5 such that for each Vi ∈ Vi,
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it holds simultaneously for all λ ∈ [λ0,∞) that the Mather set of Ḡ′
i for each c ∈

Lᾱi(λg
′) consists of hyperbolic periodic orbits. Indeed, except for finitely many {λ�}

the Mather set is made up two hyperbolic periodic orbits, for all other λ ∈ [λ0,∞) the
Mather set contains exactly one hyperbolic periodic orbit.

Therefore, for each Vi ∈ Vi, there are finitely many bifurcation points λ0 <
λ′
1 < · · · < λ′

m, the number m is independent of ε. At each bifurcation point λ′
�,

there exist exactly two λ′
�g

′-minimal orbits of Ḡ′
i. So, for λ′ ≥ λ0, all λ

′g′-minimal
orbits make up m + 1 pieces of NHIC. Let Π̄′

i,� denote the cylinder made up of

λ′g′-minimal orbits of Ḡi for all λ′ ∈ [λ′
�, λ

′
�+1] for � < m, let Π̄′

i,m be the cylinder

made up of λ′g′-minimal orbits of Ḡi for all λ′ ∈ [λ′
m, λ′

ε] where λ′
ε is chosen such

that maxθ |(I1, |k̄′′i |I2)(θ)| = (1 − δ′)(ηTi)
−1εκ−

1
2 holds for the λ′

εg
′-minimal orbits

(I(θ), φ(θ)).
Return back to the coordinates (x, y), each orbit of Ḡ′

i is pulled back to the orbit
of T ∗Ḡ′

i in the way

(x1, x2, y1, y2) =
(
φ1,

1

|k̄′′i |
(φ2 + 2�π), I1, |k̄′′i |I2

)

for � = 0, 1, · · · , |k̄′′i | − 1. Consequently, each cylinder Π̄′
i,� is pulled back to a cylinder

Π̄i,� of Ḡi, modulo a shift (x, y) → (x+ (0, 2π/|k̄′′i |), y). Each cylinder is made up of

λg-minimal orbits of Ḡi with λg = λ′

|k̄′′
i | (|k̄′′i |g1, g2) if λ′g′ = λ′(g1, g2).

Let E� be the energy such that λ�g-minimal orbit lies in the energy level set
Ḡ−1

i (E�). Since each λ�g-minimal orbit is hyperbolic, each cylinder Π̄i,� can be ex-
tended by the hyperbolic orbits lying in the level set Ḡ−1

i (E) with E ∈ [E�+1, E�+1 +
2d] ∪ [E� − 2d,E�]. Since there are finitely many bifurcation points, such a number
d > 0 exists.

Under the time-periodic perturbation Gε,i = Ḡi + Rε,i, major part of these
cylinders survives, weakly invariant for the Hamiltonian flow Φθ

Gε,i
. Notice that

ϑ = ωi,3
√
ε
−1

θ and Gε,i is 2π in x, 2|k̄′′i |π in ϑ and symmetric for Mi, see (6.2),
we introduce a shift

σi : (x, y, θ) →
(
x+

(
0, 2π

k̄′′i,3
k̄′′i,2

)
, y, θ +

√
ε

ωi,3

)
, (6.4)

then σ∗
i Gε,i = Gε,i. Let Π̃i,E�−d,E�+1+d = (Π̄i,�× |k̄′′

i |√ε
ωi,3

T)∩{Ḡi ∈ [E�−d,E�+1+d]}.
Proposition 6.2. For sufficiently small ε, there is a cylinder Π̃ε

i,E�−d,E�+1+d

modulo the shift σi, which is weakly invariant and normally hyperbolic for the flow
Φθ

Gε,i
. The cylinder lies in a small neighborhood of Π̃i,E�−d,E�+1+d.

Proof. We modify the HamiltonianGε,i. Let ρ be a C
2-function such that ρ(μ) = 1

for μ ≥ 1 and ρ(μ) = 0 for μ ≤ 0. By defining ρ1(x, y) = ρ((Ḡi(x, y)− E−
� + 2d)/d),

ρ2(x, y) = 1− ρ((Ḡi(x, y)− E�+1 − d)/d) we introduce

G′
ε,i =

⎧⎪⎨
⎪⎩
Ḡi + ρ1Rε,i, if Ḡi(x, y) ∈ [E−

� − 2d,E� − d],

Ḡi + ρ2Rε,i, if Ḡi(x, y) ∈ [E�+1 + d,E�+1 + 2d],

Gε,i, elsewhere.

(6.5)

Because ‖G′
ε,i − Ḡi‖C2 � 1 if |y| ≤ O(εκ−

1
2 ) and ε � 1, it follows that the NHIC Π̃i,�

survives the perturbation Ḡi → G′
ε,i, denoted by Π̃ε

i,�.
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Let Π̃ε
i,E�−d,E�+1+d = Π̃ε

i,� ∩{Ḡi ∈ [E�− d,E�+1+ d]}, which is a weakly invariant

for Φθ
Gε,i

because Gε,i = G′
ε,i when they are restricted in the region {(x, y) : Ḡi(x, y) ∈

[E� − d,E�+1 + d]} × |k̄′′
i |√ε
ωi,3

T. The normal hyperbolicity is obvious.

Due to the symmetry (6.2), the Hamiltonian vector field of Φθ
Gε,i

is invariant

under the shift σi. It guarantees the invariance of Π̃
ε
i,E�−d,E�+1+d under the shift σi.

Notice that λε > 0 is set such that maxθ |y(θ)| = (1 − δ′)(ηTi)
−1εκ−

1
2 holds for

the λεg-minimal orbits (y(θ), x(θ)). By applying Theorem 1.2 of [C17b], we have

Theorem 6.2. Given a class g ∈ H1(T2,R) and small E0 > 0, there is an open-
dense set Vi ⊂ Cr(T2,R) (r ≥ 5). For each Vi ∈ Vi, there exists ε0 > 0 such that for
each ε ∈ (0, ε0)

1) there are finitely many NHWICs for the flow Gε,i: Π̃ε
i,E�−d,E�+1+d (� =

0, · · · ,m) and Π̃ε
i,Em−d,Eε

, modulo the shift σi, where the integer m, the numbers
E1 < E2 < · · · < Em, d > 0 and the normal hyperbolicity of each cylinder are all
independent of ε, Eε = ᾱi(λεg) = O(ε2κ−1) for small ε > 0;

2) some E�,ε → E� as ε → 0 exists such that for each c ∈ Ci,g

(1) if αε,i(c) ∈ (E�,ε, E�+1,ε), the Aubry set lies on Π̃ε
i,E�−d,E�+1+d modulo σi;

(2) if αε,i(c) = E�,ε, the Aubry set contains at least two connected components,

one is on Π̃ε
i,E�−1−d,E�+d and the other one is on Π̃ε

i,E�−d,E�+1+d modulo σi;

(3) if αGε(c) ∈ (Em,ε, Eε), the Aubry set lies on Π̃Em−d,Eε modulo σi.

Remark. Because of the symmetry Mi, all shifts of the cylinder Π̃ε
i,E�−d,E�+1+d

are projected to the same cylinder, if we pull them back to the space of (p, q).

At a strong double resonant point p′′i , i ∈ Λs, we consider two classes g−i , g
+
i

which determines two channels C±
i = Ci,g± . The choice of g−, g+ depends on where

p′′i is. There are three possible locations of a strong double resonant point p′′i along
Γk∗ ∪ Γk� :

(1) the point p′′i is on the path Γk� where Γk� does not intersect with Γk∗ ;
(2) the point p′′i is on the path Γk∗ where Γk∗ does not intersect with Γk� ;
(3) p′′i ∈ Γk� ∩ Γk∗ .

After the linear coordinate transformations M0 and Mi defined in (3.1), we have that
the first two components of the frequency ∂h(p), i.e. the frequency of the system Gε,i,
is proportional to (0, 1) along Γk, k = k∗, k� in the first two cases. In the third case,
∂h(p) is proportional to (0, 1) along Γk� and to (1, 0) along Γk∗ .

At a double resonance p′′i , the first two components of the frequency ∂h(p′′i ) vanish
after the linear transforms. So by crossing a strong double resonance, we mean that
there exists an orbit of the system Gε,i, such that along the orbit, its “frequency”
changes from being in the set {(0, ν), ν > 0} to the set {(0, ν), ν < 0} in the first
two cases, and changes from being in the set {(0, ν), ν > 0} to the set {(ν, 0), ν > 0}
in the third case. Since Gε,i is not nearly-integrable, here the role of “frequency” of
the system Gε,i will be played by the rotation vector of the Mather sets shadowed by
the orbit.

We introduce the homology classes g±i ∈ H1(T2,Z) as follows:
(1) g+i = (0, 1) and g−i = (0,−1) in the first two cases,
(2) g+i = (0, 1) and g−i = (1, 0) in the third case.
By adding a constant to Gε,i we assume minαε,i = 0. Applying Theorem 6.1

and 6.2 we obtain the following result for the dynamics around the strong double
resonance.
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Theorem 6.3. There exists an open-dense set Vi ⊂ Cr(T2,R) (r ≥ 5) such that
for each Vi ∈ Vi, there exist 0 < Ei,0 < ΔVi , Δ

′
i > 0 and εi > 0 such that ∀ ε ∈ (0, εi]

the following holds.
1) there is an annulus Ai around a double resonant point p′′i , made up of the circles

{c ∈ α−1
ε,i (E) : E ∈ (0,ΔVi)}, each of which is a path of cohomology equivalence;

2) the following two channels are connected by the annulus Ai

C±
i = ∪λ∈[λ±

i ,λ̄±
i ]Lαε,i

(λg±i ), g±i ∈ H1(T2,Z),

where λ̄±
i , λ

±
i > 0 satisfy αε,i(Lαε,i

(λ±
i g

±
i )) = Ei,0 < ΔVi

and

(1) for c ∈ Lαε,i
(λ̄±

i g
±
i ) it holds for every orbit {(x(θ), y(θ)), θ ∈ R} in Ã(c)

that

(1− δ′)(ηTi)
−1εκ−

1
2 −Δ′

i ≤ |y(θ)| ≤ (1− δ′)(ηTi)
−1εκ−

1
2 ;

(2) for each c ∈ C±
i except for finitely many classes {cj}, the Aubry set Ã(c)

lies in certain cylinder Π̃ε
i,E�−d,E�+1+d, modulo the shift σi, while Ã(cj) lies

in two of the cylinders. For each orbit {(x(θ), y(θ)), θ ∈ R} in the Aubry set
one has

Osc|y(θ)| = max |y(θ)− y(θ′)| ≤ Δ′
i.

