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SUPERSINGULAR ABELIAN SURFACES AND EICHLER’S CLASS

NUMBER FORMULA∗

JIANGWEI XUE† , TSE-CHUNG YANG‡ , AND CHIA-FU YU§

Abstract. In [Ann. Sci. École Norm. Sup. (4), 1969], Waterhouse classified simple abelian
varieties over a prime field Fp in terms of lattices, except for the isogeny class that corresponds
to the conjugacy class of Weil numbers ±√p . He gave a description only for those with maximal
endomorphism rings in this isogeny class, and suggested to apply Eichler’s trace formula to compute
the number of them. The main result of this paper gives an explicit formula for the number of
isomorphism classes in this isogeny class, generalizing the classical formula for supersingular elliptic
curves by Eichler and Deuring. To achieve this, we give a self-contained treatment of Eichler’s trace
formula for an arbitrary Z-order in any totally definite quaternion algebra.
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1. Introduction. Throughout this paper p denotes a prime number. Let D be
the quaternion Q-algebra ramified exactly at {p,∞}. For any supersingular elliptic
curve X over F̄p, its endomorphism algebra End0F̄p

(X) := EndF̄p
(X)⊗Z Q is isomor-

phic to D, and its endomorphism ring EndF̄p
(X) is always a maximal order in D. The

classical theory of Deuring establishes a one-to-one correspondence between isomor-
phism classes of supersingular elliptic curves over F̄p and ideal classes of a maximal
order OD ⊂ D. Moreover, there is an explicit formula for the class number h(OD) as
follows

h(OD) =
p− 1

12
+

1

3

(
1−

(−3
p

))
+

1

4

(
1−

(−4
p

))
, (1.1)

where
(

·
p

)
denotes the Legendre symbol. In (1.1), the main term (p − 1)/12 is the

mass for supersingular elliptic curves, which is also equal to ζQ(−1)(1 − p), where
ζQ(s) is the Riemann zeta function. The remaining terms are the adjustments for the
isomorphism classes with extra automorphisms. As the points corresponding to these
classes on the moduli space come from the reduction of elliptic fixed points (whose
j-invariants are 0 or 1728), the latter sum is also called the elliptic part.

The goal of this paper is to provide an explicit description and concrete formula for
the isomorphism classes inside certain isogeny class of supersingular abelian surfaces.
The main tools are the Honda-Tate theory and extended methods in Eichler’s class
number formula.

Suppose that q is a power of the prime number p. An algebraic integer π ∈ Q̄
is said to be a Weil q-number if |π| = √q for all embeddings of Q(π) into C. The
Honda-Tate theory [13, 25] establishes a bijection between isogeny classes of simple
abelian varieties over Fq and conjugacy classes Weil q-numbers. In [28], Waterhouse
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developed a theory for studying the isomorphism classes and endomorphism rings of
abelian varieties within a fixed simple isogeny class. If π is a Weil q-number, we denote
by Xπ the abelian variety over Fq associated to π, unique up to isogeny. For example,
it is well known that every supersingular elliptic curve over F̄p admits a model over
Fp2 that lies inside the isogeny class Isog(Xπ) corresponding to the Weil p2-number
π = −p. Then (1.1) may be interpreted as a formula for the number of isomorphism
classes in this isogeny class. When q = p is a prime number, Waterhouse has proven
the following result [28, Theorem 6.1].

Theorem 1.1. Suppose that F = Q(π) is not a totally real field. Then
(1) The endomorphism algebra End0Fp

(Xπ) = EndFp
(Xπ)⊗Z Q of Xπ is commu-

tative and coincides with F ;
(2) All orders in F containing R0 = Z[π, pπ−1] are endomorphism rings;
(3) There is a bijection between the set of R0-ideal classes and the Fp-isomorphism

classes of abelian varieties isogenous to Xπ.

In general there is no explicit description for R0-ideal classes. However, the set of
R0-ideals is divided into finitely many genera and each genus has h(R) ideal classes for
some order R ⊆ F containing R0, where h(R) := |Pic(R)| denotes the class number
of R. It is known that the class number h(R) is a multiple of the class number h(F )
of F . As a consequence of Waterhouse’s result (Theorem 1.1) the number of Fp-
isomorphism classes in Isog(Xπ) is a multiple of the class number h(F ). Determining
this multiple, nevertheless, requires an explicit description of genera of R0-ideals.

The above is the general picture when F = Q(π) is not totally real for a Weil
p-number π. The exceptional case where F is totally real corresponds to the unique
conjugacy class of the Weil number π =

√
p , for which F = Q(

√
p ) is a real quadratic

field. It was already known to Tate [25, Section 1, Examples] that Xπ in this case is a
supersingular abelian surface whose endomorphism algebra End0Fp

(Xπ) is isomorphic
to the quaternion algebra D∞1,∞2 over F ramified only at the two real places of F .
Different from the classical case of supersingular elliptic curves treated by Deuring,
Waterhouse [28, Theorem 6.2] shows that EndFp

(Xπ) is not always a maximal order
in D∞1,∞2 . A description of endomorphism rings of these abelian surfaces will be
given in Section 6.1. Our main result gives explicit formulas for the number of Fp-
isomorphism classes of this isogeny class.

Theorem 1.2. Let H(p) be the number of Fp-isomorphism classes of abelian
varieties in the simple isogeny class corresponding to the conjugacy class of Weil p-
number π =

√
p . Then

(1) H(p) = 1, 2, 3 for p = 2, 3, 5, respectively;
(2) For p > 5 and p ≡ 3 (mod 4), one has

H(p) =
1

2
h(F )ζF (−1) +

(
13− 5

(
2

p

))
h(K1)

8
+

1

4
h(K2) +

1

3
h(K3), (1.2)

where Kj := F (
√−j ) for j = 1, 2, 3, and h(Kj) denotes the class number of Kj.

(3) For p > 5 and p ≡ 1 (mod 4), one has

H(p) =

{
8ζF (−1)h(F ) + h(K1) +

4
3
h(K3) for p ≡ 1 (mod 8);(

45+�

2�

)
ζF (−1)h(F ) +

(
9+�

4�

)
h(K1) +

4
3
h(K3) for p ≡ 5 (mod 8);

(1.3)

where � := [O×
F : A×] and A := Z[

√
p ] � OF . The value of � is either 1 or 3.

The special value ζF (−1) of the Dedekind zeta-function ζF (s) in both (2) and (3) can
be calculated by Siegel’s formula (6.12).
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The calculations for Theorem 1.2 will be carried out in Section 6.2. The main
idea for the proof of Theorem 1.2 is to apply Eichler’s class number formula ([10], [27,
Chapter V, Corollary 2.5, p. 144]) for totally definite quaternion algebras. Eichler
proved the class number formula in the case of Eichler OF -orders. Based on Eichler’s
methods, Körner [18] worked out a similar class number formula for an arbitrary OF -
order. However, the class number formula established in [18] is not readily applicable
in our case as the orders arising from the endomorphism rings of supersingular abelian
surfaces as above do not necessarily contain the ring of integers OF ⊂ F . A main
part of this paper (Sections 2–5) is then devoted to proving a similar class number
formula and mass formula for arbitraryZ-orders. Our generalized Eichler class number
formula is the following.

Theorem 1.3 (Class number formula). Let D be a totally definite quaternion
algebra over a totally real number field F , and O ⊂ D an arbitrary order in D with
center A := Z(O). The class number of O is given by

h(O) = Mass(O) + 1

2

∑
w(B)>1

(2− δ(B))h(B)(1 − w(B)−1)
∏
p

mp(B), (1.4)

where the summation is over all the non-isomorphic orders B whose fraction field K
is a quadratic extension of F embeddable into D, and

B ∩ F = A, w(B) := [B× : A×] > 1.

Here Mass(O) is given by Definition 3.3.2 and can be computed by the mass formula
(5.6); mp(B) is the number of conjugacy classes of local optimal embeddings (3.6);
and δ(B) = 1 if B is closed under the complex conjugation ι ∈ Gal(K/F ), and 0
otherwise.

In the course of proving the class number formula we realize a subtle point that the
reduced norm of a Z-order may strictly contain its center. This caused some confusion
at first as there are possibly more than one choices for defining Brandt matrices as
well as other terms in the proof (Remark 3.3.9). Thus one needs to examine every
detail in the original proof in [10] and [27] (also see a proof in Brzezinski [6] for definite
central division algebras of prime index) until the final formula goes through. Our
definition of Brandt matrices is justified by representation theory (Section 4). We
remark that the methods here are algebraic, therefore all results in Sections 2-4 make
sense and remain valid when F is replaced by an arbitrary global function field, and
A by any S-order (whose normalization is the S-ring of integers), possibly except for
Theorems 3.3.3 and 3.3.7 and Corollary 3.3.8 in characteristic 2; also see Remark 4.2.2.

The explicit formulas given in Theorem 1.2 are proved in Section 6. Based on
these formulas, we used Magma [5] to evaluate the numbers H(p) for p < 10000 and
make the tables for values of related terms for p < 200 in Section 7.

Based on Theorem 1.2 we give explicit formulas for the number of superspecial
abelian surfaces over any finite field Fq of odd degree over Fp in a sequel paper [33].
In the case where Fq is of even degree extension over Fp, the corresponding explicit
formulas for superspecial abelian surfaces are just proved in [34]. Thus, we now have
explicit formulas for numbers of superspecial abelian surfaces over all finite fields.

In [19] Qun Li, the first and third named authors study conjugacy classes of
maximal orders of a definite quaternion algebra over a real quadratic field with a
fixed reduced unit group. As a consequence, we obtain refined explicit formulas
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for the numbers of superspecial abelian surfaces with Frobenius endomorphism
√
q

and with a given reduced automorphism group. In [31] the first and third named
authors extend our methods and obtain an explicit formula for the number of the
supersingular abelian surfaces with Frobenius endomorphism

√
q . We intend to work

on other supersingular isogeny classes in the future.

2. Preliminaries.

2.1. Notations and definitions. Let F be a number field with ring of integers
OF and A ⊆ OF a Z-order in F . Let D be a finite-dimensional central simple F -
algebra, and O an A-order in D. The order O is said to be a proper A-order if
O ∩ F = A. Similarly, for any finite field extension K/F , we say an order B ⊆ OK

is a proper A-order if B ∩ F = A. An order B is called a quadratic proper A-order if
B is a proper A-order and the fraction field K of B is a quadratic extension of F . It
does not necessarily mean that B is an A-module generated by 2 elements. In fact, we
will be interested only in those quadratic proper A-orders B for which K is a totally
imaginary quadratic extension of F in the case that F is totally real.

