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F -MANIFOLDS, MULTI-FLAT STRUCTURES AND PAINLEVÉ
TRANSCENDENTS∗

ALESSANDRO ARSIE† AND PAOLO LORENZONI‡

Abstract. In this paper we study F -manifolds equipped with multiple flat connections and
multiple F -products, that are required to be compatible in a suitable sense. Multi-flat F -manifolds
are the analogue for F -manifolds of Frobenius manifolds with multi-Hamiltonian structures.

In the semisimple case, we show that a necessary condition for the existence of such multiple
flat connections can be expressed in terms of the integrability of a distribution of vector fields
that are related to the eventual identities for the multiple products involved. These vector fields
satisfy the commutation relations of the centerless Virasoro algebra. We prove that the distributions
associated to bi-flat and tri-flat F -manifolds are integrable, while in other cases they are maximally
non-integrable. Using this fact we show that there can not be non-trivial semisimple multi-flat
structures with more than three flat connections. When the relevant distributions are integrable,
coupling the invariants of the foliations they determine with Tsarev’s conditions, we construct bi-
flat and tri-flat semisimple F -manifolds in dimension 3. In particular we obtain a parameterization
of three-dimensional bi-flat F -manifolds in terms of a system of six first order ODEs that can be
reduced to the full family of PV I equations.

In the second part of the paper we study the non-semisimple case. We show that three-
dimensional regular non-semisimple bi-flat F -manifolds are locally parameterized by solutions of
the full PIV and PV equations, according to the Jordan normal form of the endomorphism L = E◦.
As a consequence, combining this result with the result of the first part on the semisimple case we
have that confluences of PIV , PV and PV I correspond to collisions of eigenvalues of L preserving the
regularity. Furthermore, we show that, contrary to the semisimple situation, it is possible to construct
regular non-semisimple multi-flat F -manifolds, with any number of compatible flat connections.
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1. Introduction. F -manifolds have been introduced in [21] as a unifying geo-
metric scheme that encompasses several areas of modern Mathematics, ranging from
the theory of Frobenius manifolds to special solutions of the oriented associativity
equations ([29]), from quantum K-theory ([24]) to differential-graded deformation
theory ([32]).

An F -manifold M is a smooth (or analytic) manifold equipped with a commuta-
tive and associative product ◦ : TM × TM → TM on sections of the tangent bundle
TM , such that ◦ is C(M)-bilinear (C(M) is the ring of smooth or analytic functions
on M) and such that

PX◦Y (Z,W ) = X ◦ PY (Z,W ) + Y ◦ PX(Z,W ), (1.1)

where PX(Z,W ) := [X,Z ◦W ]− [X,Z]◦W−Z ◦ [X,W ]. The condition (1.1) is usually
called the Hertling-Manin condition and it implies that the deviation of the structure
(TM, ◦, [·, ·]) from that of a Poisson algebra on (TM, ◦) is not arbitrary. Usually M
is also required to be equipped with a distinguished vector field e, called unity or
identity, such that for every vector field X, X ◦ e = X.

Since the operation ◦ is C(M)-bilinear and commutative, it can be identified
with a tensor field c : S2(TM) → TM. Once c is locally written in a coordinate
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system as cijk :=< c(∂j , ∂k), dx
i >, then the commutativity, the associativity and the

Hertling-Manin condition (1.1) translate respectively as

cijk = cikj ,

cijlc
l
km = ciklc

l
jm,

csim∂sc
k
jl + cksl∂jc

s
im − csjl∂sc

k
im − cksm∂ic

s
jl − cksi∂lc

s
jm − ckjs∂mcsli = 0.

An F -manifold (M, ◦, e) is called semisimple if locally (TM, ◦) is isomorphic to
C(M)n (where n is the dimension of the manifold M) with componentwise multipli-
cation. This means that locally there exists a distinguished coordinate system such
that, if X and Y are vector fields then (X ◦ Y )i = XiY i. This is equivalent to
say that cijk = δijδ

i
k in this distinguished coordinate system (these are called canoni-

cal coordinates for ◦ whenever they exist). We will denote canonical coordinates with
{u1, . . . , un}. If ◦ is semisimple, then the identity vector field e is given by e =

∑
i

∂
∂ui .