Proof. We only need to verify the estimate on the oscillation of y(θ) if (x(θ), y(θ))
is an orbit in the Aubry sets. Let us consider the problem for Ḡi first.

We claim that some constant Δ′
i > 0 exists such that it holds along any λg-

minimal orbit (ȳ(θ), x̄(θ)) of Ḡi that

|ȳ(θ)− ȳ(θ′)| ≤ 1

2
Δ′

i. (6.6)

Indeed, each λg-minimal orbit is entirely contained in certain energy level set Ḡ−1
i (E).

The higher the energy increases, the shorter the period becomes. Let E1 be the energy
that the set Ḡ−1

i (E1) contains λg-minimal orbit with period 1. One obtains from the
equation ẏ = ∂Vi(x) that |ȳ(θ)− ȳ(θ′)| ≤ maxx∈T2{|∂x1

Vi(x̄(θ))|, |k̄′′i ||∂x2
Vi(x̄(θ))|} if

(x(θ), y(θ)) ∈ Ḡ−1
i (E) with E ≥ E1. Let mi be the smallest eigenvalue of Bi, one has

‖y‖ ≤ 1
mi

√
E + Vi(x) if (x, y) ∈ Ḡi(E). Therefore, the estimate (6.6) holds if we set

Δ′
i = max

{
2max
x∈T2

{|∂x1
Vi(x̄(θ))|, |k̄′′i ||∂x2

Vi(x̄(θ))|}, 4

mi

√
E1 +max

x
Vi(x)

}
. (6.7)

Next, we consider Gε,i which is a O(εκ)-perturbation of Ḡi. Each θ-section of
NHIC of Gε,i is located in O(εκ)-neighborhood of NHIC of Ḡi. By Proposition 5.2 of

[C17a], the Aubry set Ã(c) does not hit the level set G−1
ε,i (E ± ε

1
3κ) if c ∈ α−1

ε,i (E) ∩
∪λLαε,i

(λg) and E −minαε,i ≥ O(1). Because the Aubry set Ã(c) for Gε,i stays in

the cylinder, it falls into O(ε
1
3κ)-neighborhood of the Aubry set for Ḡi. For any y(θ)

there exists ȳ(θ∗) such that |y(θ)− ȳ(θ∗)| < 1
4Δ

′
i provided ε > 0 is suitably small and

it holds for any orbit (x(θ), y(θ)) ∈ Ã(c) with c ∈ C±
i that

Osc|y(θ)| = max
θ,θ′

|y(θ)− y(θ′)| ≤ max
θ,θ′

|ȳ(θ)− ȳ(θ′)|+ 2O(ε
1
3κ) ≤ 3

4
Δ′

i.
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If we set λ̄±
i such that maxθ |ȳ(θ)| = (1 − δ′)(ηTi)

−1εκ−
1
2 − 1

4Δ
′
i holds along λ̄±

i g
±
i -

minimal orbit of Ḡi, one obtains that

(1− δ′)(ηTi)
−1εκ−

1
2 −Δ′

i ≤ |y(θ)| ≤ (1− δ′)(ηTi)
−1εκ−

1
2

if (x(θ), y(θ)) lies in Ã(c) with c ∈ Lαε,i
(λ̄±

i g
±
i ).

For weak double resonant point p′′i , the truncated part of Gε,i is

Ḡi =
1

2
〈Biy, y〉 − V ′

i (x1)− V ′′
i (x1, |k̄′′i |x2), (6.8)

where V ′
i (x1) = −Zk′(p′′i , x1), V

′′
i (x1, |k̄′′i |x2) = −Zk′,k′′

i
(p′′i , x1, |k̄′′i |x2) and the term

V ′′
i is treated as a small perturbation.

Theorem 6.4. There exists an open-dense set Vk′ ⊂ Cr(Bd ×T,R) (r ≥ 5), for
each Zk′ ∈ Vk′ , there exist Δ′

i > 0 and εk′ > 0 which are independent of k′′i such that
for each ε ∈ (0, εk′ ] and each i ∈ Λε\Λs there is a channel

Cw
i = ∪λ∈[−λi,λ̄i]Lαε,i(λg) ⊂ H1(T2,R), g = (0, 1) (6.9)

with the properties that
(1) for each c ∈ Cw

i , the Aubry set Ã(c) lies on some NHWIC entirely contained
in the region Σ′

ε,i, modulo the shift σi. Along each orbit {(x(θ), y(θ)), θ ∈ R}
in the Aubry set one has

Osc|y(θ)| = max
θ,θ′

|y(θ)− y(θ′)| ≤ Δ′
i,

(2) the numbers λi and λ̄i > 0 are chosen such that for c ∈ Lαε,i
(λ̄ig) ∪

Lαε,i
(−λig) it holds for c-minimal orbit {(x(θ), y(θ)), θ ∈ R} that

(1− δ′)(ηTi)
−1εκ−

1
2 −Δ′

i ≤ |y(θ)| ≤ (1− δ′)(ηTi)
−1εκ−

1
2 .

Proof. According to Theorem 5.1, there exists an open-dense set Vk′ ⊂ Cr(Bd ×
T,R), for each Zk′ ∈ Vk′ it holds simultaneously for all p ∈ Γk′ that the maximal
point of Zk′(p, ·) in x is non-degenerate, namely, the second derivative of Zk′(p, ·) in
x at the maximal point is uniformly upper-bounded below zero for all p ∈ Γk′ .

In this case, the Hamiltonian system 1
2 〈By, y〉 − V ′

i (x1) admits a normally hy-
perbolic invariant cylinder made up of the minimal periodic orbits of type (0, 1). As
the second resonant term V ′′

i (x1, |k̄′′i |x2) and the remainder Rε,i are small, the weakly
invariant cylinder survives the perturbation 1

2 〈By, y〉−V ′
i → 1

2 〈By, y〉−V ′
i −V ′′

i +Rε,i.
To study the oscillation of y(t), we also consider the truncation Ḡi =

1
2 〈By, y〉 −

V ′
i (x1)−V ′′

i (x1, |k̄′′i |x2) first. Let (x̄(θ), ȳ(θ)) be the λg-minimal orbit, then the second
component of ȳ(θ) satisfies the following relation

ȳ2(θ
′)− ȳ2(θ) =

∫ θ′

θ

|k̄′′i |∂2V ′′
i (x1(θ), |k̄′′i |x2(θ))dθ.

Although the number |k̄′′i | approaches infinity if the second resonant condition becomes
weaker, it does not make trouble to control the oscillation of ȳ(θ). Indeed, the term
V ′′
i (x1, |k̄′′i |x2) = Zk′

i,k
′′
i
(pi, x1, |k̄′′i |x2), which is defined in (5.2). Because |Pk| decrease

fast as ‖k‖ increases: |Pk| ≤ O(‖k‖−r), one has |k̄′′i ||∂2V ′′
i | → 0 as ‖k̄′′i ‖ → ∞.

The rest of the proof is similar to the proof of Theorem 6.3.
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7. The estimate of the deviation of Aubry set. For integrable Hamiltonian
h, the location of its c-minimal orbits is clear. Each c-minimal orbit is nothing else
but the orbit (p(t) = c, q(t) = ∂h(c)t+ q0). We want to know the deviation of Aubry
set when h is under small perturbation h → H = p+ εP .

For nearly integrable Hamiltonian H = h + εP with convex h, one has (see
Formulae (4.3) and (4.4) of [C11])

|α̃H(c̃)− α̃h(c̃)| < ε‖P‖, |β̃H(ρ)− β̃h(ρ)| < ε‖P‖ (7.1)

where ‖P‖ = max(p,q)∈BD×T3 |P (p, q)| denote the C0-norm of P , α̃H and α̃h denote

the α-function for H and h, β̃H and β̃h denote the β-function for H and h respectively.
Since H1(T3,R) = R3, we treat c̃ ∈ H1(T3,R) as a point in R3. Since h is positive

definite, there exists m > 0 such that

h(p′)− h(p) ≥ 〈∂h(p), p′ − p〉+ m

2
‖p′ − p‖2.

Lemma 7.1. Let p = ∂h(ω) ∈ BD, then the set Lα̃H
(ω) falls into Cs

√
ε-

neighborhood of p with Cs ≤ 2
√‖P‖/m, namely

dist(Lα̃H
(ω), p) ≤ Cs

√
ε.

Proof. Assume c̃+ p ∈ Lα̃H
(ω), then by the definition one has

〈ω, c̃+ p〉 = β̃H(ω) + α̃H(c̃+ p) ≥ β̃h(ω) + α̃h(c̃+ p)− 2‖P‖ε
≥ β̃h(ω) + α̃h(p) + 〈ω, c̃〉+ m

2
‖c̃‖2 − 2‖P‖ε

= 〈ω, c̃+ p〉+ m

2
‖c̃‖2 − 2‖P‖ε

from which one obtains ‖c̃‖ ≤ Cs
√
ε.

Small perturbation may induce small rescaling of the rotation vector when both
h and H are restricted on the level set with the same energy.

Lemma 7.2. Given a rotation vector ω �= 0, let h(∂h−1(ω)) = α̃H(Lα̃H
(νω)),

then some constant Cr > 0 exists such that |ν − 1| ≤ Cr
√
ε.

Proof. Let ν be a number close to 1. For each rotation vector ω, ∃ unique p, pν
such that ω = ∂h(p) and νω = ∂h(pν). It follows that

p− pν = (1− ν)B−1
ν ω, ‖p− pν‖ ≤ |1− ν|‖ω‖m−1,

where Bν = ∂2h(λνp + (1 − λν)pν) is positive definite, λν ∈ [0, 1]. For pν + c̃ ∈
Lα̃H

(νω), one obtains from the relation |α̃H − α̃h| ≤ ε‖P‖ and ‖c̃‖ ≤ Cs
√
ε that

ε‖P‖ ≥ |α̃H(pν + c̃)− α̃h(pν + c̃)| = |h(p)− h(pν + c̃)|

≥ |〈ω, pν − p+ c̃〉| − m′

2
‖p− pν − c̃‖2

≥ |1− ν|〈B−1
ν ω, ω〉 − Cs‖ω‖

√
ε− m′

2
‖p− pν − c̃‖2.

Therefore, some number Cr = Cr(ω,Cs) > 0 exists such that |1− ν| ≤ Cr
√
ε.
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Let Fω denote the Fenchel-Legendre dual of a rotation vector ω, i.e. Fω =
Lα̃H

(ω). The following lemma establishes the location of C̃k, it lies in O(
√
ε)-

neighborhood of Γk. The rescaling ω → νω is bounded by Lemma 7.2.