We will need the adelic language in the subsequent sections. For any place v of
F , denote by Fv the completion of F at v and Ov ⊂ Fv the ring of integers if v is a
finite place. Let Ẑ := lim←−Z/nZ =

∏
p Zp be the pro-finite completion of Z. Given any

Z-module Y , we write

Ŷ := Y ⊗Z Ẑ, and Yp := Y ⊗Z Zp.

If Y is also an OF -module, then Yp factors into
∏

v|p Yv, where Yv := Y ⊗OF
Ov. We

are mostly concerned with the case where Y is a finite-dimensional Q-vector space or
a Z-module of finite rank. For example, Ô =

∏
pOp, Â =

∏
p Ap, and Q̂ = Q⊗Z Ẑ is

the ring of finite adeles of Q. Similarly, F̂ = F ⊗Z Ẑ = F ⊗Q Q̂ =
∏′

v: finite Fv is the

ring of finite adeles of F , and D̂ = D ⊗Q Q̂ = D ⊗F F̂ is the finite adele ring of D.

Thus, Ô× ⊂ D̂× and Â× ⊂ F̂× are open compact subgroups of the finite idele groups
D̂× and F̂×, respectively.

A lattice I ⊂ D is a finitely generated Z-module that spans D over Q. Its
associated left order Ol(I) is defined to be Ol(I) := {x ∈ D | xI ⊆ I}. Similarly, one
defines the associated right order Or(I). The lattice I is said to be a right O-ideal if
IO ⊆ I. A right O-ideal is not necessarily contained in O, and those that lie in O are
called integral right O-ideals.

Any right O-ideal I is uniquely determined by its completion Î ⊂ D̂, as I = Î ∩D.
For any g ∈ D̂×, we set

gI := gÎ ∩D, gOg−1 := gÔg−1 ∩D.

Then gI is again a right O-ideal and gOg−1 is an order in D.
Given an ideal a � A, we write Aa for the a-adic completion lim←−A/an of A, and

Ya := Y ⊗A Aa for any finitely generated A-module Y .
Given a finite set S, most of the time we write |S| for the cardinality of S, though

sometimes it is more convenient to write it as #S.

2.2. Locally principal ideals. A right O-ideal I is said to be locally principal
with respect to A = O ∩ F if Im is a principal Om-ideal for every maximal ideal m
of A. Similarly, I is said to be locally principal with respect to Z if Ip is a principal
Op-ideal for every prime p. However, these two definitions are equivalent. Clearly one
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has the decomposition Op =
∏

m|pOm arising from Ap =
∏

m|p Am. It follows that the

ideal Ip is Op-principal if and only if Im is Om-principal for every m|p. Thus, there is
no confusion when I is said to be a locally principal right O-ideal.

Any locally principal right O-ideal I is of the form gO for some g ∈ D̂×. We have

Or(I) = O, Ol(I) = gOg−1. (2.1)

Define I−1 := Og−1. Then I−1 is a left O-ideal whose associated right order is Ol(I),
and

I−1I = O, II−1 = gOg−1 = Ol(I). (2.2)

Note that I is a locally principal right Or(I)-ideal if and only if it is a locally principal
left Ol(I)-ideal. Thus if we say that (a lattice) I is locally principal, without any
reference to orders, it is understood that I is locally principal for both Ol(I) and
Or(I).

Given two locally principal right O-ideals I and J , we write I � J if they are
isomorphic as right O-ideals. This happens if and only if there exists g ∈ D× such
that gI = J . Denote by Cl(O) the set of isomorphism classes of locally principal right

O-ideals in D. The map g �→ gO for g ∈ D̂× induces a natural bijection

D×\D̂×/Ô× � Cl(O).

The class number of O will be denoted by h = h(O) := |Cl(O)|.

2.3. Norms of ideals. We study some properties of the norms of ideals in
the present setting (the ground ring A is not necessarily integrally closed). For any
A-lattice I in D, define the norm of I (over A) by

NrA(I) :=

{
m∑
i=1

aiNr(xi) for some m ∈ N
∣∣∣ ai ∈ A, xi ∈ I

}
⊂ F,

where Nr : D → F denotes the reduced norm map. The formation of reduced norms
of lattices commutes with completions. That is, for any ideal a � A,

NrA(I)a = NrAa
(Ia). (2.3)

The inclusion ⊆ is obvious as I ⊆ Ia. Since NrA(I) is a finitely generated A-
module, NrA(I)a = NrA(I) ⊗ Aa is the completion of NrA(I) with respect to the
a-adic topology. In particular, NrA(I)a is closed in NrAa

(Ia). Let NrSet be the set
theoretic image under the reduced norm map. Note that Nr is continuous with respect
to the a-adic topology, and I is dense in Ia. We have

NrSet(Ia) = NrSet(Ī) ⊆ NrSet(I) ⊆ NrA(I)a,

where the overline denotes the closure in the a-adic topology. Since NrAa
(Ia) is

spanned by NrSet(Ia) over Aa, we obtain the other inclusion needed for the verification
of (2.3).

Let Ãl := NrA(Ol(I)) and Ãr := NrA(Or(I)). Clearly, NrA(I) is a module over

the ring Ã := ÃlÃr. Here extra caution is needed since that Ãl (or Ãr) may strictly
contain A even if Ol(I) (or Or(I)) is a proper A-order. An example will be given
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in Section 5.2 by taking I = O8, where O8 is a certain nonmaximal order in the
quaternion algebra D∞1,∞2 . We do not know the relation between Ãl and Ãr in
general. However, NrA(I) is reasonably well behaved when I is locally principal.

Suppose that I is a locally principal right ideal for a proper A-order O. By
(2.1), Ã = Ãl = Ãr = NrA(O). If we write I = gO for some g ∈ D̂×, then

NrA(I) = Nr(g)NrA(O) = Nr(g)Ã. Hence NrA sends locally principal right O-ideals
to invertible Ã-modules. This property enables us to define Brandt matrices for an
arbitrary proper A-order O in Section 3.

2.4. Multiplicative properties. Let I and J be two A-lattices in D. We
discuss when the multiplicative property NrA(I)NrA(J) = NrA(IJ) holds. Clearly
NrA(I)NrA(J) ⊆ NrA(IJ) as NrA(I)NrA(J) is generated by elements Nr(x)Nr(y) =
Nr(xy) with x ∈ I, y ∈ J and xy ∈ IJ . Moreover, the equality can be checked
locally: the equality NrA(I)NrA(J) = NrA(IJ) holds if and only if its local analogue
NrAp

(Ip)NrAp
(Jp) = NrAp

(IpJp) holds for every prime p. The product IJ of I and
J is said to be coherent if Or(I) = Ol(J) (cf. [24, p. 183], [27, p. 22]). We give an
example that shows that NrA(I)NrA(J) �= NrA(IJ) when the product IJ of I and J
is not coherent, even though both I and J are locally principal lattices.

Let F = Q and D be any quaternion Q-algebra with Dp = Mat2(Qp). Take any
two Z-lattices I and J in D with

Ip =

(
Zp pZp

p−1Zp Zp

)
and Jp =

(
Zp Zp

Zp Zp

)
.

Then NrZp
(Ip)NrZp

(Jp) = Zp but NrZp
(IpJp) = p−1Zp as

IpJp =

(
Zp Zp

p−1Zp p−1Zp

)
.

In this example the local product IpJp is not coherent and thus the global product
IJ is not coherent.

Due to the above example we are content with the multiplicative properties of
the reduced norm for the type of products below.

Lemma 2.5. Suppose that the product IJ of I and J is coherent and at least one
of I and J is locally principal. Then NrA(IJ) = NrA(I)NrA(J).

Proof. Assume that I is right locally O-principal, where O = Or(I). For any
prime p, one has

NrAp
(IpJp) = NrAp

(xpOpJp) = NrAp
(xpJp) = Nr(xp)NrAp

(Jp).

Thus NrAp
(IpJp) = NrAp

(Ip)NrAp
(Jp) for all primes p and hence NrA(IJ) =

NrA(I)NrA(J). The case that J is locally principal can be proved similarly.

Proposition 2.6 (Criterion of units in O). We keep the notation of Section 2.1,
except that F is allowed to be either a number field or a nonarchimedean local field.
An element u ∈ O is a unit if and only if Nr(u) ∈ O×

F .

Proof. This is a simple generalization of [27, Lemme 4.12, Chapitre I]. Let S :=
OF [u] ⊂ D be the OF -algebra generated by u ∈ O. Since O is an order, u is integral
over OF , and S is a finite OF -algebra. Clearly, u ∈ S× if and only if Nr(u) ∈ O×

F .
Let R = S ∩ O, then u ∈ R and S is integral over the ring R. By [1, Exercise 5,
Chapter 5], we have R× = R ∩ S×, and the proposition follows.
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3. Traces of Brandt matrices. In this section we define Brandt matrices for
arbitrary orders in a totally definite quaternion algebra, and derive a formula for
the trace of Brandt matrices. This allows us to obtain the generalized class number
formula as stated in Theorem 1.3. We follow closely Eichler’s original proof [10]; also
see Vignéras’s book [27].

3.1. Brandt matrices. Throughout the entire Section 3, F denotes a totally
real number field, D a totally definite quaternion F -algebra, A ⊆ OF a Z-order in F
and O a proper A-order in D. Let h = h(O) be the class number of O.

We fix a complete set of representatives I1, . . . , Ih for the right ideal classes in
Cl(O), and define

Oi := Ol(Ii), wi := [O×
i : A×]. (3.1)

The number wi depends only on the ideal class of Ii. Since Ii = giO for some gi ∈ D̂×,
we have Oi = giOg−1

i by (2.1). In particular, each Oi is a proper A-order, and if O
is closed under the canonical involution of D, then so is each Oi. Let

Ã := NrA(O) =
{

m∑
i=1

aiNr(xi) for some m ∈ N
∣∣∣xi ∈ O, ai ∈ A

}
⊂ F. (3.2)

Then Ã is an order in F with A ⊆ Ã ⊆ OF . For each i = 1, . . . , h, NrA(Ii) = Nr(gi)Ã

is an invertible Ã-module, and NrA(Oi) = Ã.

Lemma 3.1.1. We have Ã = A if and only if O is closed under the canonical
involution x �→ Tr(x)− x.

Proof. Suppose that Ã = A, then Nr(x) ∈ A for every x ∈ O. Therefore,

Tr(x)− x = Nr(1 + x)−Nr(x)− 1− x ∈ O.