A few years later, Manin introduced F -manifolds with compatible flat structure
([30]), which we call flat F -manifold for simplicity. In particular, he proved that many
constructions related to Frobenius manifolds [14, 31], such as Dubrovin’s duality [15],
do not require the presence of a (pseudo)-metric satisfying the condition g(X ◦Y, Z) =
g(X,Y ◦ Z) for all vector fields X,Y, Z (such a metric is said to be invariant).

Definition 1.1 ([30]). A flat F -manifold (M, ◦,∇, e) is a manifold M equipped
with the following data:

1. a commutative associative product ◦ : TM × TM → TM on sections of the
tangent bundle TM ,

2. a distinguished vector field e such that X ◦ e = X for every vector field X,
3. a flat torsionless affine connection ∇, such that (∇Xc) (Y, Z) = (∇Y c) (X,Z)

for all vector fields X, Y , and Z.
4. ∇e = 0 (flat identity).

A semisimple flat F -manifold is defined analogously, with the requirement that the
operation ◦ is semisimple.

The manifold M in the Definition 1.1 is a real or complex n-manifold. In the
first case all the geometric data are supposed to be smooth. In the latter case TM is
intended as the holomorphic tangent bundle and all the geometric data are supposed
to be holomorphic.

Observe that in the Definition 1.1 there is no mention of the Hertling-Manin
condition (1.1) since the symmetry condition on ∇c forces (1.1) to be automatically
satisfied (see [20] for a proof).

The role played by flat F -manifolds in the study of integrable systems has been
investigated in [26, 27]. Further generalizations of these structures that are tailored
to the study of integrable dispersionless PDEs have been proposed in [1, 2, 28]). In
this paper, following similar ideas, we introduce and study what we call multi-flat F -
manifolds. They are a natural generalization of bi-flat F -manifolds (see [2, 28]) and
they are deeply related to the notion of eventual identities and duality introduced in
[30].

In order to define multi-flat F manifolds we need to recall a few facts about
eventual identites:

Definition 1.2 ([30]). A vector field E on an F -manifold is called an eventual
identity, if it is invertible with respect to the product ◦, and if the bilinear product ∗
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defined via

X ∗ Y := X ◦ Y ◦ E−1, for all X,Y vector fields (1.2)

defines a new F -manifold structure on M . If E satisfies the additional condition
[e, E] = e then it is called Euler vector field.

By definition, an eventual identity is the unity of the associated product ∗. A
useful criterion to detect eventual identities is the following:

Theorem 1.3 ([11]). An invertible vector field E is an eventual identity for the
F -manifold (M, ◦, e) if and only if

LieE(◦)(X,Y ) = [e, E] ◦X ◦ Y, ∀X,Y vector fields. (1.3)

In the semisimple case, it is actually easier to characterize eventual identities. We
have indeed the following theorem.

Theorem 1.4 ([1]). Let (M, ◦, e) be a semisimple F -manifold and let E be
an invertible vector field and assume that the eigenvalues of the endomorphism of
the tangent bundle V = E ◦ are distinct. Then condition (1.3) is equivalent to the
vanishing of the Nijenhuis torsion of V .

In other words, in canonical coordinates for ◦ eventual identities are vector fields
of the form

E =

n∑
i=1

Ei(ui)
∂

∂ui
,

and the product ∗ has associated structure constants c∗ijk given by :

c∗ijk =
1

Ei(ui)
δijδ

i
k. (1.4)

Observe that powers of the Euler vector fields are eventual identities. This follows
from the fact that eventual identities form a subgroup of the group of invertible vector
fields on an F -manifold [11].

We have now all the ingredients to define multi-flat F -manifolds.

Definition 1.5. Let (M,∇, ◦, e) be a flat F -manifold with unity e. A multi-
flat F -manifold (M,∇(l), ◦, e, E, l = 0...N − 1) anchored at (M,∇, ◦, e) is a manifold
M endowed with N flat torsionless affine connections ∇(0) := ∇, ∇(1), ...,∇(N−1), a
commutative associative product ◦ on sections of the tangent bundle TM , an invertible
vector field E satisfying the following conditions:

1. E is an Euler vector field.
2. Given E(l) := E◦l = E ◦ E ◦ · · · ◦ E l-times, l = 0, . . . , N − 1, (by definition,

E(0) = e, E(1) = E), we require

∇(l)E(l) = 0. (1.5)

3. Given E(l) and the related commutative, associative product ◦(l) (defined as

X ◦(l) Y := X ◦ Y ◦ E−1
(l) , so that ◦(0) = ◦ and ◦(1) = ∗), we require that the

connection ∇(l) is compatible with ◦(l). In other words we require that(
∇(l)

X c(l)

)
(Y, Z) =

(
∇(l)

Y c(l)

)
(X,Z) , (1.6)

for all vector fields X, Y , and Z for all l = 0, . . . N − 1.
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4. The connections ∇(l), l = 0, . . . , N−1 are almost hydrodynamically equivalent
(see [2]) i.e.