Lemma 7.3. For E > minh, there is a constant CH > 0 such that ∀ p ∈ h−1(E),
ω = ∂h−1(p), the set Fνω ⊂ α̃−1

H (E) lies in CH
√
ε-neighborhood of p, i.e. Fνω ⊂

BCH
√
ε(p).

Proof. By Lemma 7.1, one has Fνω ⊂ BCs
√
ε(pv). Since ‖p−pν‖ ≤ |1−ν|‖ω‖m−1,

by Lemma 7.2 and setting CH = Cs + Cr maxp∈Γk
‖ω(p)‖m−1, we finish the proof.

Lemma 7.4. Some number DH > 0 exists such that each orbit (p(t), q(t)) of Φt
H

can not be c̃-minimal if ‖p(t)− c̃‖ > DH
√
ε for all t ∈ R.

Proof. Let L(q̇, q) be the Lagrangian related to the Hamiltonian H = h + εP
through the Legendre transformation, then L(q̇, q) = 〈p, q̇〉 − H(p, q) where q̇ =
∂pH(p, q). If (p(t), q(t)) is c̃-minimal for c̃ ∈ α̃−1

H (E), one obtains from the iden-
tity H(p(t), q(t)) ≡ α̃H(c̃)

L(q̇(t), q(t))− 〈c̃, q̇(t)〉+ αH(c̃) = 〈p(t)− c̃, q̇(t)〉.
One obtains from Taylor’s formula that for certain λ ∈ [0, 1] the following holds

h(c̃)− h(p(t)) = 〈c̃− p, ∂h(p)〉+ 1

2

〈
∂2h(λc̃+ (1− λ)(c̃− p))(c̃− p), (c̃− p)

〉
.

Since h is positive definite and q̇ = ∂ph+ ε∂P , we get from the formula as above that

〈p(t)− c̃, q̇(t)〉 = 〈p(t)− c̃, ∂h(p)〉+ 〈p(t)− c̃, ε∂pP 〉
≥ m

2
‖c̃− p(t)‖2 − 2ε‖P‖ − ε‖∂pP‖

where m > 0 is the lower bound of the eigenvalues of ∂2h for p ∈ h−1(E). We set

DH >
√
2m−1(2‖P‖+ ‖∂pP‖),

if ‖p(t) − c̃‖ > DH
√
ε ∀ t ∈ R, then L(q̇(t), q(t)) − 〈c̃, q̇(t)〉 + α̃H(c̃) > 0 holds along

the whole orbit (p(t), q(t)). It contradicts the minimality of the orbit.

8. The construction of global transition chain. We come to the stage to
construct a global transition chain that connects a small neighborhood of c̃� = p� to
a small neighborhood of c̃∗ = p∗.

8.1. Invariance of the α-function. Let α̃ε,i be the α-function for G̃ε,i with the
form of (3.7). The isoenergetic reduction from systems with three degrees of freedom
to two and half establishes the relation between α̃−1

ε,i (0) and the graph of αε,i:

Theorem 8.1. For the Hamiltonian G̃ε(x, xn, y, yn), we assume that ∂ynG̃ε �= 0

holds on (Tn × B) ∩ {G̃−1
ε (E)} where E > min α̃ε, B ⊂ Rn is a ball. Let yn =

−λGε(x, y, t) be the solution of G̃ε(x,
1
λ t, y,−λGε) = E where λ > 0 is a real number.

For a class c ∈ H1(Tn−1,R), if the c-minimal curve x(t) of Gε satisfies the condition

(x(t), λ−1t, y(t),−λGε(x(t), y(t), t)) ∈ Tn ×B, ∀ t ∈ R

then one has c̃ = (c,−λαε(c)) ∈ α̃−1
ε (E).
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It was proved in [C17b] (Theorem 3.3 there). Let x̃ = (x, λ−1t), ỹ = (y,−λGε)
and τ denote the time of G̃ε, the theorem follows from the identity∫ (〈dx

dt
, y − c

〉
−Gε + αε(c)

)
dt =

∫ (〈dx̃
dτ

, ỹ − c̃
〉
− G̃ε + E

)
dτ.

For the application of the theorem in the paper, one has n = 3. If we regard the
graph of αε,i over Ai ∪ C−

i ∪ C+
i as a set in R3,

{(c,−αε,i(c)) : c ∈ Ai ∪ C−
i ∪ C+

i }

it precisely lies in the surface α̃−1
ε,i (0). The graph of Ai, C−

i and C+
i are denoted by Ãi,

C̃−
i and C̃+

i respectively. Formula (3.1) induces a linear transformation in H1(T3,R)
under which the sphere α̃ε undergoes a linear transformation

Ψ�
i : c̃ → Mic̃. (8.1)

Let α̃Φ∗
εFi

H be the α-function for the Hamiltonian Φ∗
εFi

H, where εFi is the gen-

erating function for the KAM iteration. Because the rescaling (3.9) induces∫
p̃dx̃− Φ∗

εFi
Hdt =

√
ε
(∫

ỹdx̃− G̃ε,ids
)
,

one obtains the rescaling of the first cohomology class, from α̃−1
ε,i (0) to α̃−1

Φ∗
εFi

H(0)

Ψr
i : c− ci →

√
ε(c− ci), c3 − ci,3 → ε

ω3,i
(c3 − ci,3), (8.2)

where c̃i = (ci, ci,3) = (ci,1, ci,2, ci,3) = p′′i if we treat both as the points in R3.
Because ΦεFi is a Hamiltomorphism, it does not change the Mather set, Aubry

set and Mañé set, due to Theorem 3.1.

8.2. Construction of the global transition chain . In this section, we show
how to construct a global transition chain from the local transition chains.

Recall the circle Γk� and Γk∗ constructed in Section 3. For generic perturbation P ,
due to Proposition 5.1, the number of strong double resonant points is independent
of ε. For each i ∈ Λs, the composition of Ψ�

i and Ψr
i maps Ai to an annulus of

cohomology equivalence Ãi ⊂ α̃−1
H (E) where α̃H denotes the α-function of H. It also

maps Cı
i for all i ∈ Λε to a local channel C̃ı

i ⊂ α̃−1
H (E) (ı = ±, w), namely

Ãi = Ψ�
iΨ

r
i (Ai), C̃ı

i = Ψ�
iΨ

r
i (C

ı
i), ı = ±, w.

Since H is a small perturbation of h, the sphere α̃−1
H (E) lies in O(ε)-neighborhood

of α̃−1
h (E) = h−1(E) if we treat both as the set in R3. Let

C̃k = {c̃ ∈ α̃−1
H (E) : 〈k, ω〉 = 0 ∀ω ∈ L −1

α̃H
(c̃)},

Under generic perturbation εP , it looks like a channel made up of flats. A subset is
said to be a flat of α̃H if α̃H is affine when it is restricted on the set, no longer affine
on any set properly containing the set. Since H is autonomous, E > minαH and each
ω ∈ L −1

α̃H
(C̃k) is resonant, Fω = Lα̃H

(ω) is a flat of dimension one or two.
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The set C̃k� ∪ C̃k∗ obviously contains the flats Fi (i ∈ Λs) for strong double
resonance we are concerned about

Fi = {c̃ ∈ α̃−1
H (E) : 〈k′i, ω〉 = 〈k′′i , ω〉 = 0, ∀ω ∈ L −1

α̃H
(c̃), k′i = k� or k∗}.

Let Fi + di
√
ε = {c̃ ∈ α̃−1

H (E) : dist(c̃,Fi) ≤ di
√
ε} with di < Δi, the set

C̃ =
(
C̃k� ∪ C̃k∗\(∪i∈Λs

Fi + di
√
ε)
)
∪
(
∪i∈Λs

Ãi

)
is path-connected (Theorem 6.3 and Lemma 8.1 below). According to Lemma 7.3,
C̃k lies in CH

√
ε-neighborhood of Γk. The rescaling of the corresponding frequencies

is bounded by Lemma 7.2.
For any δ > 0, there exists ε0 > 0 such that ∀ ε ≤ ε0 there exist totally irreducible

k�, k∗ ∈ Z3\{0} such that C̃k� ∪ C̃k∗ contains two points c̃�, c̃∗ ∈ C̃ with ‖c̃�−p�‖ < δ
2

and ‖c̃∗ − p∗‖ < δ
2 . Let Γc = Γc(εP ) be a path lying inside C̃, connecting c̃� to c̃∗. It

keeps away from the boundary of C̃ and moves along a circle of cohomology equivalence
when it turns around the strong double resonance. By definition, α̃H(c̃) ≡ E > minh
for all c̃ ∈ C̃. We are going to show that Γc is a global transition chain.

8.3. The covering property. According to Theorem 4.1, the path M−1
0 Γk is

covered by the disks ∪i∈Λε
Σ̃ε,i where

Σ̃ε,i = {p : |p−M−1
0 p′′i | < (ηTi)

−1εκ, η ∈ (0, 1]}.
We assume the subscripts {i ∈ Λε} are well-ordered such that Σ̃ε,i is adjacent to Σ̃ε,i±1.

Restricted on the energy level set H̄−1(E) contained in Σ̃ε,i × T3, the Hamiltonian
H̄ = h̄ + εP̄ is reduced to the normal form Gε,i defined on Σ′

ε,i as shown in Lemma

3.1. The corresponding channels C±
i and Cw

i are described in Theorem 6.3 and 6.4.

Since T−1
i εκ ≥ ε

1
3 , by replacing η with η

2 , we can assume some p′ ∈ M−1
0 Γk exists,

between p′′i and p′′i+1, such that the disc {‖p− p′‖ ≤ ξ
√
ε} is contained in Σ̃ε,i ∩ Σ̃ε,i+1

and is mapped into Σ′
ε,i and into Σ′

ε,i+1 by the transformations to get the normal
form (6.1), as shown in Section 3. The number ξ > 0 can be large if ε > 0 is small.

Let Γk,i = M−1
0 Γk ∩ Σ̃ε,i. As Γk is smooth and ε is small, Γk,i is o(ε)-close

to a straight line. For each disk Σ̃ε,i we have local channel C̃ı
i made up of the flats

Lα̃H
(νp∂h(p)) for p ∈ Γk,i, where νp is close to 1 such that α̃H(Lα̃H

(νp∂h(p))) = h(p).

If C̃ı
i and C̃ı

i+1 overlap, each flat Lα̃H
(νp∂h(p)) ⊂ C̃ı

i ∪ C̃ı
i+1 either entirely lies in the

intersection C̃ı
i ∩ C̃ı

i+1, or completely stays outside.