On the other hand, suppose that O is closed under the canonical involution. Then
for any x ∈ O, Nr(x) = (Tr(x) − x)x lies in O, and hence Nr(x) ∈ O ∩ F = A. It

follows that Ã = NrA(O) = A.

In general, Ã is not necessarily equal to A. This is the crucial difference in deriving
the trace formula for Brandt matrices over non-Dedekind ground rings. For brevity,
we write Nr(I) for NrA(I).

Proposition 3.1.2. Let n be a locally principal integral Ã-ideal. For any two
integers i and j with 1 ≤ i, j ≤ h = h(O), there are bijections among the following
finite sets:

(a) The set of locally principal right O-ideals J ⊆ Ii such that J � Ij as right
O-ideals and Nr(J) = n ·Nr(Ii) ;

(b) The set of integral locally principal right Oi-ideals J ′ ⊆ Oi such that J ′ �
IjI

−1
i as right Oi-ideals and Nr(J ′) = n ;

(c) The set of right principal Oj-ideals J ′′ ⊆ IiI
−1
j such that Nr(J ′′) = nNr(Ii) ·

Nr(Ij)
−1 ;

(d) The set of right O×
j -orbits of elements b ∈ IiI

−1
j such that Nr(bOj) =

nNr(Ii)Nr(Ij)
−1.
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Proof. The bijection between (a) and (b) is given by J �→ J ′ := JI−1
i . It is easy

to see that the product JI−1
i is coherent and hence Nr(JI−1

i ) = Nr(J)Nr(Ii)
−1. The

bijection between (a) and (c) is given by J ′′ := JI−1
j . The bijection between (c) and

(d) is given by J ′′ = bOj .

Perhaps it is helpful to indicate why the sets in Proposition 3.1.2 are finite. This
is already known if A = OF by Körner [18]. Consider the set in (b). There are finitely
many ideals J ′OF ⊆ OiOF with Nr(J ′OF ) = nOF . As cOF ⊆ A ⊆ OF for some
c ∈ Z>0, there are also finitely many ideals J ′ ⊆ Oi with cJ ′OF ⊆ J ′ ⊆ J ′OF for
each J ′OF .

Definition 3.1.3. Let Bij(n) be the cardinality of any of the finite sets in
Proposition 3.1.2. The Brandt matrix associated to n is defined to be the matrix

B(n) := (Bij(n)) ∈ Math(Z).

It follows from part (d) of Proposition 3.1.2 that

Bii(n) = #
(
{b ∈ Oi|Nr(b)Ã = n}/O×

i

)
. (3.3)

In particular, Bii(n) �= 0 only if n is principal and generated by a totally positive
element.

3.2. Optimal embeddings. Let K be a CM-extension [8, §13] of F that are
F -embeddable into D, and B be an A-order in K. Denote by Emb(B,O) the set of
optimal embeddings from B into O, that is,

Emb(B,O) := {ϕ ∈ HomF (K,D) | ϕ(K) ∩O = ϕ(B)}.
Equivalently, these are the embeddings of A-orders ϕ : B ↪→ O such that O/ϕ(B)
has no torsion. One can show that Emb(B,O) is a finite set. Indeed, let x ∈ B be
a fixed element generating K over F . Then each map ϕ is uniquely determined by
the image ϕ(x) in O. As the elements ϕ(x), when ϕ varies, have a fixed norm, these
elements land in the intersection of a compact set in O⊗R with the discrete subset O,
which is a finite set. Note that Emb(B,O) is nonempty only if B is a proper A-order.
Moreover, if O is closed under the canonical involution, then Emb(B,O) is nonempty
only if B is closed under the complex conjugation ι ∈ Gal(K/F ).

The group O× acts on Emb(B,O) from the right by ϕ �→ g−1ϕg for all ϕ ∈
Emb(B,O) and g ∈ O×. We denote

m(B,O) := |Emb(B,O)|, m(B,O,O×) := |Emb(B,O)/O×|,
w(B) := [B× : A×], and w(O) := [O× : A×].

Then one has

m(B,O,O×) =
m(B,O)

w(O)/w(B)
. (3.4)

Indeed, let ϕ ∈ Emb(B,O) be an element. The orbit O(ϕ) of ϕ under the O×-action
is isomorphic to O×/ϕ(B)×, and hence |O(ϕ)| = [O× : ϕ(B)×] = w(O)/w(B), which
is independent of ϕ. This gives (3.4). As a result, one obtains

m(B,Oi,O×
i )

w(B)
=

m(B,Oi)

wi
, ∀ 1 ≤ i ≤ h. (3.5)
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As Op and Oi,p are isomorphic for every 1 ≤ i ≤ h, one has m(Bp,Op,O×
p ) =

m(Bp,Oi,p,O×
i,p). For simplicity, we write

mp(B) := m(Bp,Op,O×
p ). (3.6)

Lemma 3.2.1. Let h(B) := |Pic(B)| be the class number of B. We have

h∑
i=1

m(B,Oi,O×
i ) = h(B)

∏
p

mp(B). (3.7)

The proof is similar to that of [27, Theorem 5.11, p. 92] (also see [29], Lemma 3.2
and below), hence omitted.

3.3. Traces of Brandt matrices. Suppose that n = Ãβ ⊆ Ã is generated
by a totally positive element β ∈ Ã. Choose a complete set S = {ε1, . . . , εs} of

representatives for the finite group Ã×
+/(A

×)2, where Ã×
+ denotes the subgroup of

totally positive elements of Ã×. We define two sets:

Ci := {b ∈ Oi|Nr(b) = εβ for some ε ∈ S},
Bi := {b ∈ Oi|Nr(b)Ã = n}/A×.

Since ker(A× Nr−→ Ã×) = ker(A× a �→a2

−−−−→ A×) = {±1},

Bi � {b ∈ Oi|Nr(b) = εβ for some ε ∈ S}/{±1} = Ci/{±1},

and Bii(n) = |Bi|/wi by (3.3). Thus,

Bii(n) = |Ci|/2wi. (3.8)

We first count the number of elements of Ci ∩ F . The cardinality is clearly even,
so we put

|Ci ∩ A| = 2δn. (3.9)

Note that Ci ∩ F = Ci ∩ A since Oi ∩ F = A. It follows that δn �= 0 if and only
if n = Ãa2 for some nonzero a ∈ A. Suppose that this is the case. If b ∈ Ci ∩ A,
then b2 = a2ε for some ε ∈ S. It follows that b/a ∈ O×

F , and hence ε ∈ (O×
F )

2 ∩ Ã×
+.

Without lose of generality, we further assume that {ε1, . . . , εr} ⊆ S forms a complete

set of representatives for the quotient group
(
(O×

F )
2 ∩ Ã×

+

)
/(A×)2. Write εj = u2

j for
each 1 ≤ j ≤ r. We conclude that

δn =

{
|{1 ≤ j ≤ r | auj ∈ A}| if n = Ãa2 for some nonzero a ∈ A;

0 otherwise.
(3.10)

In particular, the value of δn does not depend on Oi. Note that if n = Ã, then δn = 1.
Similarly, if A = OF and n = OFa

2, then δn = 1 as well, which recovers the classical
case as in [27, Proposition V.2.4].

Next, we count the number of elements of Ci − F . Let PO,n ⊆ F [X ] be the set
consisting of all characteristic polynomials of non-central elements b ∈ Ci for some
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1 ≤ i ≤ h. This is a finite set in Ã[X ] since for any x ∈ Oi, the reduced trace

Tr(x) = Nr(x + 1) − Nr(x) − 1 ∈ Ã. It is convenient to introduce a slightly larger

finite set which depends only on Ã and n. Let PD,n ⊂ Ã[X ] be the set consisting of all
irreducible polynomials of the form X2− tX+ εβ with ε ∈ S such that t2− 4εβ �∈ F 2

v

for all the ramified places v of D, including all the archimedean ones. The set PD,n

is again finite since all archimedean norms of t are bounded. Clearly PO,n ⊆ PD,n.
For each P ∈ PD,n, write KP := F [X ]/(P ) and BP := A[x] ⊂ KP , where x is

the image of X in KP , hence a root of P in KP . If x′ is the other root of P then
A[x′] is isomorphic to A[x] as A-orders. However, the order A[x′] could be different
from A[x] in KP . For example, let p ≡ 5 (mod 8), F = Q(

√
p ) with fundamental

unit ε ∈ O×
F , and A = Z[

√
p ]. Suppose that A× �= O×

F , or equivalently, ε �∈ A×. Then
A[εζ6] �= A[εζ−1

6 ] as A[εζ6, εζ
−1
6 ] = OF [ζ6] but both orders are proper A-orders. We

would like to emphasize that KP is considered not just as an abstract field, but rather
a field with the distinguished element x.

Local conditions imposed in the definition of PD,n ensure the existence of an
embedding of (KP )v into Dv locally everywhere. Then the local-global principle
guarantees the existence of an F -embedding of KP into D. A priori, one needs to
impose a further condition on PD,n so that every order BP is a proper A-order.
However, omission of this condition will not cause any trouble since Emb(B,Oi) is
empty if B is not a proper A-order. One has the following equality for each 1 ≤ i ≤ h:∐

P∈PO,n

∐
BP⊆B⊂KP

Emb(B,Oi) =
∐

P∈PD,n

∐
BP⊆B⊂KP

Emb(B,Oi), (3.11)

as Emb(B,Oi) is nonempty only when P ∈ PO,n.

Lemma 3.3.1. There is a natural bijection

Ci −A �
∐

P∈PD,n

∐
BP⊆B⊂KP

Emb(B,Oi). (3.12)

Proof. To each element b ∈ Ci − A, one associates a triple (P,B, ϕ) in the
right hand side as follows: P is the characteristic polynomial of b, ϕ : KP → D is
the F -embedding determined by ϕ(x) = b, where x is the image of X in KP and
B := ϕ−1(Oi), which ensures that ϕ is an optimal embedding.

Conversely, to each triple (P,B, ϕ) in the right hand side, one associates the
element b := ϕ(x) in Ci−A. Clearly, the element b and the triple (P,B, ϕ) determine
each other uniquely and this gives a natural bijection between these two sets.

Definition 3.3.2. The mass of O is defined as

Mass(O) :=
h∑

i=1

1

[O×
i : A×]

=

h∑
i=1

1

wi
.