(d∇(l) − d∇(l′))(X ◦(l)) = 0, (1.7)

for every vector fields X and for every pair l, l′; here d∇(l) is the exterior
covariant derivative constructed from the connection ∇(l).

The conditions (1.5) and (1.7) fix uniquely the Christoffel symbols of the con-
nection ∇(l) in terms of the Christoffel symbols of the connection ∇, the structure
constants of the product ◦(l) and the Euler vector field E. Indeed, in local coordinates,
the condition (1.7) with l′ = 0 reads

Γ
(l)k
sj c

(l)s
im − Γ

(l)k
si c

(l)s
jm = Γk

sjc
(l)s
im − Γk

sic
(l)s
jm

Multiplying both sides by Ei
(l), taking the sum over i and using (1.5) one obtains

Γ
(l)k
ij = Γk

ij − c
(l)s
ij ∇sE

k
(l). (1.8)

Due to the invertibility of the operator E−1
(l) ◦ the condition (1.7) must be checked

only for l = 0. Remarkably, using formula (1.8) it is possible to check that also the
condition (1.6) must be checked only for l = 0. In order to prove this fact, in the
semisimple case it is sufficient to compare the explicit formulas for the Christoffel
symbols in canonical coordinates obtained imposing the conditions (1.5) and (1.6)
with the explicit formulas obtained writing (1.8) in the same coordinates. In the
general case, the proof is based on the definition of eventual identity and on the
formula

(E(l)◦)mh (∇(l)
j c(l)irm −∇(l)

r c
(l)i
jm ) = (E(l)◦)is[csjmLieE(l)

cmhr − csrmLieE(l)
cmhj ]

that can be obtained using (1.5), (1.6) with l = 0 and (1.7).
This means that multiflat F -manifolds can be defined as flat F -manifolds equipped

with an Euler vector field E and N − 1 additional almost hydrodynamically equivalent
flat torsionless connections ∇(1), ...,∇(N−1) satisfying the conditions ∇(l)E(l) = 0.

In the first part of the paper we will study semisimple F -manifolds endowed with
N flat structures. In principle N might be arbitrary, however we will see that the
coexistence of more than 3 flat structures is in general impossible. The case of two
structures has been studied in details in [2, 28]. It turns out that three-dimensional
bi-flat F -manifolds are parameterized by solutions of Painlevé VI equation. In this
paper we will find an alternative proof of this fact. We will also study the case of
tri-flat F -manifolds in the three-dimensional case.

In the second part of the paper we will consider the non-semisimple case. First
we will study regular non-semisimple bi-flat F -manifolds, leveraging on the recent
results obtained in [10] unveiling a deep relation between regular bi-flat F -manifolds
in dimension three on one side, and the full Painlevé equations PV I , PV and PIV on
the other. More precisely, regular bi-flat F -manifolds are characterized by the Jordan
normal form of the operator L = E◦. For three-dimensional manifolds, this gives rise
to three cases, corresponding to L1, L2 and L3 given by:

L1 :=

⎛
⎝ λ1 0 0

0 λ2 0
0 0 λ3

⎞
⎠ , L2 :=

⎛
⎝ λ1 1 0

0 λ1 0
0 0 λ3

⎞
⎠ , L3 :=

⎛
⎝ λ1 1 0

0 λ1 1
0 0 λ1

⎞
⎠ , (1.9)
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(here λi with different indices are assumed to be distinct). Regular bi-flat F -manifolds
in dimension three whose endomophism L has the form L1 are actually semisimple
and, as recalled above, are locally parameterized by solutions of the full Painlevé VI.

We will focus our attention on three-dimensional regular bi-flat F -manifolds whose
operator L has the form L2 or L3 and we will show that in the former case they are
locally parameterized by solutions of the full PV , while in the latter case they are
locally parameterized by solutions of the full PIV . This highlights a striking paral-
lelism between confluences of Painlevé equations and collision of eigenvalues of the
endomorphism L (preserving regularity), a fact which in our opinion deserves further
investigation. It would be definitely interesting to extend this correspondence beyond
the regular case. Unfortunately for the non-regular case there are no structural results
similar to those developed in [10] at the moment.