Lemma 8.1. There exist two numbers: a suitably small ε0 > 0 and a suitably
large ξ > 0, such that for each ε ∈ (0, ε0], the adjacent channels C̃ı

i, C̃
ı
i+1 overlap over

a channel

C̃ı
i ∩ C̃ı

i+1 ⊇ ∪p∈Γk,i∩Γk,i+1
Lα̃H

(νp∂h(p)),
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the length of the segment Γk,i ∩ Γk,i+1 is not shorter than ξ
2

√
ε.

Proof. We study the case that the double resonance at both adjacent points
p′′i , p

′′
i+1 are weak. Other cases can be treated similarly.
Because of Lemma 6.4, the oscillation of y(θ) is bounded by Δ′

j if (x(θ), y(θ)) is

an orbit lying in Ã(c) with c ∈ Cw
j . Since |k̄′′i ||∂2V ′′

i | → 0 as |k̄′′i | → ∞, we find from
(6.7) that Δ′

j is uniformly bounded for all j. In the original coordinate, because of
the three steps of coordinate changes, ΦεF , (3.1) and (3.6), there exists a constant
CV > 0 such that Osc‖p(t)‖ ≤ CV

√
ε if (p(t), q(t)) is an orbit in Ã(c̃) for c̃ ∈ C̃w

j .
Let us investigate the location of p(t) if (p(t), q(t)) is a c̃-minimal orbit. If both c̃

and p are treated as points in R3, one has the relation α̃h = h. It follows from Lemma
7.3 that the channel C̃k (k = k∗, k�) is entirely contained in CH

√
ε-neighborhood of

Γk. It follows from Lemma 7.4 that (p(t), q(t)) would not be c̃-minimal orbit of Φt
H

if p(t) entirely keeps away from Dh
√
ε-neighborhood of c̃. Since Osc|p(t)| ≤ CV Δ

′
j

√
ε

if (p(t), q(t)) ⊂ Ã(c̃) for c̃ = Ψ�
jΨ

r
j(c), each Aubry set Ã(c̃) is entirely contained in

(CV +Dh + CH)
√
ε-neighborhood of c̃ ∈ Γk if we treat both as the points in R3.

The parameters ξ and ε0 in the lemma are set such that

ξ ≥ 4(CV +Dh + CH), ξ
√
ε0 ≤ 1

2
ε

1
3
0 .

Then, there exists a segment Γ′
k,i of Γk between p′′i and p′′i+1 with the length ξ

2

√
ε such

that for each p′ ∈ Γ′
k,i one has {‖p − p′‖ < ξ

4

√
ε} ⊆ Σ̃ε,i ∪ Σ̃ε,i+1. Indeed, p′ ∈ Γ′

k,i

implies that the distance between p′ and the boundary of Σ̃ε,j is not smaller than ξ
4

√
ε

for j = i, i+ 1.
For each p′ ∈ Γ′

k,i, let c̃
′ ∈ Lα̃H

(νp′∂h(p′)). Then, the Aubry set Ã(c̃′) for H lies

in the disc {‖p − p′‖ < ξ
4

√
ε}. Under the composition of the maps ΦεF , (3.1), (3.6)

and (3.9), for Σ̃ε,j → Σ′
ε,j for j = i, i+1 the domain {‖p−p′‖ < ξ

4

√
ε} is mapped onto

a domain entirely contained Σ′
ε,j . The Aubry set of (Ψ�

jΨ
r
j)

−1c̃′ for Gε,j is contained

in the domain T2 × Σ′
ε,j × |k̄′′j |T. It implies that c̃′ ∈ C̃w

j for j = i, i+ 1.

Since C̃+
i and C̃−

i are joined by Ψ�
iΨ

r
i (Ai), the whole path Γc is covered by

Γc ⊂
⋃
i∈Λs

(
Ψ�

iΨ
r
i (Ai) ∪ C̃−

i ∪ C̃+
i

)
∪

⋃
i∈Λε\Λs

C̃w
i . (8.3)

8.4. The genericity. Before the proof of Theorem 2.1, we focus on a prescribed
path. The following theorem is Theorem 5.1 of [C17b].

Theorem 8.2. There exists a set Cε0 cusp-residual in Bε0 ⊂ Cr(BD × T3,R)
with r ≥ 6 such that for each εP ∈ Cε0 , the path Γc is a transition chain.

Proof. To check if Γc is a transition chain under generic perturbation εP , one
only needs to check, for generic perturbation εP , the condition of transition chain for
each c ∈ Ai ∪ C−

i ∪ C+
i if i ∈ Λs and for each c ∈ Cw

i if Λε\Λs.
As the first step, we show the cusp-residual property that, for every c ∈ C−

i ∪C+
i

with i ∈ Λs and for c ∈ Cw
i with i ∈ Λε\Λs, the Aubry set Ã(c) lies on some NHIC

(candidate of transition chain):
(CT: i ∈ Λs). There is an annulus of cohomology equivalence Ai connecting

channel C−
i to C+

i , and Ã(c) lies on some NHIC for c ∈ C−
i ∪ C+

i .
(CT: i ∈ Λε\Λs). The Aubry set Ã(c) lies on certain NHIC for each c ∈ Cw

i .
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At strong resonant point p′′i , one has a decomposition Cr(BD × T3,R) =
Cr(T2,R) ⊕ Cr(BD × T3,R)/Cr(T2,R) via P (p, q) = Vi(〈k′, q〉, 〈k′′i , q〉) + P ′′(p, q)
where the resonant term Vi(〈k′, q〉, 〈k′′i , q〉) = Z(p′′i , 〈k′, q〉, 〈k′′i , q〉) is defined in (5.1),
P ′′
i = P − Vi ∈ Cr(BD × T3,R)/Cr(T2,R) is the non-resonant term and k′ = k∗, k�.

Lemma 8.2. Let Vi be the residual set used in Theorem 6.1, Proposition 6.1,
Theorem 6.2 and Theorem 6.3. Then, the following set

Pi = {Vi + P ′′
i : Vi ∈ Vi, (CT : i ∈ Λs) holds for h+ ε(Vi + P ′′

i )}
is cusp-residual in B1.

Proof. According to Lemma 3.1, the Hamiltonian H is reduced to the normal form
Gε,i(x, y, θ) of Formula (6.1) when it is restricted on the energy level set H−1(E) lying
in T3×{|p−p′′i | ≤ (ηTi)

−1εκ}, the neighborhood of double resonant point p′′i . In such
a normal form, the main part is independent of ε and the remainder Rε,i is uniformly
bounded in the sense that ‖Rε,i‖Cr−2 ≤ a0ε

κ holds for all P ∈ B1 if we consider it as

the function of (x, y, ϑ) where ϑ = ω3|k′′i |−1
√
ε
−1

θ.
By applying Theorem 1.1 and 1.2 of [C17b] to the Lagrangian obtained from

Gε,i, we find that there exists an open-dense set Vi in Cr(T2,R), each Vi ∈ Vi is
associated some small εVi

> 0 such that the condition (CT: i ∈ Λs) holds for each
Rε,i ∈ BεVi

⊂ Cr−2(Σ′
ε,i × T3,R). Because ‖Rε,i‖Cr−2 ≤ a0ε

κ, for P = Vi + P ′′
i ∈ B1

with Vi ∈ Vi, the condition (CT: i ∈ Λs) holds for each ε ∈ (0, (a−1
0 εVi

)1/κ].
Next, we consider NHICs away from strong double resonance. The path Γk′

induces a decomposition Cr(Bd×T3,R) = Cr(BD×T1,R)⊕Cr(BD×T3,R)/Cr(BD×
T1,R) via P (p, q) = Zk′(p, 〈k′, q〉) + P ′(p, q) (k′ = k�, k∗) where Zk′ is defined in
(5.2) consisting of Fourier modes of P in spanZ{k′}, and P ′ = P − Zk′ ∈ Cr(BD ×
T3,R)/Cr(BD × T1,R). Treating 〈k′, q〉 as a scalar variable x defined on T, there
exists an open-dense set Zk′ of Cr(Γk′ × T,R) such that for each Zk′ ∈ Zk′ it holds
simultaneously for all p ∈ Γk′ that the second derivative of Zk′ in x at its maximal
point is uniformly upper bounded below zero, because of Theorem 1.1 of [Zh2]. In
this case, the number of strong double resonant points is independent of ε.

Given Zk′ ∈ Zk′ , let {p′i ∈ Γk′} denote the set of bifurcation points, i.e. Zk′(p′i, x)
has two maximal points in x. Let Nw denote the cardinality of {p′i ∈ Γk′}, it is finite.
Let H1 = h(p)+ εZk′(p, 〈k, q〉), then Φt

H1
admits Nw +1 pieces of NHIC consisting of

minimal periodic orbits of Φt
H̄
. Because of the presence of strong double resonances,

the NHICs may break into more pieces of NHICs if we take the second resonant term
into account. However, outside of the neighborhoods of strong double resonances,
the number of NHICs will be not more than N ≤ Ns +Nw + 2, where Ns = #(Λs).
Indeed,

Lemma 8.3. In B1 the following set

Pk′ = ∪{Zk′ + P ′ : Z ′
k′ ∈ Zk′ , (CT : i ∈ Λε\Λs) holds for h+ ε(Zk′ + P ′)}

is cusp-residual.

Proof. The normal form around weak resonant point p′′i takes the form of (6.1)
where Vi(x) = V ′

i (x1) + V ′′
i (x1, |k̄′′|x2) with small V ′′

i , the NHIC for the Hamilto-
nian flow of 1

2 〈Biy, y〉 − V ′
i (x1) survives the perturbations V ′′

i and Rε,i if the second
derivative of V ′

i at its minimal point is positive and some ε is sufficiently small.
We notice V ′

i (x) = −Z ′
k′(p′′i , x). Although the number #(Λε\Λs) increases to

infinity as ε ↓ 0, it does not cause trouble. There is an open-dense set Zk′ ⊂ Cr(Bd ×



426 C.-Q. CHENG

T,R), for each Zk′(p, x) ∈ Zk′ , the second derivative of Zk′(p, x) in x at its maximal
point is uniformly upper bounded below zero. So, the normal hyperbolicity of all
NHICs of Gε,i is uniformly bounded from below as ε decreases to 0. Consequently,
some εZk′ > 0 exists such that for each i ∈ Λε\Λs the NHIC for Gε,i persists provided
‖Rε,i‖C2 ≤ εZk′ .