Theorem 3.3.3 (Eichler Trace Formula, first version). We have TrB(n) �= 0
only if the ideal n is a principal and generated by a totally positive element. When n
is generated by a totally positive element β, the trace formula for B(n) is given by

TrB(n) = δn ·Mass(O) + 1

2

∑
P∈PD,n

∑
BP⊆B⊂KP

M(B), (3.13)



CLASS NUMBER FORMULA 661

where δn is defined by (3.10), and

M(B) :=
h(B)

w(B)

∏
p

mp(B). (3.14)

Proof. We have

Bii(n) =
|Ci|
2wi

=
|Ci −A|
2wi

+
2δn
2wi

=
δn
wi

+
1

2

∑
P∈PD,n

∑
BP⊆B⊂KP

|Emb(B,Oi)|
wi

( Lemma 3.3.1 )

=
δn
wi

+
1

2

∑
P∈PD,n

∑
BP⊆B⊂KP

m(B,Oi,O×
i )

w(B)
(by (3.5)).

(3.15)

Summing over i = 1, . . . , h and applying Lemma 3.2.1, one obtains (3.13) for the trace
of the Brandt matrix B(n).

3.3.4. We would like to count the right hand side of (3.12) by regrouping the
elements according to the orders B. For a fixed 1 ≤ i ≤ h, consider the quadruples
(B,P, ϕ, α) consisting of the following objects:
(a) a quadratic proper A-order B with fraction field K, which is a totally imaginary

quadratic extension of F embeddable into D,
(b) a polynomial P ∈ PD,n,
(c) an optimal embedding ϕ ∈ Emb(B,Oi),
(d) an F -isomorphism α : KP → K such that BP ⊆ α−1(B) ⊂ KP . Equivalently,

α ∈ HomA(BP , B).
Clearly, each such quadruple defines a unique element b ∈ Ci−A given by b := ϕ(α(x)).
Two quadruples (Br, Pr, ϕr, αr)r=1,2 are identified if P1 = P2 and there exists an
isomorphism ρ : B1 → B2 such that ϕ1 = ϕ2 ◦ ρ, α2 = ρ ◦ α1.

Suppose that two quadruples (Br, Pr, ϕr, αr)r=1,2 give rise to the same b ∈ Ci−A.
Then necessarily P1 = P2 since both are the characteristic polynomial of b. Denote
this polynomial by P . An F -embedding KP ↪→ D is uniquely determined by the
image of x. So ϕ1 ◦ α1 = ϕ2 ◦ α2. In particular,

BP ⊆ α−1
1 (B1) = α−1

1 ϕ−1
1 (Oi) = α−1

2 ϕ−1
2 (Oi) = α−1

2 (B2) ⊂ KP . (3.16)

Thus B1 and B2 are isomorphic. Without lose of generality, we may assume that
B := B1 = B2 from the very beginning. Note that ϕ1 = ϕ2 implies that α1 = α2

and vice versa. If on the other hand α2 = ι ◦ α1, where ι ∈ Gal(K/F ) is the unique
nontrivial isomorphism (i.e. the complex conjugation), then ϕ1 = ϕ2 ◦ ι, and it
follows from (3.16) that ι(B) = B. Conversely, if (B,P, ϕ, α) satisfies conditions (a)–
(d) and ι(B) = B, then (B,P, ϕ ◦ ι, ι ◦α) again satisfies these conditions, and the two
quadruples need to be identified since they give rise to the same element in Ci −A.

Recall that n = Ãβ. For each quadratic proper A-order B, let TB,n ⊂ B be the
finite set

TB,n := {b ∈ B −A |NK/F (b) = εβ for some ε ∈ S }, (3.17)

and PB,n be the set of characteristic polynomials of elements in TB,n. In general n
should be clear from the context, so we drop it from the subscript and write TB and
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PB instead. We define

CB,i := {(P, ϕ, α) | P ∈ PB, ϕ ∈ Emb(B,Oi), α ∈ HomA(BP , B)}. (3.18)

Note that if P ∈ PB but P �∈ PO,n, then Emb(B,Oi) = ∅ for all 1 ≤ i ≤ h. The fiber
of the projection map CB,i → PB over each P ∈ PB is

EB,P,i := Emb(B,Oi)×HomA(BP , B).

The set EB,P,i is equipped with an action of Gal(K/F ) in the following way: if ι(B) =
B, then ι acts by sending (ϕ, α) �→ (ϕ ◦ ι, ι ◦ α); otherwise ι acts trivially. It is clear
that this action is independent of P and i. Let Gal(K/F ) act on CB,i fiber-wisely.
We have

Ci −A �
∐
B

CB,i/Gal(K/F ), (3.19)

where the disjoint union is taken over all the non-isomorphic quadratic proper A-
orders B. In the next two subsections, we calculate the cardinality of CB,i/Gal(K/F ).
There are two cases to consider, depending on whether ι(B) = B or not.

3.3.5. Suppose that ι(B) = B. We have

CB,i/Gal(K/F ) =
∐

P∈PB

EB,P,i/Gal(K/F ).

Note that HomA(BP , B) = HomF (KP ,K) for all P ∈ PB in this case. Any choice of
a fixed element α ∈ HomF (KP ,K) induces a bijection

Emb(B,Oi) � EB,P,i/Gal(K/F ), ϕ �→ (ϕ, α). (3.20)

Therefore,

|CB,i/Gal(K/F )| = |PB| · |Emb(B,Oi)|.
Since ι(B) = B, an element b ∈ TB if and only if ι(b) ∈ TB. We have a surjective
2-to-1 map TB → PB. It follows that

|CB,i/Gal(K/F )| = 1

2
|TB| · |Emb(B,Oi)|. (3.21)

3.3.6. Suppose that ι(B) �= B. Let QB be the set of pairs {(P, α) | P ∈ PB, α ∈
HomA(BP , B)}. Since Gal(K/F ) acts trivially, we have

CB,i/Gal(K/F ) = CB,i =
∐

(P,α)∈QB

Emb(B,Oi).

We claim that there is a canonical bijection between TB and QB. Indeed, each pair
(P, α) ∈ QB determines a unique element b := α(x) ∈ TB, where x is the distinguished
element in KP . On the other hand, given any element b ∈ TB, we just set P to be the
characteristic polynomial of b, and α : BP → B to be the canonical homomorphism
sending x to b. Therefore, if ι(B) �= B, then

|CB,i/Gal(K/F )| = |TB| · |Emb(B,Oi)|. (3.22)
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Let δ(B) be the symbol

δ(B) :=

{
1 if ι(B) = B;

0 otherwise.
(3.23)

Theorem 3.3.7 (Eichler Trace Formula, second version). Suppose that n = Ãβ

is generated by a totally positive element β ∈ Ã. Let |TB,n| be the cardinality of the
set TB,n defined in (3.17). The trace formula for B(n) is given by

TrB(n) = δn ·Mass(O) + 1

4

∑
B

(2− δ(B))M(B)|TB,n|.

Here in the last summation B runs over all (non-isomorphic) quadratic proper A-
orders embeddable into D.

Proof. The proof employs the same line of arguments as Theorem 3.3.3, except
that instead of applying Lemma 3.3.1, one combines (3.19), (3.21) and (3.22).

Note that if O is closed under the canonical involution of D, then Ã = A by
Lemma 3.1.1. In this case, only those quadratic proper A-orders B closed under the
complex conjugation need to be considered in the trace formula, as Emb(B,Oi) is
empty for all 1 ≤ i ≤ h if δ(B) = 0. This observation applies to the class number
formula below as well.

When n = (1) = Ã, the Brandt matrix B(Ã) is the identity and TrB(Ã) = h(O).
Corollary 3.3.8 (Class number formula).

h(O) = Mass(O) + 1

2

∑
P∈PD,(1)

∑
BP⊆B⊂KP

M(B)

= Mass(O) + 1

2

∑
w(B)>1

(2− δ(B))h(B)(1 − w(B)−1)
∏
p

mp(B).

(3.24)

Here in the last summation B runs over all (non-isomorphic) quadratic proper A-
orders with w(B) = [B× : A×] > 1. Equivalently,

h(O) = Mass(O) + 1

2

∑
K

∑
B⊂K,
w(B)>1

h(B)(1 − w(B)−1)
∏
p

mp(B), (3.25)

where K runs over all (non-isomorphic) totally imaginary quadratic extensions of F
embeddable into D, and B runs over all the distinct quadratic proper A-orders in OK

with w(B) > 1.

Proof. The first part of (3.24) follows directly from Theorem 3.3.3. For each
quadratic proper A-order B, let q = w(B), and B×/A× = {1̄, x̄2, . . . , x̄q}. As
the map TB,(1) → {x̄2, . . . , x̄q} is surjective and two-to-one, sending ±x �→ x̄,
one gets #TB,(1) = 2(q − 1). So the second part of (3.24) follows from Theo-
rem 3.3.7. Formula (3.25) is just a more intuitive reformulation of (3.24). Indeed, if
B �= ι(B), then both B and ι(B) appears in the right hand side of (3.25), giving us
2h(B)(1− w(B)−1)

∏
p mp(B) for the isomorphic class of B.
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We call the sum in (3.24) the elliptic part (of the class number formula) and
denote it by Ell(O), that is,

Ell(O) := 1

2

∑
w(B)>1

(2 − δ(B))h(B)(1 − w(B)−1)
∏
p

mp(B). (3.26)

Remark 3.3.9. For the reader’s convenience, we explain the definitions of some
of the terms occurring in the proof of Theorem 3.3.3. In the definition of Brandt
matrices, one should take n as an ideal in Ã, rather than in A. This is justified in
Section 4. One should consider the representative set S for Ã×

+/(A
×)2, rather than

for Ã×
+/(Ã

×)2, since the norm of groups O×
i /A

× land in the first group. In (3.10),

one should take a in A, rather than in Ã. This is because the central contribution
has norm in this form. While P ∈ PD,n is a polynomial in Ã[X ], one should take

BP = A[x], rather than the naive one Ã[X ]/(P ). Otherwise there would be no optimal
embedding of BP into any order Oi.

3.4. Local optimal embeddings. Let D be the reduced discriminant of D,
that is, the product of all finite primes of F that are ramified in D. When A = OF

and O is an Eichler OF -order of level N, where N ⊆ OF is a square-free prime-to-D
ideal, one has the formula [27, p. 94] for all prime ideals p ⊂ OF ,

mp(B) := m(Bp,Op,O×
p ) =

⎧⎪⎪⎨⎪⎪⎩
1−

(
B
p

)
if p|D;

1 +
(

B
p

)
if p|N;

1 otherwise.