We point out that the approach championed in [2] and [28] is based on the study of
a generalized Darboux-Egorov system and cannot be applied to the non-semisimple
case, while the methodology developed here, in which the key role is played by a
geometric version of Tsarev’s conditions of integrability paired with a commutativity
condition between the Lie derivative with respect to a set of eventual identities defining
a subalgebra of the centerless Virasoro algebra and the covariant derivative of the
associated connections, does not require the semisimplicity of the product.

Finally, in the last part of the paper we show the remarkable phenomenon that,
while in the semisimple case there are in general obstructions to the existence of multi-
flat F -manifolds, in the regular non-semisimple case it is possible to construct multi-
flat F -manifolds with an arbitrary (countable) number of compatible flat connections
(all the powers of the Euler vector field).

2. Background material.

2.1. Flat F -manifolds and Integrable dispersionless PDEs. In this sec-
tion, we survey the relationships between F -manifolds, flat F -manifolds and other
geometric structures on one hand, and the theory of integrable dispersionless PDEs
on the other. We also introduce Tsarev’s conditions, which play a key role in deter-
mining multi-flat F -structures.

According to Tsarev’s theory [40, 41], integrable quasilinear systems of PDEs of
the form

ui
t = vi(u)ui

x, i = 1, ..., n (2.1)

are defined by a set of functions Γi
ij (i �= j) satisfying the conditions (called Tsarev’s

conditions)

∂jΓ
i
ik + Γi

ijΓ
i
ik − Γi

ikΓ
k
kj − Γi

ijΓ
j
jk = 0, if i �= k �= j �= i. (2.2)

Once the conditions (2.2) are satisfied the solutions of the system

∂jv
i = Γi

ij(v
j − vi) (2.3)

define a set (depending on functional parameters) of commuting flows of the form
(2.1). From (2.2) it follows that the solutions of (2.3) satisfy the conditions

∂j

(
∂kv

i

vi − vk

)
= ∂k

(
∂jv

i

vi − vj

)
∀i �= j �= k �= i, (2.4)

Conversely, given vi satisfying (2.4) and using (2.3) as definition of Γi
ij , the com-

patibility conditions (2.2) are automatically satisfied. Quasilinear systems satisfying
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conditions (2.4) are called semi-Hamiltonian [40, 41] or rich [37, 38]. Sévennec [39]
later found a nice characterization of semi-Hamiltonian systems. He showed they co-
incide with diagonalizable systems of conservation laws. As the notation suggests, the
functions Γi

ij can be identified with (part of) the coefficients of a torsionless connec-
tion ∇. The reconstruction of ∇ can be done in essentially two non-equivalent ways.
In the first case, we call the connection ∇ a Hamiltonian connection. In this case, ∇
is the Levi-Civita connection of a diagonal metric g:

∂j ln
√
gii = Γi

ij , j �= i. (2.5)

Given a diagonal metric g for which the functions Γi
ij satisfy the above conditions,

all the remaining Christoffel symbols are uniquely defined through the classical Levi-
Civita’s formula. However, as it is easy to check, the general solution of (2.5) depends
on n arbitary functions of a single variable: if gii is a solution then ϕi(u

i)gii is still
a solution. The connections defined by (2.5) have been introduced by Dubrovin and
Novikov in [16]. We call them Hamiltonian connections since they are related to the
Hamiltonian formalism. For instance, in the flat case the differential operator

P ij := giiδij∂x − gilΓj
lku

k
x (2.6)

defines a local Hamiltonian operator for the flows (2.1) defined by the solutions of
(2.5). The non-flat case is more involved: the Hamiltonian operators are non-local
and the non-local tail is related to the quadratic expansion of the Riemann tensor in
terms of solutions of the system (2.3):

Rij
ij =

∑
α

εαw
i
αw

j
α.

The existence of this quadratic expansion is a non-trivial property. It was conjectured
by Ferapontov [17] that all solutions of the system (2.5) possess such a property.
Ferapontov’s conjecture has been checked for reductions of dKP and 2d Toda in [19]
and [7] respectively.

The other way to reconstruct a torsionless affine connection ∇ having Γi
ij as a

subset of its Christoffel symbols in a distinguished coordinate system was devised in
[27]. This leads to the notion of natural connections and F -manifold with compatible
connection and flat unity [26].