By Lemma 3.1 again, given P = Z ′
k′ + P ′

k′ ∈ B1 with Z ′
k′ ∈ Zk′ , the condition

(CT: i ∈ Λε\Λs) holds for each ε ∈ (0, (a−1
0 εZk′ )

1/κ].
For the coordinate transformation (3.1) the matrix Mi is set according to whether

|k̄′′i,2| ≥ |k̄′′i,3| or not. The path ∂h(Γk′) admits a partition of four arcs. The condition

|k̄′′i,2| > |k̄′′i,3| holds on two arcs and |k̄′′i,2| < |k̄′′i,3| holds on other two arcs.

Let P̄k′ = ∪ν∈R{νP : P ∈ Pk′} ∩B1 and P̄i = ∪ν∈R{νP : P ∈ Pi} ∩B1, then
the set P̄k� ∩ P̄k∗ ∩ (∩iP̄i) is residual in B1. Applying the Kuratowski-Ulam theorem
(categorical analogue of the Fubini theorem, c.f. Chapter 15 of [Ox]), one obtains a
residual set R ⊂ S1, each P ∈ R is associated with a set IP residual in [0, 1] such
that ∪λ∈IP λP ⊂ P̄k� ∩ P̄k∗ ∩ (∩iP̄i).

Each P ∈ R determines finitely many strong double resonant points {p′′i , i ∈
Λs(P )}. For each i ∈ Λs(P ), one obtains the potential Vi = Vi(P ) which determines
a number εVi

> 0. Let aP = min{εk� , εk∗ , εVi
, i ∈ Λs(P )} where εk� , εk∗ > 0 are

determined by the first resonant conditions k� and k∗ respectively (see Lemma 8.3).
For any ε ∈ (0, aP ), the flow Φt

H with H = h+ εP admits the conditions (CT:i ∈ Λs)
and (CT:i ∈ Λε\Λs). Therefore, a cusp-residual set C′

ε0 exists such that for each
εP ∈ C′

ε0 the conditions (CT: i ∈ Λs) and (CT: i ∈ Λε\Λs) hold.
Some cohomology equivalence exists around each class c lying in the channels

if Ã(c) is not a 2-dimensional torus, as it was shown in [CY1]. To finish the proof
of Theorem 8.2, we need to verify the condition (HA) for each class c lying in the
channels if Ã(c) is a 2-dimensional torus. For each Hamiltonian of normal form Gε,i,
it has been proved in Theorem 1.2 of [C17b]. However, we shall not apply that result
since the residual set obtained there is for Cr−2-topology instead of Cr-topology.
One step KAM iteration for the construction of ΦεF makes G̃ε,i lose two times of
differentiability.

We apply the following lemma to finish the proof of Theorem 8.2. The proof of
the lemma will be presented afterward.

Lemma 8.4. Each perturbation εP ∈ C′
ε0 is associated with a set P′

εP residual
in a ball Bδ(εP ) ⊂ Cr(BD × T3,R) with small radius δ(εP ) > 0, such that for each
εP ′ ∈ P′

εP the Hamiltonian h+ ε(P +P ′) possesses the property: the condition (HA)

holds for each first cohomology classes c̃ ∈ C̃k� ∪ C̃k∗\(∪i∈Λs
Fi + di

√
ε) if the Aubry

set Ã(c̃) consists of a two-dimensional torus.

Obviously, ∪εP∈C′
ε0
(εP + Bδ(εP )) ⊇ C′

ε0 . Let R′ = ∪εP∈C′
ε0
(εP + P′

εP ), because

of the Kuratowski-Ulam theorem, it contains a cusp-residual set: there is a set R̄′

residual in S1, each P ∈ S1 is associated with a set Rp residual in (0, aP ) such that
εP ∈ R′ holds for all ε ∈ Rp.

For P ∈ R̄∩R̄′, Λs(P ) is a finite set. Therefore, a set RP residual in (0, aP ) exists
such that for each ε ∈ RP , the conditions (CT:i ∈ Λs), (CT:i ∈ Λε\Λs) and (HA)
hold, namely, the flow Φt

H with H = h + εP admits a transition chain. It verifies
the cusp-residual property of the transition chain Γc. The proof of Theorem 8.2 is
completed.

Proof of Lemma 8.4. For εP ∈ C′
ε0 , the Hamiltonian h + εP behaves like an

a priori unstable system when it is restricted in neighborhood of c̃-minimal orbits
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with c̃ ∈ C̃k� ∪ C̃k∗\(∪i∈Λs
Fi + di

√
ε). Although ε is small, it is treated as a fixed

number since εP is fixed. There exists a small number δ = δ(εP ) such that for any
εP ′ ∈ Bδ(εP ) the condition (CT: i ∈ Λs) and (CT: i ∈ Λε\Λs) holds for h+ε(P +P ′).

Due to the covering property (8.3), we only need to check the condition (HA) for
Γc ∩ C̃±

i and Γc ∩ C̃w
i . Restricted in Σ̃ε,i ∩ {H−1(E)}, we reduce H(p, q) to a system

with two and half degrees of freedom so that we can apply the result of ([CY1, CY2]).
We consider the case Γc ∩ C̃+

i , the proof for the cases Γc ∩ C̃−
i and Γc ∩ C̃w

i is the
same. Restricted on (Σ̃ε,i × T3) ∩ {H̄−1(E)}, the Hamiltonian H̄ = h̄(p̄) + εP̄ (p̄, q̄)
is reduced to the normal form Gε,i of (6.1), due to Lemma 3.1. Because of Theorem
6.2, there exist finitely many normally hyperbolic weakly invariant cylinders, denoted
by Π̃� = Π̃ε

i,E�−d,E�+1+d, modulo the shift σi. For each c ∈ C+
i = (Ψ�

iΨ
r
i )

−1C̃+
i ,

the Aubry set lies in these cylinders. Denoted by Π� the time-0-section of Π̃�, i.e.
Π� = Π̃�|θ=0.

Similar to the argument in Section 4.1 of [C17b], the cylinder Π� can be treated as
a part of the image of a standard cylinder Π = {(x, y) : (x2, y2) = 0, x1 ∈ T, y1 ∈ [0, 1]}
under a map ψ: Π → Π�. This map induces a 2-form ψ∗ω on Π

ψ∗ω = Dψdx1 ∧ dy1

where Dψ is the Jacobian of ψ. Since the second de Rham cohomology group of Π
is trivial, it follows from Moser’s argument on the isotopy of symplectic forms [Mo]
that there exists a diffeomorphism ψ1 on Π such that

(ψ ◦ ψ1)
∗ω = dx1 ∧ dy1.

Let θ1 =
2|k′′

i |√επ
ω3,i

. Since Π� is invariant for the time-periodic map ΦGε,i
= Φθ1

Gε,i
and

Φ∗
Gε,i

ω = ω, one has

((ψ ◦ ψ1)
−1 ◦ ΦGε

◦ (ψ ◦ ψ1))
∗dx1 ∧ dy1 = dx1 ∧ dy1 (8.4)

i.e. (ψ ◦ ψ1)
−1 ◦ ΦGε

◦ (ψ ◦ ψ1) preserves the standard area. Each invariant circle
Γσ ⊂ Π� is pulled back to the standard cylinder, denoted by Γ∗

σ which is Lipschitz.
The parameter σ is set to be the algebraic area bounded by the circle and a prescribed
one, ‖Γ∗

σ − Γ∗
σ′‖C0 ≤ b0

√|σ − σ′| (see [CY1]). Since the maps ψ, ψ0 are smooth,

back to the current coordinates one has ‖Γσ − Γσ′‖C0 ≤ b1
√|σ − σ′|. We notice

that the cylinder Π� may be crumple and slanted, the constant b1 might approach
infinity if the crumpled cylinder extends to the homoclinics. However, since the
cylinder is kept away from the double resonance for certain distance (see Lemma 6.3,
αε,i(Lαε,i

(λ±
i g

±
i )) = di > 0), the cylinders are moderately crumpled. The constant

b1 is therefore uniformly bounded for σ if we are restricted on the cylinder Π�.
Recall the rescaling (3.9), (3.6) and let v′′i = (v′′i,1, v

′′
i,2, v

′′
i,3) be the double resonant

point, we have a transformation Ri

Ri :

{
xj = uj , yj =

√
ε
−1

(vj − v′′i,j), j = 1, 2,

θ =
√
ε

ωi,3
u3, I =

ωi,3

ε (v3 − v′′i,3).

Replacing (x, y, θ) in the normal form Gε,i of (6.1) by (u, v1, v2) defined as above, we
obtain a Hamiltonian with two and half degrees of freedom

G�
ε,i(u1, u2, u3, v1, v2) = εGε,i(x(u1, u2), θ(u3), y(v1, v2)) (8.5)
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where u3 plays the role of time. Because of (8.5), the function G�
ε,i solves the equation

M ∗
i Φ

∗
εFM ∗

0 H(u, v1, v2,−G�
ε,i) = E, see Formula (3.10).

Obviously, Π̃�
� = RiΠ̃� is weakly invariant for the flow of G�

ε,i. Let Π
�
� = Π̃�

� |u3=0.
Compared with Π�, it shrinks in the coordinate v by the scale

√
ε. The cylin-

der may become more crumpled, but it is controlled by the factor 1/
√
ε. Let

Γ�
i,σ denote the invariant circle in Π�

� , one has ‖Γ�
σ − Γ�

σ′‖C0 ≤ b1√
ε

√|σ − σ′|. Let

Γ̃�
σ = ∪u3∈[0,|k̄′′

i |]Φ
u3

G�
ε,i
Γ�
σ, one has

‖Γ̃�
σ − Γ̃�

σ′‖C0 ≤ b1√
ε

max
u3∈[0,|k̄′′

i |]
‖DΦu3

G�
ε,i
‖
√
|σ − σ′|

Let H� = M ∗
i Φ

∗
εFM ∗

0 H. Corresponding to the cylinder Π̃�
� , there is a cylinder Π̂�

�

modulo the shift σi, lying in the energy level set {H�−1(E)}

Π̂�
� = {(u, v) ∈ T3 × R3 : (u, v1, v2) ∈ Π̃�

� , v3 = G�
ε,i(u, v1, v2)}.

Those invariant 2-tori {Γ̃�
σ} lying in the cylinder. Under the inverse of Mi and ΦεF , the

tori {Γ̃�
σ} and the cylinder Π̂�

� are mapped to the invariant tori and weakly invariant
cylinder for the flow of the Hamiltonian M ∗

0 H:

Π̂� = Φ−1
εF M−1

i Π̂�
� , Γ̂σ = Φ−1

εF M−1
i Γ̂�

σ.