Thus, one gets ∏
p

mp(B) =
∏
p|D

(
1−

(
B

p

))∏
p|N

(
1 +

(
B

p

))
. (3.27)

Here (B/p) is the Eichler symbol, defined as follows:(
B

p

)
:=

{(
K
p

)
if p � f(B);

1 otherwise;

where f(B) ⊆ OF is the conductor of B and (K/p) is the Artin symbol

(
K

p

)
:=

⎧⎪⎨⎪⎩
1 if p splits in K;

−1 if p is inert in K;

0 if p is ramified in K.

When O is an Eichler OF -order with arbitrary prime-to-D level N, Hijikata [12,
Theorem 2.3, p. 66] computed the numbers of equivalence classes of the local optimal
embeddings from Bp into Op.

However, the situation is more delicate when Z(O) = A � OF . Let B ⊂ K and
O ⊂ D be proper A-orders. Suppose that Dp � Mat2(Fp) = EndFp

(Vp), where Vp is
a free Fp-module of rank two, and Op = EndAp

(Lp), where Lp is a full Ap-lattice in
Vp.



CLASS NUMBER FORMULA 665

Fix an embedding ϕ0 : Kp → Dp of Fp-algebras. We view Vp as a free Kp-module
of rank one through ϕ0. A latticeMp ⊂ Vp is said to be a proper Bp-lattice if {x ∈ Kp |
ϕ0(x)Mp ⊆ Mp} = Bp. Let L(Bp, Lp, Vp) denote the set of isomorphism classes of
proper Bp-latticesMp ⊂ Vp such that there is an isomorphismMp � Lp of Ap-lattices.
We claim that the number m(Bp,Op,O×

p ) is equal to |L(Bp, Lp, Vp)|. Notice that
m(Bp,Op,O×

p ) is the cardinality of ϕ0(Kp)
×\Ep(Bp,Op)/O×

p , where Ep(Bp,Op) =
{g ∈ D×

p |ϕ0(Kp)∩gOpg
−1 = ϕ0(Bp)}. It is straightforward to check that the map g �→

gLp induces a bijection between the set ϕ0(Kp)
×\Ep(Bp,Op)/O×

p and L(Bp, Lp, Vp).
This proves our claim.

We will need some structural theorems for modules over Bass orders. A standard
reference for Bass orders is the original work [2] of Bass. Recall that a Z-order (or a
Zp-order) B is a Bass order if B is Gorenstein and any order B′ containing B is also
Gorenstein. Bass orders share the following local property: B is Bass if and only if
the completion Bp is Bass for every prime p. If a Zp-order Bp is Bass, then any proper
Bp-module of rank one is isomorphic to Bp. Using this and our claim, we obtain the
following lemma.

Lemma 3.4.1. Suppose that Op = EndAp
(Lp). If Bp is a Bass order, then

m(Bp,Op,O×
p ) is either 0 or 1, and m(Bp,Op,O×

p ) = 1 if and only if Bp � Lp as
Ap-modules.

4. Representation-theoretic interpretation of Brandt matrices.

4.1. A general formulation. Let G be a unimodular locally compact topo-
logical group. Assume there is a discrete and co-compact subgroup Γ ⊂ G. Then
the quotient Γ\G is a compact topological space with right translation action by G.
Let U ⊂ G be an open compact subgroup. Choose a Haar measure dg on G with
volume one on U and use the counting measure on Γ. Since Γ\G is compact and U
is open, the double coset space Γ\G/U is a finite set. Let L2(Γ\G) be the Hilbert
space of square-integrable C-valued functions on the compact topological space Γ\G.
The group G acts on L2(Γ\G) by right translation, and we denote this action by
R. The subspace L2(Γ\G)U of U -invariant functions equals L2(Γ\G/U), which is a
finite-dimensional vector space. Let H(G) := C∞

c (G) denote the Hecke algebra of G,
which consists of all smooth C-valued functions on G with compact support, together
with the convolution. The action of H(G) on L2(Γ\G) is as follows:

(R(f)φ)(x) =

∫
G

f(g)φ(xg)dg, f ∈ H(G), φ ∈ L2(Γ\G).

Let H(G,U) = C∞
c (U\G/U) denote the subspace of U -bi-invariant functions. For

any f ∈ H(G,U), the Hecke operator R(f) sends the finite-dimensional vector space
L2(Γ\G/U) into itself.

4.2. Quaternion algebras, Brandt matrices and Hecke operators. Let
D, F , A and O be as in Section 3.1. Note that D× ⊂ D̂× is not a discrete subgroup
when [F : Q] > 1 because the unit group O×

F is not finite. We consider the following
groups:

G := D̂×/Â×, Γ := D×/A×, and U := Ô×/Â×.

Then Γ ⊂ G is a discrete and co-compact subgroup. This allows us to consider Hecke
operators on the space L2(Γ\G) of functions. The group G operates transitively on
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the set of right locally principal O-ideals. This gives natural bijections
D×\D̂×/Ô× � Γ\G/U � Cl(O). (4.1)

Therefore, h(O) = dimL2(Γ\G/U). If 1U denotes the characteristic function of U ,
then the map R(1U ) is the identity on L2(Γ\G/U) and TrR(1U ) = h(O).

Let n ⊆ Ã be a locally principal integral Ã-ideal. The finite idele group F̂×

operates on the set of Ã-ideals. Set

U(n) := {x ∈ G |xÔ ⊆ Ô, Nr(x)Ã = n }.
This is an open compact subset in G which is stable under U by left and right actions.
Using the Cartan decomposition, one easily sees that U\U(n)/U is a finite set. Let

g1, . . . , gh be a complete set of representatives for D×\D̂×/Ô×, one has

D̂× =

h∐
i=1

D×giÔ×, and G =

h∐
i=1

ΓḡiU,

where ḡi are the images of gi in G. Set Ii := giO, then I1, . . . , Ih form a complete set
of representatives for ideal classes in Cl(O).

Let χi be the characteristic function for the open compact subset Γ\ΓḡiU ⊂ Γ\G.
The set {χ1, . . . , χh} forms a basis for the vector space L2(Γ\G/U). Let f be the
characteristic function of U(n), which is an element in H(G,U), and hence R(f) is a
linear operator on L2(Γ\G/U). Write

R(f) ∼ (aij)

for the representing matrix with respect to the basis {χi}. One has

R(f)(χj) =

h∑
i=1

aijχi.

One computes

R(f)(χj)(x) =

∫
G

f(g)χj(xg)dg =

∫
U(n)

χj(xg)dg.

Thus,

aij = R(f)(χj)(ḡi) =

∫
U(n)

χj(ḡig)dg =

∫
Uij

dg = vol(Uij),

where

Uij := {g ∈ U(n) | ḡig ∈ ΓḡjU}.
Each Uij is invariant under the right translation of U . For each fixed i with 1 ≤ i ≤ h,
the set U(n) is the disjoint union of Uij for j = 1, . . . , h. For g ∈ Uij , one has

ḡigO � ḡjO = Ij , and ḡigO ⊆ ḡiO = Ii.

If one puts J := ḡigO, then Nr(J) = nNr(Ii). As a result we get a bijection

Uij/U � {J ⊆ Ii | J � Ij , Nr(J) = nNr(Ii)}, by g �→ ḡigO.
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Therefore, we get

aij = |Uij/U | = Bij(n).

Theorem 4.2.1. Let f be the characteristic function of U(n) as above. Then the
Brandt matrix is the representing matrix of the Hecke operator R(f) with respect to
the basis χ1, . . . , χh for the vector space L2(Γ\G/U).

Remark 4.2.2. In the function field setting where
• F is a global function field with constant field Fq,
• A an S-order (whose normalization is the S-ring of integers), where S is a
nonempty finite set of places of F ,

• D a definite quaternion F -algebra relative to S, and
• O a proper A-order in D,

all results in Sections 3-4 make sense and remain valid, possibly except for Theo-
rems 3.3.3 and 3.3.7 and Corollary 3.3.8 in characteristic 2.

5. Mass of Orders.

5.1. Mass formula. We keep the notation and assumptions of Section 3.1. In
particular, {I1, . . . , Ih} is a complete set of representatives for the right ideal classes
in Cl(O), and Oi = Ol(Ii). Recall that the mass of O is defined by

Mass(O) =
h∑

i=1

1

wi
, wi = [O×

i : A×]. (5.1)

The mass of O is independent of the choices of representatives for Cl(O).
Lemma 5.1.1. Let G := D̂×/Â×, Γ := D×/A× and U := Ô×/Â×. Then Γ is a

discrete cocompact subgroup of G, and for the counting measure on Γ and any Haar
measure on G, we have

vol(Γ\G) = vol(U) ·Mass(O). (5.2)

Proof. By (4.1), one has h = |Γ\G/U |. Write G =
∐h

i=1 ΓgiU . Then

vol(Γ\G) =

h∑
i=1

vol(Γ\ΓgiU) =

h∑
i=1

vol(U)

|Γ ∩ giUg−1
i | . (5.3)

The statement then follows from [O×
i : A×] = |Γ ∩ giUg−1

i |.
Lemma 5.1.2. Let R ⊆ O be two Z-orders in D with centers R and A, respec-

tively. Then

Mass(R) = Mass(O) [Ô
× : R̂×]

[A× : R×]
. (5.4)

Proof. Let G1 := D̂×/Â×, Γ1 := D×/A×, U1 := Ô×/Â×. We define G2, Γ2

and U2 for the order R similarly. The map G2 → G1 is a finite cover with degree
[Â× : R̂×] and Γ2 → Γ1 is a finite cover of degree [A× : R×]. Therefore, one gets

vol(Γ2\G2) = vol(Γ1\G1)
[Â× : R̂×]
[A× : R×]

.



668 J. XUE, T.-C. YANG, AND C.-F. YU

On the other hand, vol(U1)/vol(U2) = [Ô× : R̂×]/[Â× : R̂×]. The lemma now follows
from Lemma 5.1.1.

Let Omax be a maximal order in D containing O. The mass formula [27, Chapter
V, Corollary 2.3] states that

Mass(Omax) =
1

2n−1
|ζF (−1)|h(F )

∏
p|D

(N(p)− 1), (5.5)

where ζF (s) is the Dedekind zeta-function of F , D ⊆ OF is the reduced discriminant
of D over F , and p ranges over all finite primes of F dividing D. Using Lemma 5.1.2,
one easily derives the relative mass formula

Mass(O) = Mass(Omax) · [Ô
×
max : Ô×]

[O×
F : A×]

=
1

2n−1
|ζF (−1)|h(F )

∏
p|D

(N(p)− 1) · [Ô
×
max : Ô×]

[O×
F : A×]

.