Definition 2.1. An F -manifold with compatible connection and flat unity is an
F -manifold (M, ◦, e) equipped with a torsionless connection ∇ (not necessarily flat)
such that the following requirements hold

∇e = 0,

(∇Xc) (Y, Z) = (∇Y c) (X,Z) ,

Z ◦R(W,Y )(X) +W ◦R(Y, Z)(X) + Y ◦R(Z,W )(X) = 0,

where c is the tensor field associated to ◦, R is the Riemann tensor and X,Y, Z,W
are arbitrary vector fields.

Connections satisfying these conditions are called natural connections. In the
semisimple case, in the distinguished coordinate system given by the canonical co-
ordinates of ◦, the first and second requirements specify completely the Christoffel
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symbols in terms of the subset given by Γi
ij :

Γi
jk := 0, ∀i �= j �= k �= i,

Γi
jj := −Γi

ij , i �= j,

Γi
ii := −

∑
l �=i

Γi
li.

(2.7)

It was proved in [26] that the second and the third conditions are equivalent to Tsarev’s
condition (2.2) for Γi

ij . In this framework, the quasilinear system (2.1) can be written
as

ut = X ◦ ux. (2.8)

and the system (2.3) reads

cijl∇kX
l = cikl∇jX

l. (2.9)

In this setting the characteristic velocities vi are thought as the components of the
vector fields X in canonical coordinates. Since the Riemann invariants are identified
with the canonical coordinates, given a semi-Hamiltonian system, the associated nat-
ural connection is defined up to a reparameterization of the Riemann invariants, that
is up to the choice of n arbitrary functions of a single variable.

Like in the case of Hamiltonian connections, the most interesting case is when
the connection ∇ is flat. In this case, a countable set of solutions of the system (2.3)
can be obtained from a frame of flat vector fields (X(1,0), ..., X(n,0)) via the following
recursive relations

∇X(p,α+1) = X(p,α) ◦ . (2.10)

In general, the two ways we just described to reconstruct a torsionelss connec-
tion ∇ starting from the functions Γi

ij satisfying (2.2) are inequivalent: Hamiltonian
connections are not always natural connections and natural connections are not al-
ways Hamiltonian. Indeed, combining the conditions ∇g = 0 and ∇ic

k
lj = ∇lc

k
ij ,

one obtains ∂jgii = ∂igjj , which implies that in order to have a connection which is
both Hamiltonian and natural, the metric must be potential in canonical coordinates
(Egorov case). This is for instance the case of semisimple Frobenius manifolds.

In many examples (including Frobenius manifolds) besides the recursive relation
(2.10) there exists an additional one, which we called twisted Lenard-Magri chain [1]

d∇(1)(e ◦X(p,α+1)) = d∇(2)(E ◦X(p,α)). (2.11)

It is based on the existence of an additional flat structure and on an eventual identity
E. This leads naturally to define the class of bi-flat F -manifolds that was extensively
studied in [2, 28].

Remark 2.2. In the semisimple case removing the condition ∇e = 0 in the
definition of natural connections one has the freedom to choose the Christoffel symbols
Γi
ii [27]. The same freedom can be also described in terms of the special family of

connections [12]

∇̃XY = ∇XY + V ◦X ◦ Y.
This is a family of connections satisfying the symmetry condition (1.5) (the product
is not assumed to be semisimple). Like in the semisimple case the condition ∇̃e = 0
fixes uniquely the vector field V .
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2.2. Examples of bi-flat F -manifolds. In this section we present some exam-
ples of bi-flat F -manifolds.

2.2.1. Semisimple Frobenius manifolds. Any semisimple Frobenius mani-
fold (M,η, ◦, e, E) is endowed with a bi-flat structure (∇,∇∗, ◦, ∗, e, E). More pre-
cisely:

• the connection ∇ is the Levi-Civita connection of the invariant metric η.
• (◦, e, E) are the same data from the Frobenius manifold, while ∗ is given by
Dubrovin’s almost dual product X ∗ Y = X ◦ Y ◦ E−1 [15].

• the connection ∇∗ is defined by (1.8) with l = 1. The flatness of this connec-
tion is a consequence of the condition ∇∇E = 0 (see theorem 4.4 of [3]).