Since ΦεF is a diffeomorphism close to identity and Mi is linear, there exists a number
b2 > 0 such that

‖Γ̂σ − Γ̂σ′‖C0 ≤ b2√
ε

√
|σ − σ′|. (8.6)

Because ∂M ∗
0 h(p̄

′′
i ) = ω̄ = (0, ω̄2, ω̄3) satisfies the resonant condition k̄′′i =

(0, k̄′′i,2, k̄
′′
i,3), we construct another canonical transformation M̄i: φ = M̄−t

i q̄ and

I = M̄ip̄, where

M̄i = diag(1, M̄i,2), with M̄i,2 =

[
k̄′′i,2 j2
k̄′′i,3 j3

]

the integers j2, j3 are chosen such that k̄′′i,2j3 − k̄′′i,3j2 = 1. Clearly, M̄i is uni-modular

and the first derivative of M̄ ∗
i M ∗

0 h in I3 is not equal to zero at the point I ′′i = M̄ip̄
′′
i .

Therefore, there exists a Cr-function G∗
ε,i which solves the equation

M̄ ∗
i M ∗

0 H(φ, I1, I2,−G∗
ε,i(φ, I1, I2)) = E (8.7)

when it is restricted in a neighborhood of I ′′i which covers the domain Σ̃ε,i×T3 under
the map M̄i. The function G∗

ε,i defines a Hamiltonian system with two and half
degrees of freedom where φ3 plays the role of time, there is a normally hyperbolic and
weakly invariant cylinder Π̂∗

� for G∗
ε,i such that

Π̂� = M̄−1
i {(φ, I) ∈ T3 × R3 : (φ, I1, I2) ∈ Π̂∗

� , I3 = G∗
ε,i(φ, I1, I2)}.

Let Γ̂∗
σ = M̄−1

i Γ̂σ, they lie in the cylinder Π̂∗
� for which the modulus of continuity of

(8.6) still holds, probably with a larger coefficient b∗2 ≥ b2.
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Let δi ↓ 0 be a countable sequence. Because of the modulus of continuity of (8.6),
it is proved in [CY1, CY2] that, for any small δ > 0, it is an open-dense condition for
G∗

ε,i in Cr-topology that the diameter of each connected component of the set

N (c(σ), M̌)|φ3=0\(A(c(σ), M̌) + δ)|φ3=0 (8.8)

is not larger than δi (For the convenience of reader, we shall present the proof of this
property in the appendix). The residual set is obtained by taking the intersection of
the countably many open-dense sets. Since G∗

ε,i solves Equation (8.7), the perturba-

tion G∗
ε,i → G∗

ε,i +Gδ can be achieved by the perturbation M̄ ∗
i M ∗

0 H(I1, I2, I3, φ) →
M̄ ∗

i M ∗
0 H(I1, I2, I3 + Gδ, φ). Therefore, a set Ri,� residual in Bδ is correspondingly

obtained for H such that for each εP ′ ∈ Bδ the condition (HA) holds for cylinder
Π̃�. Taking the intersection ∩Ri,� which is still residual in Bδ.

Proof of Theorem 2.1. Given δ > 0 there exists an integer K = K(δ) such
that any point p ∈ h−1(E) falls into δ-neighborhood of some resonant path Γk with
|k| ≤ K. Since there are finitely resonant circles, we take the intersection of finitely
many cusp-residual sets obtained in Theorem 8.2 which is still a cusp-residual set.

9. Proof of Theorem 1.1. The proof of Theorem 1.1 is simple once one has
Theorem 5.1 of [C17b] (Theorem 8.2 here) and Theorem 3.1 of [LC] as follows.

Theorem 3.1 of [LC]. Suppose that there is a generalized transition chain Γ:
[0, 1] → H1(Tn,R) joining c to c′. Then, there exists an orbit of the Lagrange flow Φt

L

dγ: R → TTn that connects the two Aubry sets: α(dγ) ⊂ Ã(c) and ω(dγ) ⊂ Ã(c′).

Proof of Theorem 1.1. If both p and c̃ are treated as point in R3, p(t) ≡ c̃
holds along each c̃-minimal orbit (p(t), q(t)) of Φt

h. By Lemma 2.1 of [CY2], the set
of minimal orbits is upper-semi continuous with respect to perturbation. Therefore,
along each orbit (p(t), q(t)) in the Aubry set Ã(c̃) one has ‖p(t) − c̃‖ < δ

2 if ε > 0

is suitably small. So, an orbit connecting Ã(c̃�) to Ã(c̃∗) with ‖c̃� − p�‖ < δ
2 and

‖c̃∗ − p∗‖ < δ
2 satisfies the condition: some t�, t∗ ∈ R exist such that ‖p(t�)− p�‖ < δ

and ‖p(t∗)− p∗‖ < δ.
According to Theorem 5.1 of [C17b], for each εP ∈ Cε0 , there is a transition chain

that connects the first cohomology classes c̃�, c̃∗ ∈ H1(T3,R) satisfying the condition
α(c̃�) = α(c̃∗) = E, ‖p� − c̃�‖ < δ

2 and ‖p∗ − c̃∗‖ < δ
2 . In this case, one obtains from

Theorem 3.1 of [LC] an orbit connecting the Aubry set Ã(c̃�) to Ã(c̃∗). It completes
the proof of the theorem.

Theorem 1.1 is the elaboration and justification of the sentence in the end of
Section 5 of [C17b]: the conjecture of Arnold diffusion for positive definite Hamiltonian
turns out to be a theorem for n = 3. It is an immediate consequence of Theorem 5.1
of [C17b].

Theorem 2.1 leads to the existence of certain δ-dense of the diffusion orbits,
slightly stronger than Theorem 1.1. A diffusion orbit is said to be δ-dense if it passes
through δ-neighborhood of any point p ∈ H−1(E).

Appendix A. The proof of genericity. For the convenience of reader, we
present a proof of the property (8.8) by applying the ideas and the techniques of
[CY1, CY2]. Another version appeared in [BKZ].

Given a Tonell Cr-Hamiltonian H(p, q, t) where (p, q, t) ∈ R2 × T3, r ≥ 3, we

have a Tonelli Lagrangian L(q̇, q, t) = maxp〈q̇, p〉 − H(p, q, t). Let Φt,t′
H denote the
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Hamiltonian flow of H, it maps the initial value at the time-t-section to the time-t′-
section. For Φt,t′

H we assume that

(1) there exists a normally hyperbolic and weakly invariant cylinder Π̃, which is
a deformation of a standard cylinder {(p, q, t) ∈ R2 ×T2 ×T : (p1, q1) = 0.};

(2) there is a continuous path Γc: [0, 1] → H1(T2,R) such that for any c ∈ Γc,
the Aubry set entirely lies in the cylinder Π̃;

(3) for c ∈ Γc if Ã(c) is an invariant 2-dimensional torus Υ̃c lying in Π̃, it is a
deformation of the torus {(p, q, t) ∈ R2 × T3 : (p1, q1) = 0, p2 = const.}

Let π̌: M̌ = {q : q1 mod4π, q2 mod2π} → T2 be a finite covering space of T2. The
lift of Π̃ to T ∗M̌ × T consists two copies, denoted by Π̃� and Π̃r. For c ∈ Γc, if the
Aubry set Ã(c) is an invariant torus Υ̃c ⊂ Π̃, its lift also consists of two components,
Υ̃c,� ⊂ Π̃� and Υ̃c,r ⊂ Π̃r. Let Π̃0, Π̃�,0, Π̃r,0, Υ̃c,0, Υ̃c,�,0 and Υ̃c,r,0 denote the time-

0-section of Π̃, Π̃�, Π̃r, Υ̃c, Υ̃c,� and Υ̃c,r respectively. Denote by π the projection

such that π(p, q, t) = (q, t), let Υ = πΥ̃. Let Γ∗
c ⊂ Γc such that

Γ∗
c = {c ∈ Γc : Ã(c) is an invariant torus}.

Let BD ∈ R2 denotes a ball about the origin of radius D. We assume that D > 0
is suitably large, such that for all c ∈ Γc the c-minimal orbits of H entirely stay in
BD × T3. Let Bε ⊂ Cr(BD × T3,R) denote a ball about the origin of radius ε > 0.

Theorem A.1. For any small d1 > 0, there exists a set O open-dense in Bε

such that for each Hδ ∈ O, it holds for H +Hδ and simultaneously for all c ∈ Γ∗
c that

the diameter of each connected component of the set

N (c, M̌)|t=0\(A(c, M̌) + δ)|t=0 �= ∅

is not larger than d1.

Before the proof, we review some properties of the barrier functions. Starting
from every point x = (q, τ) ∈ T3 there exists at least one backward minimal curve
γ−
c,x: (−∞, τ ] → T2, namely γ−

c,x(τ) = q and

∫ τ

t

L(γ̇−
c,x(s), γ

−
c,x(s), s)− 〈c, γ̇−

c,x(s)〉ds

≤
∫ τ

t′
L(ξ̇(s), ξ(s), s)− 〈c, ξ̇(s)〉ds+ (t− t′)α(c)

holds for any absolutely continuous curve ξ: [t′, τ ] → T with ξ(τ) = γ−
c,x(τ), ξ(t

′) =
γ−
c,x(t) with t′ = t mod 2π. It produces an orbit (γ̇−

c,x(t)), γ
−
c,x(t)) which approaches

the Aubry set for c as t → −∞. Similarly, starting from every point x = (q, τ) ∈ T3

there exists one forward minimal curve γ+
c,x: [τ,∞) → T3, the orbit (γ̇+

c,x(t)), γ
+
c,x(t))

approaches the Aubry set for c as t → ∞.
According to the weak KAM theory, for almost every point (q, t) ∈ T3, the forward

and backward orbit is uniquely determined by the forward and backward weak KAM
solution respectively. The initial condition of the orbit is determined by the solution
u±
c such that γ̇±

c,x(τ) = ∂pH(∂qu
±
c (q, τ) + c, q, τ).

Given an Aubry class for c ∈ Γc we can define its elementary weak KAM solution.
In the covering space M̌ , there are two Aubry classes for c ∈ Γc, Υ̃c,� and Υ̃c,r. To

define the elementary weak KAM solution u±
c,� for Υ̃c,�, we construct a perturbation

L(q̇, q, t) → L(q̇, q, t) + V�(q, t), where V� ≥ 0 and Υc,r ⊂ suppV� ⊂ (Υc,r + δ) =
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{(q, t) : dist((q, t),Υc,r) ≤ δ}. For V� �= 0, there exists a unique weak KAM solution
u±
c,V�

modulo constant. For almost every point (q, t) ∈ M̌ × T, the function u±
c,V�

determines a unique forward and backward minimal orbit (γ̇±
c,x(t)), γ

±
c,x(t)) such that

γ̇±
c,x(τ) = ∂pH(∂qu

±
c,V�

(q, τ) + c, q, τ) and the orbits approaches Υ̃c,� as t → ±∞
respectively. Let Vc,� ↓ 0, the function u±

c,V�
converges to a function u±

c,� which is
obviously a weak KAM solution for H, it is called elementary weak KAM solution
for Υ̃c,�. The elementary weak KAM solution for Υ̃c,r is defined in the same way,
denoted by u±

c,r.