(5.6)

5.2. Special cases. Let F = Q(
√
p ), where p is a prime number, and D =

D∞1,∞2 , the totally definite quaternion F -algebra ramified only at the archimedean
places {∞1,∞2}. Let O1 be a maximal OF -order in D and A = Z[

√
p ] ⊆ OF . By

(5.5), the mass of O1 is

Mass(O1) =
1

2
ζF (−1)h(F ). (5.7)

5.2.1. Mass of Or, r = 8, 16. Assume that p ≡ 1 (mod 4) for the rest of this
subsection. In this case A �= OF , and A/2OF

∼= F2. Let O8,O16 ⊂ O1 be the proper
A-orders such that

(O8)2 := O8 ⊗Z Z2 =

(
A2 2OF2

OF2 OF2

)
, (O16)2 = Mat2(A2), (5.8)

(Or)� = (O1)� ∀ prime � �= 2, r ∈ {8, 16}. (5.9)

The order Or ⊂ O1 is of index r.
We claim that NrA(O8) = OF �= A. It is enough to show that NrA�

((O8)�) =
(OF )� for all primes �, which follows from (5.8) for � = 2, and (5.9) for the rest of the
primes.

Put � := [O×
F : A×]. By [32, Section 4.2], we have � ∈ {1, 3}, and � = 1 if p ≡ 1

(mod 8). By formula (5.6), one has

Mass(Or) = Mass(O1)
[(O1/2O1)

× : (Or/2O1)
×]

�
, r = 8, 16. (5.10)

The group (O16/2O1)
× � GL2(F2) and hence |(O16/2O1)

×| = 6.
Suppose that p ≡ 1 (mod 8). The group (O1/2O1)

× � GL2(F2)×GL2(F2) is of
order 36. By (5.10) we have Mass(O16) = 6 Mass(O1). For the order O8 one has

O8/2O1 �
(

F2 0
F2 × F2 F2 × F2

)
,
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and hence |(O8/2O1)
×| = 4. Therefore by (5.10) we have Mass(O8) = 9 Mass(O1).

Suppose now that p ≡ 5 (mod 8). The group (O1/2O1)
× � GL2(F4) is of order

180. Thus, Mass(O16) = 30/� ·Mass(O1). Since

O8/2O1 �
(
F2 0
F4 F4

)
,

we have |(O8/2O1)
×| = 12. Thus, Mass(O8) = 15/� ·Mass(O1) by (5.10).

In summary,

Mass(O8) =

{
9/2 · ζF (−1)h(F ) for p ≡ 1 (mod 8);

(15/2�) · ζF (−1)h(F ) for p ≡ 5 (mod 8);

Mass(O16) =

{
3 ζF (−1)h(F ) for p ≡ 1 (mod 8);

(15/�) · ζF (−1)h(F ) for p ≡ 5 (mod 8).

(5.11)

6. Supersingular abelian surfaces.

6.1. Isomorphism classes. Let π =
√
p and Xπ an abelian variety over Fp

corresponding to the Weil number π. Let Isog(Xπ) denote the set of Fp-isomorphism
classes of abelian varieties in the isogeny class of Xπ over Fp. It is known that the
endomorphism algebraD ofXπ over Fp is isomorphic to the totally definite quaternion
algebraD = D∞1,∞2 over F = Q(

√
p ) defined in Section 5.2. We also recall the orders

O1,O8,O16 introduced there. The endomorphism ring of each member X in Isog(Xπ)
may be regarded as an order in D, uniquely determined up to an inner automorphism
ofD. LetOr denote the genus consisting of the orders in D that are locally isomorphic
to Or at every prime �. If p ≡ 1 (mod 4), then A = Z[

√
p ] ⊂ OF is a suborder of

index 2 in OF .
We will need the following result, which is a special case of [35, Theorem 2.2].

Proposition 6.1.1. Let X0 be an abelian variety over a finite field Fq and
R := EndFq

(X0) the endomorphism ring of X0. Then there is a natural bijection from
the set Cl(R) to the set of Fq-isomorphism classes of abelian varieties X satisfying
the following three conditions

(a) X is isogenous to X0 over Fq,
(b) the Tate module T�(X) is isomorphic to T�(X0) as Gal(F̄q/Fq)-modules for

all primes � �= p,
(c) the Dieudonné module M(X) of X is isomorphic to M(X0).

Theorem 6.1.2.

(a) Suppose that p �≡ 1 (mod 4). The endomorphism ring of any member X in
Isog(Xπ) is a maximal order in D. Moreover, there is a bijection between the set
Isog(Xπ) with the set Cl(O1) of ideal classes.

(b) Suppose that p ≡ 1 (mod 4). The endomorphism ring End(X) of any member
X in Isog(Xπ) belongs to Or for some r = 1, 8, 16. Moreover, for each r ∈ {1, 8, 16}
the set of members X in Isog(Xπ) with End(X) ∈ Or is in bijection with the set Cl(Or)
of ideal classes. In particular, there is a bijection Isog(Xπ) �

∐
r=1,8,16Cl(Or).

Proof. Part (a) has been proven in [28, Theorem 6.2]. We prove part (b) where
p ≡ 1 (mod 4). By Proposition 6.1.1, one is reduced to classify the Tate modules
and Dieudonné modules of members X in Isog(Xπ). Since the ground field is Fp, the
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Dieudonné module M(X) of X is simply an Ap-module in F 2
p . As Ap is the maximal

order in Fp, there is only one such isomorphism class and its endomorphism ring is a
maximal order in Mat2(Fp). The Tate module T�(X) of X is simply an A�-module.
Therefore, when � �= 2, there is only one such isomorphism class and its endomorphism
ring is again a maximal order in Mat2(F�). Now we consider the case where � = 2.
Since 2OF2 ⊂ A2 ⊂ OF2 , the order A2 is Bass and hence the classification of A2-
modules is known; see [2]. It follows that the Tate module T2(X) of X is isomorphic
to one of the following three A2-lattices in F 2

2 :

L1 = O2
F2
, L2 = A2 ⊕OF2 , L4 = A2

2, (6.1)

(also see [36, Corollary 5.2] for a direct classification). One easily computes that
EndA2(L1) = (O1)2, EndA2(L2) = (O8)2 and EndA2(L4) = (O16)2. If we let
X1, X8, X16 be members in Isog(Xπ) representing these three classes respectively and
let Rr := End(Xr), then each Rr ∈ Or and the set of members X in Isog(Xπ) defined
as in Proposition 6.1.1 is isomorphic to Cl(Rr) � Cl(Or). This proves part (b).

6.2. Computation of class numbers. In this subsection, we give explicit class
number formulas for the ordersO1, O8 and O16 arising from the study of supersingular
abelian surfaces in the isogeny class corresponding to π =

√
p . Recall that O8 and

O16 come into consideration only when p ≡ 1 (mod 4). Let Z(Or) be the center of
Or. We have Z(O1) = OF , and Z(Or) = Z[

√
p ] �= OF for r = 8, 16 when p ≡ 1

(mod 4). For the rest of this subsection we write A for the order Z[
√
p ] when p ≡ 1

(mod 4). Recall (Section 5.2.1) that � = [O×
F : A×] ∈ {1, 3}, and � = 1 if p ≡ 1

(mod 8). As mentioned at the start of Section 2, quadratic orders refer exclusively to
those whose fractional fields are CM-extensions of F .

By the class number formula (3.25),

h(Or) = Mass(Or) + Ell(Or) for r = 1, 8, 16.

The mass part Mass(Or) has already been calculated in Section 5.2. We focus on the
elliptic part

Ell(Or) =
1

2

∑
B

(2− δ(B))h(B)(1 − w(B)−1)
∏
�

m(B�, (Or)�, (Or)
×
� ),

where B runs over all the (non-isomorphic) quadratic proper Z(Or)-orders with

w(B) = [B× : Z(Or)
×] > 1, (6.2)

and δ(B) is given by (3.23), i.e. it is 1 if B is closed under the complex conjugation,
and 0 otherwise.

The detailed classification of all the orders B is given in a separate paper [32],
and we only summarize its results below. For this purpose some more notation needs
to be introduced.

6.2.1. Notations of fields1 and orders. Let Kj = Q(
√
p ,
√−j ) with j ∈

{1, 2, 3}. One can show that
• for p > 5, all quadratic OF -orders B with [B× : O×

F ] > 1 lie in Kj for some
j ∈ {1, 2, 3};

1If we need the 2-adic completion of a number field K, we will write K ⊗Q Q2 instead of K2 for
the rest of the paper. Similarly for 3-adic completions.
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• for p ≡ 1 (mod 4), all quadratic proper A-orders B with [B× : A×] > 1 lie in
either K1 or K3;

see [32] for more details.
We adopt the convention that Bj,k is an order in Kj with index k in OKj

. The
non-maximal suborders of OKj

that we will consider are:

B1,2 := Z+ Z
√
p + Z

√−1 + Z(1 +
√−1 )(1 +√p )/2, B1,4 := Z[

√
p ,
√−1 ],

B3,4 := Z[
√
p , ζ6] if p ≡ 1 (mod 4);

B3,2 := A[εζ6] if p ≡ 5 (mod 8) and � = 3.

Here B3,2 is the suborder of OK3 generated by εζ6 over A, where ε ∈ O×
F is the

fundamental unit of F . With the exception of B3,2, all the other orders above are
closed under the complex conjugation.

Given a number field K, the class number of an arbitrary order B ⊆ OK of
conductor f can be computed by the following formula [20, Theorem I.12.12]

h(B) =
h(OK)[(OK/f)

×
: (B/f)

×
]

[O×
K : B×]

. (6.3)

Lemma 6.2.2. Assume that p ≡ 1 (mod 4). If B ∈ {B1,2, B1,4, B3,4, B3,2}, then
B is a Bass order.

Proof. By a theorem of Borevich and Faddeev [3] (cf. Curtis-Reiner [9, Section
37, p. 789]), B is Bass if and only if the B-module OK/B is generated by one element.
In particular, if B is of prime index in OK then B is Bass. This shows that B1,2 and
B3,2 are Bass orders. Since OK1 = Z[

√−1 , (1 +
√
p )/2], the quotient OK1/B1,4 is

generated by (1 +
√
p )/2 as a B1,4-module. Hence B1,4 is a Bass order. Since 2 is

inert in Z[ζ6], one has OK3/B3,4 � F4 as Z[ζ6]/(2) � F4-modules. This proves that
B3,4 is also a Bass order.

6.2.3. Class number formula for O1 when p > 5. Since O1 is a maximal
order and D∞1,∞2 splits at all the finite places, we have m(B�, (O1)�, (O1)

×
� ) = 1 for

all � (see [27, p. 94] or Section 3.4). It follows that

Ell(O1) =
1

2

∑
w(B)>1

h(B)(1 − w(B)−1), (6.4)

where w(B) = [B× : O×
F ], and the summation is over all isomorphism classes of

quadratic OF -orders B with w(B) > 1.
When p ≡ 1 (mod 4) and p > 5, the only orders with nonzero contributions

to the elliptic part Ell(O1) are OK1 and OK3 , with w(OK1 ) = 2 and w(OK3 ) = 3
respectively. We have

h(O1) =
1

2
h(F )ζF (−1) + h(K1)/4 + h(K3)/3 if p ≡ 1 (mod 4), p > 5. (6.5)

When p ≡ 3 (mod 4) and p ≥ 7, we compute the following numerical invariants of all
orders B in some Kj with w(B) > 1:
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p ≡ 3 (mod 4) OK1 B1,2 B1,4 OK2 OK3

h(B) h(K1)
(
2−

(
2
p

))
h(K1)

(
2−

(
2
p

))
h(K1) h(K2) h(K3)

w(B) 4 4 2 2 3

Therefore, we have

h(O1) =
1

2
h(F )ζF (−1) +

(
13− 5

(
2

p

))
h(K1)

8
+

1

4
h(K2) +

1

3
h(K3) (6.6)

if p ≡ 3 (mod 4) and p ≥ 7.

6.2.4. Class number formula for O8 and O16 when p ≡ 1 (mod 4). Since
(Or)� is maximal for all � �= 2 and r ∈ {8, 16}, we have

Ell(Or) =
1

2

∑
w(B)>1

(2− δ(B))h(B)(1 − w(B)−1)m(B2, (Or)2, (Or)
×
2 ), (6.7)

where w(B) = [B× : A×] and the summation is over all isomorphism classes
of quadratic proper A-orders B with w(B) > 1. For simplicity, we will write
m2,r(B) := m(B2, (Or)2, (Or)

×
2 ) for r = 8, 16, where (Or)2 = Or ⊗Z Z2 and

B2 = B ⊗Z Z2. The numerical invariants of all proper A-orders B with w(B) > 1 are
given by the following table:

p ≡ 1 (mod 4) B1,2 B1,4 B3,4 B3,2

h(B) 1
�

(
2−

(
2
p

))
h(K1)

2
�

(
2−

(
2
p

))
h(K1) 3h(K3)/� h(K3)

w(B) 2 2 3 3

m2,8(B) 1 0 0 1

m2,16(B) 0 1 1 0

δ(B) 1 1 1 0

Here B3,2 is a proper A-order only if p ≡ 5 (mod 8) and � = 3, in which case
δ(B3,2) = 0. The numbers of conjugacy classes of 2-adic optimal embeddings m2,r(B)
will be calculated in the next subsection.

For the explicit class number formulas of O8 and O16, it is more convenient to
separate into cases. If p ≡ 1 (mod 8), then

h(O8) =
9

2
ζF (−1)h(F ) +

1

4
h(K1), (6.8)

h(O16) = 3ζF (−1)h(F ) +
1

2
h(K1) + h(K3). (6.9)

If p ≡ 5 (mod 8), then

h(O8) =
15

2�
ζF (−1)h(F ) +

3

4�
h(K1) +

2δ3,�
�

h(K3), (6.10)

h(O16) =
15

�
ζF (−1)h(F ) +

3

2�
h(K1) +

1

�
h(K3), (6.11)
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where δ3,� is the Kronecker δ-symbol.

6.2.5. Numbers of conjugacy classes of 2-adic optimal embeddings.

Assume that p ≡ 1 (mod 4), and B is an order in the list {B1,2, B1,4, B3,4, B3,2}.
According to Lemma 6.2.2, B is a Bass order. Recall that

(O8)2 = EndA2(A2 ⊕OF2), (O16)2 = EndA2(A
2
2)

by the proof of Theorem 6.1.2. It follows from Lemma 3.4.1 that m2,r(B) ∈ {0, 1} for
r = 8, 16, and

m2,8(B) = 1 ⇐⇒ B2 � A2 ⊕OF2 ,

m2,16(B) = 1 ⇐⇒ B2 � A2 ⊕A2.

Since A2 is a Bass order, B2 is isomorphic to one of the lattices given in (6.1).
However, B2 �� OF2 ⊕OF2 as B2 is a proper A2-order. Note that OFB = OK , where
the product is taken inside the fraction field K of B. Hence B2 ⊗A2 (A2/2OF2)

∼=
B2/2(OK ⊗Z Z2) ∼= B/2OK . By looking at the tensor product of B2 with (A2/2OF2)
for each B, we get the following isomorphisms of A2-modules

(B1,2)2 � (B3,2)2 � A2 ⊕OF2 , (B1,4)2 � (B3,4)2 � A2 ⊕A2.

As a result, we have

m2,8(B1,2) = 1, m2,16(B1,2) = 0, m2,8(B1,4) = 0, m2,16(B1,4) = 1,

m2,8(B3,4) = 0, m2,16(B3,4) = 1, m2,8(B3,2) = 1, m2,16(B3,2) = 0.

6.2.6. Special zeta-values. Let dF be the discriminant of F = Q(
√
p ). By

Siegel’s formula [37, Table 2, p. 70],

ζF (−1) = 1

60

∑
b2+4ac=dF

a,c>0

a, (6.12)

where b ∈ Z and a, c ∈ N>0.

It remains to calculate the class numbers of O1 when p = 2, 3, 5. This has already
been done in [16] by computer. We list the results here for the sake of completeness.

6.2.7. Class number of O1 for p = 2. In this caseK1 = Q(
√
2 ,
√−1 ) = Q(ζ8).

Besides OK1 and OK3 , we also need to consider the order Z[
√
2 ,
√−1 ], which is of

index 2 in OK1 . The orders with nonzero contributions to Ell(O1) are

p = 2 Z[ζ8] Z[
√
2 ,
√−1 ] Z[

√
2 , ζ6]

h(B) 1 1 1

w(B) 4 2 3

Since ζQ(
√
2 )(−1) = 1/12 by (6.12) and h(Q(

√
2 )) = 1,

h(O1) =
1

2
h(Q(

√
2 ))ζQ(

√
2 )(−1) +

1

2

((
1− 1

4

)
+

(
1− 1

2

)
+

(
1− 1

3

))
=

1

24
+

23

24
= 1 when p = 2.

(6.13)
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6.2.8. Class number of O1 for p = 3. In this case, we haveK1 = K3 = Q(ζ12).
Besides the orders listed in the table of Section 6.2.3, we also need to consider the
order B1,3 := Z[

√
3 , ζ6]. The table becomes

p = 3 OK1 B1,2 B1,4 B1,3 OK2

h(B) 1 1 1 1 2
w(B) 12 4 2 3 2

Hence

Ell(O1) =
1

2

((
1− 1

12

)
+

(
1− 1

4

)
+

(
1− 1

2

)
+

(
1− 1

3

)
+ 2

(
1− 1

2

))
=

23

12
.

Using (6.12) again, ζQ(
√
3 )(−1) = 1/6. Since h(Q(

√
3 )) = 1,

h(O1) =
1

2
h(Q(

√
3 ))ζQ(

√
3 )(−1) + Ell(O1) =

1

12
+

23

12
= 2 when p = 3. (6.14)

6.2.9. Class number of O1 for p = 5. In this case we also need to consider the
field Q(ζ10). The maximal order Z[ζ10] ⊂ Q(ζ10) is the only order whose unit group
is strictly larger than O×

F . The orders needed for the calculation of Ell(O1) are

p = 5 OK1 OK3 Z[ζ10]
h(B) 1 1 1
w(B) 2 3 5

Since ζQ(
√
5 )(−1) = 1/30 by (6.12) and h(Q(

√
5 )) = 1,

h(O1) =
1

2
h(Q(

√
5 ))ζQ(

√
5 )(−1) +

1

2

((
1− 1

2

)
+

(
1− 1

3

)
+

(
1− 1

5

))
=

1

60
+

59

60
= 1 when p = 5.

(6.15)

The results on the class number of O1 can be summarized as follows.

Proposition 6.2.10. Let D = D∞1,∞2 be the quaternion algebra over F =
Q(
√
p ) ramified only at the two real places of F . The class number h(D) (i.e. the

class number of any maximal order in D) is given below:
(1) h(D) = 1, 2, 1 for p = 2, 3, 5, respectively;
(2) if p ≡ 1 (mod 4) and p �= 5, h(D) = h(F )ζF (−1)/2 + h(K1)/4 + h(K3)/3;
(3) if p ≡ 3 (mod 4) and p �= 3, then

h(D) =
1

2
h(F )ζF (−1) +

(
13− 5

(
2

p

))
h(K1)

8
+

1

4
h(K2) +

1

3
h(K3).

Proof of Theorem 1.2. By definition, H(p) = |Isog(Xπ)|, so it follows from Theo-
rem 6.1.2 that

H(p) =

{
h(O1) + h(O8) + h(O16) if p ≡ 1 (mod 4);

h(O1) if p ≡ 3 (mod 4) or p = 2.

The explicit formulas for h(O1) when p = 2 and p ≡ 3 (mod 4) have already been
given above.
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Suppose that p = 5. We have h(O1) = 1 by Section 6.2.9. The fundamental
unit ε = (1 +

√
5 )/2 �∈ Z[

√
5 ], so � = 3. By (6.10) and (6.11) respectively, h(O8) =

h(O16) = 1. Hence H(p) = 3 if p = 5.
Suppose that p ≡ 1 (mod 8). Combining (6.5), (6.8) and (6.9), we get

H(p) = h(O1) + h(O8) + h(O16) = 8ζF (−1)h(F ) + h(K1) +
4

3
h(K3).

Lastly, suppose that p ≡ 5 (mod 8) and p > 5. Note that 2δ3,�/� + 1/� = 1 for
� = 1, 3. We obtain

H(p) =

(
1

2
+

15

2�
+

15

�

)
ζF (−1)h(F ) +

(
1

4
+

3

4�
+

3

2�

)
h(K1) +

4

3
h(K3)

=

(
45 +�

2�

)
ζF (−1)h(F ) +

9 +�

4�
h(K1) +

4

3
h(K3)

by combining (6.5), (6.10) and (6.11).