For almost every point (q, t) ∈ M̌×T\Υc,� the initial condition (∂pu
±
c,r(q, t)+c, q, t)

determines a forward (backward) c-minimal orbit that approaches Υ̃c,r as t → ±∞.

For points (q, t) ∈ M̌ × T\Υc,r, u
±
c,� determines c-minimal orbit approaching Υ̃c,�.

Definition A.1. The barrier functions for c ∈ Γc are defined as follows

B�
c(q, t) = u−

c,�(q, t)− u+
c,r(q, t), Br

c (q, t) = u−
c,r(q, t)− u+

c,�(q, t).

In the following, we only study B�
c. The arguments for Br

c are the same. Since
the backward weak KAM is semi-concave and the forward weak KAM is semi-convex,
the barrier function is semi-concave. Therefore,

Lemma A.1. At each minimal point of B�
c, both u−

c,r and u+
c,� are differentiable.

Proof. By the definition, semi-concave function admits a local decomposition as
the sum of a smooth function and a concave function. For a concave function u, one
can define its sup-derivative D+u(x) at a point x such that u(x+ x′)− u(x) ≤ 〈p, x′〉
holds for any p ∈ D+u(x) which is a convex set. The function u is differentiable at x
iff D+u(x) is a singleton.

Since B�
c is a sum of two semi-concave functions, its sup-derivative is the sum

of the sup-derivatives of u−
c,� and −u+

c,r. Therefore, D+B�
c is a single point iff both

D+u−
c,� and D+(−u+

c,r) are singleton [CaC].

Lemma A.2. If (q, t) ∈ M̌ ×T\((Υc,�∪Υc,r)+δ) is a global minimal point of B�
c,

then (q, t) ⊂ N (c, M̌), namely, passing through the point (q, t) there is a c-semi-static
curve in the covering space M̌ × T.

Proof. By the definition, ∂u−
c,� = ∂u+

c,r holds at a global minimal point of B�
c,

denoted by x = (q, t). Therefore, the backward minimal curve γ−
c,x is joined smoothly

to the forward minimal curve γ+
c,x. They make up a c-semi-static curve for M̌ .

For a class c ∈ Γ∗
c , the covering space M̌ × T is divided into two annuli Ac,r

and Ac,�, bounded by Υc,� and Υc,r. Clearly, one has π̌Ac,r = π̌Ac,�. The set
N (c, M̌)\A(c, M̌) contains c-minimal curves which cross the annulus from one side
to another side or vice versa. Each of the curves produces a homoclinic orbit to the
torus Υ̃c.

Lemma A.3. There is a finite partition of Γc: Γc = ∪Ik, each Ik is a segment
of Γc. For each Ik there is an annulus Nk ⊂ Ac,r|t=0, two numbers δ > 0 and d > 0
such that for each c ∈ Ik ∩ Γ∗

c

(1) dist(Nk,Υc,� ∪Υc,r) ≥ δ;
(2) each curve (γ(t), t) lying in (N (c, M̌)\A(c, M̌)) ∩ Ac,r passes through Nk;
(3) for each backward (forward) c-minimal curve γ, let {qi = γ(2iπ) ∈ Nk}, then

|qi − qj | ≥ d if i �= j.
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Proof. Because Γc is compact, the speed of each c-minimal orbit is uniformly
upper bounded for all c ∈ Γ∗

c . Given an integer m > 0, there will be small δc > 0
such that the period for each c-minimal curve to cross the annulus Nc = Ac,r\((Υc,�∪
Υc,r) + δc) is not shorter than 4mπ. Because of the upper semi-continuity of Mañé
set in c, there exists some δ′c > 0 such that Υc′,� ∪ Υc′,r does not touch Nc and the
period for each c′-minimal curve to cross the annulus Nc is not shorter than 2mπ
provided |c − c′| ≤ δ′c and c′ ∈ Γ∗

c . The first two items are then proved if we notice
Γ∗
c is compact.

For the third one, we notice that the condition γ(2iπ) = γ(2jπ) for i �= j implies
that γ is a curve in the Aubry set. It contradicts the assumption. Since both Nk and
Ik are compact, such a constant d > 0 exists.

By the definition, the Aubry set Ã(c) is an invariant torus if c ∈ Γ∗
c . Its time-

2π-section is an invariant circle lying in the cylinder. Fix one of the circles, we
are able to parameterize other circle by the algebraic area bounded by the circles.
Let us consider the twist map on the standard cylinder first. It is well-known that
all invariant circles are Lipschitz with the constant CL which depends on the twist
condition only. Treating each circle as the graph of some periodic function and fixing
one as Υ̃0,0 one can parameterize another circle by the algebraic area bounded by these

two circles. The annulus bounded by the circle Υ̃σ,0 and Υ̃σ′,0 contains a diamond,

the height of the vertical diagonals is maxq |Υ̃σ,0(q)− Υ̃σ′,0(q)| and the length of the

horizontal diagonal is not shorter than 1
CL

maxq |Υ̃σ,0(q)− Υ̃σ′,0(q)|. So, one has

max
q

|Υ̃σ,0(q)− Υ̃σ′,0(q)| ≤
√
2CL|σ − σ′|.

A non-standard cylinder can be regarded as the image of the standard cylinder under
some diffeomorphism. So, the 1

2 -Hölder continuity still holds, refer to the argument
for Formula (8.4).

Each invariant circle corresponds to a unique c ∈ Γc such that the Aubry set is
the circle. The parameter σ is usually defined on a Cantor set, denoted by Σ. Because
of the normal hyperbolicity of the cylinder, we have

Lemma A.4. For σ, σ′ ∈ Σ, let c = c(σ), c′ = c(σ′). If c, c′ ∈ Ik and q ∈ Nk,
then

|B�
c(σ)(q, 0)−B�

c(σ′)(q, 0)| ≤ C(
√
|σ − σ′|+ |c− c′|).

Proof. For c = c(σ) with σ ∈ Σ, the minimal measure is uniquely ergodic. There
is only one pair of weak KAM solutions u±

c for the configuration space T2. With
respect to the covering space M̌ , we have introduced the elementary weak KAM
solutions u±

c,� and u±
c,r. Since the projection π̌ is an injection when it is restricted in

the neighborhood Υc,ı + δ for ı = �, r respectively, for (q, t) ∈ Υc + δ one has

u±
c,�(π̌

−1(q, t) ∩ (Υc,� + δ)) = u±
c,r(π̌

−1(q, t) ∩ (Υc,r + δ)) = u±
c (q, t). (A.1)

By the definition of weak KAM solutions, for any t′ < t one has

u−
c,�(γ(t), t)− u−

c,�(γ(t
′), t′) ≤

∫ t

t′
(L(γ̇(s), γ(s), s)− 〈c, γ̇(s)〉)ds+ (t− t′)α(c)
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which becomes an equality when γ is a backward c-semi static curve. Assume γ−
c,q is

a backward c-minimal curve such that γ−
c,q(0) = q, we have

u−
c,�(q, 0)− u−

c,�(γ
−
c,q(−2Kπ), 0) =

∫ 0

−2Kπ

(L(γ̇−
c,q(s), γ

−
c,q(s), s)− 〈c, γ̇−

c,q(s)〉)ds

+ 2Kπα(c),

u−
c′,�(q, 0)− u−

c′,�(γ
−
c,q(−2Kπ), 0) ≤

∫ 0

−2Kπ

(L(γ̇−
c,q(s), γ

−
c,q(s), s)− 〈c′, γ̇−

c,q(s)〉)ds

+ 2Kπα(c′).

Since Nk keeps away from Υc,�, some K > 0 exists such that for each q ∈ Nk, c ∈ Ik
and q ∈ Nk one has γ−

c,q(−2Kπ) ∈ (Υc,� + δ). Since c and c′ are located in a compact
set Γc, the α function is convex and finite everywhere, there is some constant C1 such
that |α(c′) − α(c)| ≤ C1|c − c′|. Let γ̄−

c,q be the lift of γ−
c,q to the universal covering

space, one has |γ̄−
c,q(0)− γ̄−

c,q(−2Kπ)| ≤ 2C2Kπ.

u−
c′,�(q, 0)− u−

c,�(q, 0)− (u−
c′,�(γ

−
c,q(−2Kπ), 0)− u−

c,�(γ
−
c,q(−2Kπ), 0))

≤ 2Kπ(C1 + C2)|c− c′|.
In the same way one can also obtain

u−
c,�(q, 0)− u−

c′,�(q, 0)− (u−
c,�(γ

−
c′,q(−2Kπ), 0)− u−

c′,�(γ
−
c′,q(−2Kπ), 0))

≤ 2Kπ(C1 + C2)|c− c′|.
For u+

c,r, u
+
c′r we also have similar inequalities. Therefore, it follows from (A.1) that

some points (q�, 0), (qr, 0) ∈ Υc + δ exist such that

|Bc(q, 0)−Bc′(q, 0)| ≤ 4Kπ(C1 + C2)|c− c′|
+ |u−

c (q�, 0)− u−
c′(q�, 0)− u+

c (qr, 0) + u+
c (qr, 0)|.

By the assumption, both u−
c and u+

c are C1,1 when they are restricted in Υc + δ.
Due to the normal hyperbolic property, each (p, q) ∈ Π̃0 has its stable and unstable
fiber which is Cr−1-smoothly depends on the point (p, q). The fibers are defined by
∂qu

±
c + c and one has that

|∂qu±
c − ∂qu

±
c′ + c− c′| ≤ C3

√
|σ − σ′|

holds for some constant C3 > 0, independent of c, c′. Combining above two inequali-
ties, one finishes the proof of the lemma.

We consider the c-minimal curves for c ∈ Ik. Because Ik is compact, there exists
a constant D > 0 such that |γ̇(t)| ≤ D holds for any c-minimal curve with c ∈ Ik. Let
Ωτ = {(q′, q) ∈ R2 × R2 : |q′ − q| ≤ 2Dτ with τ > 0}. We consider the action

S−τ (q
′, q) = min

ξ(−τ)=q′
ξ(0)=q

∫ 0

−t

L(ξ̇(s), ξ(s), s)ds.