Remark 6.2.11. For every square-free integer m ∈ Z, let us write h(m) for
the class number of Q(

√
m ). It follows from the work of Herglotz [11] that for every

p ≥ 5 and j ∈ {1, 2, 3}, we have h(Kj) = νh(F )h(−pj) with ν ∈ {1, 1/2} (see [32,
Section 2.10]). Hence one may factor out h(F ) in the results of Theorem 1.2 and
Proposition 6.2.10. For example, we get

h(D)

h(F )
=

ζF (−1)
2

+
h(−p)

8
+

h(−3p)
6

(6.16)

for p > 5 and p ≡ 1 (mod 4), and

h(D)

h(F )
=

ζF (−1)
2

+

(
13− 5

(
2

p

))
h(−p)

8
+

h(−2p)
4

+
h(−3p)

6
(6.17)

for p > 5 and p ≡ 3 (mod 4).
After the first version of this paper appeared on the web, M. Peters kindly in-

formed us that the formulas in the right hand sides of (6.16) and (6.17) coincide with
formulas for the proper class number H+(dF ) of even definite quaternary quadratic
forms of discriminant dF (see [7, p. 85 and p. 95]), where dF is the discriminant of
F = Q(

√
p ). That is, we have

h(D) = h(F )H+(dF ) for all primes p > 5. (6.18)

Particularly, the number h(D)/h(F ) is always an integer. The above formula for
H+(dF ) is obtained by Kitaoka [17] for primes p ≡ 1 (mod 4) and by Ponomarev
[22, 23] for all primes p.

Inspired by Peters’ comment, we chased the literature and discovered that formula
(2) of Proposition 6.2.10 was already obtained in [21], and later that Vignéras [26]
has given explicit formulas for the class number of the totally definite quaternion
algebra Dm over any real quadratic Q(

√
m ) unramified at all the finite places, where

m > 1 is a square-free integer. To see that formula (3) of Proposition 6.2.10 follows
from [26, Theorem 3.1] when m = p ≡ 3 (mod 4), one would need to know that
Q(
√
p ,
√−ε ) = Q(

√
p ,
√−2 ) and that OF [

√−ε ] is the maximal order. But it is not
difficult to prove them (for example, see a proof in [32]). Thus, Proposition 6.2.10
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is known due to [26]. Nevertheless, for the sake of completeness and the reader’s
convenience, we keep the presentation for Proposition 6.2.10 as an exposition.

We should point out that the proof for [26, Prop. 2.2] given in the original paper
is incomplete. This proposition is proved based on the author’s computation of class
numbers ([26, Theorem 3.1]) and the remark below Corollary 1.1 loc. cit. p. 82, which
states that if the degree of the totally real field k is even, then H1,1 = hkT1,1 and
hence H1,1/hk is an integer (in the notation of [26]). However, the number H1,1/hk is
not always equal to the type number T1,1. Nevertheless, it is shown [30] by the first
and third named authors of the present paper that H1,1/hk indeed is always integral,
thus completing the proof of [26, Prop. 2.2].

6.3. Asymptotic behavior. We keep the notation and assumptions of Sec-
tion 3.1. In particular, {I1, . . . , Ih} is a complete set of representatives of the right
ideal classes Cl(O) of an order O ⊂ D with center Z(O) = A. The automorphism
group AutO(Ii) of each Ii as a right O-module is O×

i , where Oi = Ol(Ii). For an
order O with a large number of ideal classes, it is generally expected that wi = [O×

i :

A×] = 1 for most 1 ≤ i ≤ h. Equivalently, we expect Mass(O) =
∑h

i=1 1/wi to be
the dominant term in the class number formula h(O) = Mass(O) + Ell(O). This is
indeed the case for the orders Or ⊂ D∞1,∞2 with r = 1, 8, 16.

Theorem 6.3.1. Assume that that p ≡ 1 (mod 4) if r = 8, 16. For all r ∈
{1, 8, 16}, we have limp→∞ Mass(Or)/h(Or) = 1.

Proof. It is enough to prove that limp→∞ Ell(Or)/Mass(Or) = 0 for each r. Recall

that Mass(Or) = crζF (−1)h(F ), and Ell(Or) =
∑3

j=1 dr,j h(Kj) for some constants
cr > 0 and dr,j in each case. It reduces to prove that limp→∞ h(Kj)/(ζF (−1)h(F )) = 0
for each j ∈ {1, 2, 3}. Let d(−pj) be the discriminant of Q(

√−pj ). It follows from the
work of Herglotz [11] that h(Kj) ≤ h(F )h(−pj) for p ≥ 5 (see also Remark 6.2.11).

We have limp→∞(log h(−pj))/(log√|d(−pj)| ) = 1 by [15, Theorem 15.4, Chapter 12].
(See also [14, Lemma 4] for a similar result on the asymptotic behavior of relative
class numbers of arbitrary CM-fields.) On the other hand, ζF (−1) > (p − 1)/240 by
(6.12). Hence

0 ≤ lim
p→∞

h(Kj)

h(F )ζF (−1) ≤ lim
p→∞

h(−pj)
ζF (−1) = 0,

which shows that limp→∞ h(Kj)/(h(F )ζF (−1)) = 0 for all j ∈ {1, 2, 3}.
7. Tables. In this section, we list the class numbers h(Or) and related data for

r = 1, 8, 16 (separated into 3 tables) and all primes 5 < p < 200. Here F = Q(
√
p ),

and Kj = Q(
√
p ,
√−j ) for j = 1, 2, 3. Recall that O8 and O16 are defined only for

the primes p ≡ 1 (mod 4). Moreover, for these p the values of h(K2) are not needed
in the calculation and are left blank. By [4, footnote to table 3, p. 424], out of the
303 primes p < 2000, h(Q(

√
p )) = 1 for 264 of them. So it is not surprising that most

h(F ) = 1 in Table 1.

Table 1: Class numbers of O1 for all primes 7 ≤ p < 200.

p h(O1) Mass(O1) Ell(O1) ζF (−1) h(F ) h(K1) h(K2) h(K3)
7 3 1/3 8/3 2/3 1 1 4 2
11 4 7/12 41/12 7/6 1 1 2 2

Continued on next page
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Table 1: Class numbers of O1 for all primes 7 ≤ p < 200.

p h(O1) Mass(O1) Ell(O1) ζF (−1) h(F ) h(K1) h(K2) h(K3)
13 1 1/12 11/12 1/6 1 1 2
17 1 1/6 5/6 1/3 1 2 1
19 6 19/12 53/12 19/6 1 1 6 2
23 7 5/3 16/3 10/3 1 3 4 4
29 2 1/4 7/4 1/2 1 3 3
31 9 10/3 17/3 20/3 1 3 8 2
37 2 5/12 19/12 5/6 1 1 4
41 2 2/3 4/3 4/3 1 4 1
43 12 21/4 27/4 21/2 1 1 10 6
47 13 14/3 25/3 28/3 1 5 8 4
53 3 7/12 29/12 7/6 1 3 5
59 16 85/12 107/12 85/6 1 3 6 2
61 3 11/12 25/12 11/6 1 3 4
67 18 41/4 31/4 41/2 1 1 14 6
71 19 29/3 28/3 58/3 1 7 4 4
73 3 11/6 7/6 11/3 1 2 2
79 69 42 27 28 3 15 24 18
83 22 43/4 45/4 43/2 1 3 10 6
89 4 13/6 11/6 13/3 1 6 1
97 4 17/6 7/6 17/3 1 2 2
101 5 19/12 41/12 19/6 1 7 5
103 31 19 12 38 1 5 20 6
107 28 197/12 139/12 197/6 1 3 6 10
109 5 9/4 11/4 9/2 1 3 6
113 5 3 2 6 1 4 3
127 39 80/3 37/3 160/3 1 5 16 10
131 38 93/4 59/4 93/2 1 5 6 6
137 6 4 2 8 1 4 3
139 44 127/4 49/4 127/2 1 3 14 6
149 7 35/12 49/12 35/6 1 7 7
151 49 37 12 74 1 7 12 6
157 7 43/12 41/12 43/6 1 3 8
163 50 467/12 133/12 467/6 1 1 22 10
167 47 91/3 50/3 182/3 1 11 12 8
173 8 13/4 19/4 13/2 1 7 9
179 54 157/4 59/4 157/2 1 5 6 6
181 8 19/4 13/4 19/2 1 5 6
191 61 130/3 53/3 260/3 1 13 8 8
193 10 49/6 11/6 49/3 1 2 4
197 9 49/12 59/12 49/6 1 5 11
199 71 55 16 110 1 9 20 6

Acknowledgements. The project grew from J. Xue and CF Yu’s participa-
tion in the Shimura curves seminar organized by Yifan Yang at the the National
Center for Theoretical Science (NCTS). They also wish to thank NCTS for provid-
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Table 2

Class numbers of O8 for all primes 5 < p < 200 and p ≡ 1 (mod 4).

p h(O8) Mass(O8) Ell(O8)
13 2 5/12 19/12
17 2 3/2 1/2
29 4 5/4 11/4
37 7 25/4 3/4
41 7 6 1
53 7 35/12 49/12
61 8 55/12 41/12
73 17 33/2 1/2
89 21 39/2 3/2
97 26 51/2 1/2

p h(O8) Mass(O8) Ell(O8)
101 29 95/4 21/4
109 16 45/4 19/4
113 28 27 1
137 37 36 1
149 21 175/12 77/12
157 24 215/12 73/12
173 24 65/4 31/4
181 29 95/4 21/4
193 74 147/2 1/2
197 65 245/4 15/4

Table 3

Class numbers of O16 for all primes 5 < p < 200 and p ≡ 1 (mod 4).

p h(O16) Mass(O16) Ell(O16)
13 2 5/6 7/6
17 3 1 2
29 5 5/2 5/2
37 18 25/2 11/2
41 7 4 3
53 9 35/6 19/6
61 12 55/6 17/6
73 14 11 3
89 17 13 4
97 20 17 3

p h(O16) Mass(O16) Ell(O16)
101 63 95/2 31/2
109 26 45/2 7/2
113 23 18 5
137 29 24 5
149 35 175/6 35/6
157 40 215/6 25/6
173 39 65/2 13/2
181 52 95/2 9/2
193 54 49 5
197 141 245/2 37/2

ing Magma software that they use to compute the class numbers. Discussions with
Markus Kirschmer, Meinhard Peters, Paul Ponomarev, John Voight, and Yifan Yang
are very helpful and greatly appreciated. J. Xue is partially supported by Natural Sci-
ence Foundation of China grant #11601395, and the grant NSC 102-2811-M-001-090.
TC Yang and CF Yu are partially supported by the grants NSC 100-2628-M-001-006-
MY4 and AS-98-CDA-M01.
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[26] M.-F. Vignéras, Nombre de classes d’un ordre d’Eichler et valeur au point −1 de la fonction
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