For suitably small τ > 0, there exists a unique minimal curve if (q′, q) ∈ Ωτ . Indeed,
because L is Tonelli, the second derivative of any solution q(t) of the Euler-Lagrange
equation is bounded by |q̈| ≤ |∂q̇q̇L−1(∂qL−∂2

q̇qLγ̇−∂q̇tL)|. Recall the Taylor formula

q(t′) = q(t) + q̇(t)(t′ − t) +
1

2
q̈(λt+ (1− λ)t′)(t′ − t)2
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holds for small |t′ − t|, where both entries of λ ∈ R2 takes value in [0, 1]. Therefore,
for small |t′ − t|, there is an one to one correspondence the initial speed γ̇(t) and the
end point γ(t′). In this case, S−τ (q

′, q) is Cr-differentiable in both q′ and q. By the
definition of weak KAM, for c ∈ Ik one has

u−
c (q, 0) = min

q′∈T2, |q′−q|≤2Dτ
(S−τ (q

′, q)− 〈c, q − q′〉+ u−
c (q

′,−τ)).

We extend S−τ smoothly to the whole R2×R2 such that it satisfies the twist condition.
Recall the quantities defined in Lemma A.3 such as the annulus Nk and the number
d > 0.

Lemma A.5. Let Sδ(q) be a Cr-function such that max{|q−q′| : q, q′ ∈ suppSδ} ≤
d, suppSδ ⊂ Nk and ‖Sδ‖Cr is sufficiently small. Then, restricted on Ik, there exists
a perturbation H → H ′ = H +Hδ such that ‖Hδ‖Cr is small and the barrier function
is subject to a translation

Bc(q, 0) → Bc(q, 0) + Sδ(q) ∀ c ∈ Ik, q ∈ suppSδ.

Proof. The function S−τ (q
′, q) induces a symplectic map between the time −τ

section and the time-0-section Φ: (p′, q′) → (p, q)

p =
∂S−τ

∂q
(q′, q) p′ = −∂S−τ

∂q′
(q′, q).

We introduce a smooth function κ such that κ(q′, q) = 1 if |q′−q| ≤ K and κ(q′, q) = 0
if |q′−q| ≥ K+1. Let Φ′ be the map determined by the generating function S−τ+κSδ,
the symplectic diffeomorphism Ψ = Φ′ ◦Φ−1 is close to identity if Sδ is Cr-small. We
choose a smooth function ρ(s) with ρ(−τ) = 0, ρ(0) = 1 and let Φ′

s be the symplectic
map produced by S−τ + ρ(s)κSδ and let Ψs = Φ′

s ◦ Φ−1. Clearly, Ψs defines a
symplectic isotopy between the identity map and Ψ. Thus, there is a unique family
of symplectic vector fields Xs: T

∗T2 → TT ∗T2 such that

d

ds
Ψs = Xs ◦Ψs.

By the choice of perturbation, there is a simply connected and compact domain D
such that Ψs|T∗T2\D = id. It follows that there exists a Hamiltonian H1(p, q, s)
such that Xs = J∇H1(p, q, s). Re-parametrizing s by t, we can make Xs smoothly
depend on t and smoothly connected to the zero vector field at t = −τ, 0. To show
the smallness of dH ′ we apply a theorem of Weinstein [W]. A neighborhood of the
identity in the symplectic diffeomorphism group of a compact symplectic manifold
can be identified with a neighborhood of the zero in the vector space of closed 1-forms
on the manifold. Since Hamiltomorphism is a subgroup of symplectic diffeomorphism,
there is a function H ′, sufficiently close to H, such that Φ−τ,0

H′ = Φ−τ,0
H1

◦ Φ−τ,0
H .

For all c ∈ Γc, by the assumption, any backward (forward) c-minimal curve will
not return back to suppS−τ if its initial point falls into the support. Let u±,Sδ

c,ı denotes
the elementary weak KAM solution for the perturbed Hamiltonian

u−,Sδ
c,ı (q, 0) = min

|q′−q|≤2Dτ
(S−τ (q

′, q) + Sδ(q)− 〈c, q − q′〉+ u−
c,ı(q

′,−τ))

=Sδ(q) + min
|q′−q|≤2Dτ

(S−τ (q
′, q)− 〈c, q − q′〉+ u−

c,ı(q
′,−τ))

=Sδ(q) + u−
c,ı(q, 0).
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Obviously, one has u+,Sδ
c,ı (q, 0) = u+

c,ı(q, 0). The lemma is proved because the barrier
function is the difference of the two functions.

Proof of Theorem A.1. Given q∗ ∈ T2, let Sd1
(q∗) = {|q − q∗| ≤ d1} denote a

square. Given a function B ∈ C0(Sd1
(q∗),R), let

Argmin(Sd1
(q∗), B) = {q ∈ Sd1

(q∗) : B(q) = minB}.

Let πi be the projection so that πi(q1, q2) = qi (i = 1, 2). A connected set V is said to
be non-trivial for Sd1

(q∗) if πiV ∩Sd1
(q∗) = πiSd1

(q∗) holds for i = 1 or 2. Otherwise,
it is said to be trivial for Sd1

(q∗). Let B�
c,δ be the barrier function for the Hamiltonian

H +Hδ and the class c, we have

Lemma A.6. For any small ε > 0, there is a set O open-dense in Bε such
that for each Hδ ∈ O, it holds simultaneously for all c ∈ Ik ∩ Γ∗

c that the set
Argmin(Sd1

(q∗), B�
c,δ) is trivial for Sd1

(q∗) provided Sd1
(q∗) ⊂ Nk and d1 < d/3

is suitably small.

Proof. The openness is obvious. To show the density, we construct the pertur-
bations Hδ ∈ Bε such that the barrier function is under a translation Bc(q, 0) →
Bc(q, 0) + Sδ(q) for all c ∈ Ik ∩ Γ∗

c and q ∈ suppSδ. Because of Lemma A.5, it works.

Recall the number d > 0 defined in Lemma A.3. Given a square Sd1(q
∗) ⊂ Nk

with 3d1 < d, we consider the space of Cr-functions S1, a function S ∈ S1 if it
satisfies the conditions that suppS ⊂ Bd/2(q

∗) and S is constant in q2 when it is
restricted in Sd1

(q∗). Similarly, we can define S2 such that S ∈ S2 implies that
suppS ⊂ Bd/2(q

∗) and it is constant in q1 when it is restricted in Sd1
(q∗).

In Si we define an equivalent relation ∼, two functions S1 ∼ S2 implies S1−S2 =
constant when they are restricted on Sd1(q

∗). Obviously, Si/ ∼ is a linear space with
infinite dimensions. For S1, S2 ∈ Si/ ∼, ‖S1 − S2‖r measures the Cr-distance if they
are regarded as the functions defined on Sd1

(q∗). We also use Bi,ε to denote a ball in
Si/ ∼, about the origin of radius ε in the sense of the Cr-topology.

We claim that there exists a set O1,ε open-dense in B1,ε such that for each Sδ ∈
O1,ε it holds simultaneously for all c ∈ Ik ∩ Γ∗

c that

π1Argmin(Sd1
(q∗), B�

c + Sδ) � [q∗1 − d1, q
∗
1 + d1]. (A.2)

Let Fc = {B�
c(q, 0) : c ∈ Γ∗

c} be the set of barrier functions. For i = 1, 2 we set

Zi = {B ∈ C0(Sd1(q
∗),R) : πiArgmin(Sd1(q

∗), B) = [q∗i − d1, q
∗
i + d1]},

where q∗ = (q∗1 , q
∗
2). If the density does not exist, there would be small ε > 0, for each

Sδ ∈ B1,ε, some c ∈ Γ∗
c exists such that B�

c + Sδ ∈ Z1. Let B
k
1,ε be the intersection of

B1,ε with a k-dimensional subspace. The box-dimension of Bk
1,ε in C0-topology will

not be smaller than k.

For any B�
c ∈ Fc there is only one Sδ ∈ B1,ε such that B�

c + Sδ ∈ Z1. Otherwise,
there would be S′

δ �= Sδ such that B�
c + S′

δ ∈ Z1 also. As we have B�
c + S′

δ =
B�

c + Sδ + S′
δ − Sδ where B�

c + Sδ ∈ Z1 and S′
δ ∼ Sδ, which contradicts the definition

of S1. For Sδ ∈ B1,ε, let SSδ
= {B�

c ∈ Fc : B�
c + Sδ ∈ Z1}. If the density does not

exist, SSδ
is non-empty. For any Sδ, S

′
δ ∈ Bk

1,ε, each B�
c ∈ SSδ

and each B�
c′ ∈ SS′

δ



436 C.-Q. CHENG

one has

d(B�
c, B

�
c′) = max

q∈Sd1
(q∗)

|B�
c(q, 0)−B�

c′(q, 0)|

≥ max
|q1−q∗1 |≤d1

∣∣∣ min
|q2−q∗2 |≤d1

B�
c(q, 0)− min

|q2−q∗2 |≤d1

B�
c′(q, 0)

∣∣∣
= max

|q1−q∗1 |≤d1

|Sδ(q)− S′
δ(q)| = d(Sδ, S

′
δ)

(A.3)

where q = (q1, q2) and d(·, ·) denotes the C0-metric. It implies that the box-dimension
of the set Fc is not smaller than the box-dimension ofBk

1,ε in C0-topology. Guaranteed
by the modulus continuity of Lemma A.4, the box dimension of the set Fc is not larger
than 3. Therefore, we will obtain an absurdity if we choose k ≥ 4.

In the same way, we can show that there exists a set O2,ε open-dense in B2,ε such
that for each Sδ ∈ O2,ε it holds simultaneously for all c ∈ Ik ∩ Γ∗

c that

π2Argmin(Sd1
(q∗), B�

c + Sδ) � [q∗2 − d1, q
∗
2 + d1]. (A.4)

Therefore, ∃ arbitrarily small Si,δ ∈ Bi,ε such that πiArgmin(Sd1(q
∗), B�

c+S1,δ+S2,δ)
is trivial for Sd1

(q∗) and for all c ∈ Ik∩Γ∗
c . Due to Lemma A.5 we obtain the density.

To finish the proof of Theorem A.1, we split the annulus Nk equally into squares
{Sj = |q − qj | ≤ d1

5 }. For each Sj , there exists an open-dense set Ok,j ⊂ Bε, for each
Hδ ∈ Ok,j it holds simultaneously for all c ∈ Ik ∩ Γ∗

c that the set Argmin(Sj , B�
c,ε) is

trivial for Sj . The intersection ∩Ok,j is still open-dense inBε. For eachHδ ∈ ∩k,jOk,j ,
it holds simultaneously for all c ∈ Γ∗

c that the diameter of each connected component
of the Mañé set is not larger than 4

5d1 if it keeps away from the Aubry set.
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