Any Frobenius manifold is equipped with a contravariant flat metric called intersection
form [14]. The connection ∇∗ in general does not coincide with the Levi-Civita
connection ∇̃ of the intersection form. However, they satisfy the condition (d∇̃ −
d∇∗)(X ◦) = 0 and they are compatible with the same product ∗. This implies that
∇̃ = ∇∗ + λ∗ for some function λ. Using the properties of the intersection form it is
not difficult to see that λ is indeed a constant.

2.2.2. Bi-flat F -manifolds and complex reflection groups. One of the
main examples of Frobenius manifold is the orbit space of a Coxeter group W [13].
In this case, in the flat coordinates of ∇̃ the dual product has the form [15]

∗ = λ
∑
H∈H

dαH

αH
⊗ πH , (2.12)

where αH is a linear form defining the mirror H, H is the collection of mirrors H
associated to the reflections in W , πH denotes the orthogonal projection onto the
orthogonal complement of the hyperplane H and λ is a suitable normalizing factor.
Products of this form appear in the theory of ∨-system [42, 43]. This example can
be generalized to the case of well-generated complex reflection groups. A first gen-
eralization was given by Kato, Mano and Sekiguchi [22] that proved the existence of
a flat structure (with linear Euler vector field) on the orbit space of well-generated
complex reflection groups and computed some examples of vector potentials related
to the agebraic solutions of PVI found in [5, 6] (see also [4]).

Due to the linearity of the Euler vector field, Theorem 4.4 of [3] ensures the
existence of a second flat structure compatible with Kato-Mano-Sekiguchy structure.
In all the examples the dual connection and the dual product have the form (see [3]
for details)

∇∗ = ∇̃ −
∑
H∈H

dαH

αH
⊗ κHπH , ∗ =

∑
H∈H

dαH

αH
⊗ κHπH . (2.13)

In this case, ∇̃ is the standard flat connection on C
n, πH denotes the unitary projection

onto the unitary complement of the hyperplane H and the weight κH is proportional
to the order of the corresponding reflection. A further generalization was given in
[3], where it was proved that the bi-flat structures associated with complex reflection
groups might depend on parameters (related to a different choice of the weights in
(2.13)), even in the case of Coxeter groups. In this case it was conjectured that, under
suitable assumptions, the number of parameters coincides with the number of orbits
for the action of the group on the collection of reflecting hyperplanes minus one. The
conjecture was proved for Weyl groups of rank 2, 3, 4 and for the groups I2(m).
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2.2.3. Generalized ε-system and Lauricella bi-flat structure. The system
of quasilinear PDEs

ui
t =

(
ui −

n∑
k=1

εku
k

)
ui
x, i = 1, ..., n,

is called the generalized ε-system [34]. The integrable hierarchy associated with the
(generalized) ε-system was studied in [27] and [28] where it was also proved that
the associated natural and dual connections determined by the Tsarev’s Christoffel
symbols

Γi
ij =

εj
ui − uj

i �= j, (2.14)

the structure constants cijk = δijδ
i
k and c∗ijk = 1

ui δ
i
jδ

i
k, the vector fields e =

∑
∂i and

E =
∑

ui∂i define a bi-flat structure.
This example is related to the theory of Lauricella functions [23], Lauricella con-

nections and Lauricella manifolds [9, 25]. In particular Lauricella functions provide
n − 1 flat homogenous coordinates for the natural connection of the generalized ε-
system described above. For this reason we call this example Lauricella bi-flat struc-
ture.

3. Eventual identities and flatness conditions. Given an F - manifold with
an eventual identity E we want to characterize flat symmetric connections ∇ com-
patible with the eventual identity E, i.e satisfying the following requirements

(∇Xc∗) (Y, Z) = (∇Y c
∗) (X,Z)

∇E = 0,

where c∗ is the (1, 2)-tensor field associated to the dual product ∗.
It is possible to provide an intrinsic characterization of the flatness condition,

which is given in Theorem 3.2 below. Before stating this result and proving it, we
elucidate a general fact:

Lemma 3.1. Let M be a manifold equipped with a bilinear product ◦ on sections
of its tangent bundle ◦ : TM × TM → TM and with a torsionless affine connection
∇. Suppose ◦ is equipped with an unit vector field e and that ∇ and ◦ satisfy the
following condition:

Z ◦R(W,Y )(X) +W ◦R(Y, Z)(X) + Y ◦R(Z,W )(X) = 0, (3.1)

where R(X,Y ) := ∇X∇Y −∇Y∇X −∇[X,Y ] for all vector fields X,Y, Z,W . Then ∇
is flat if and only if R(e,W ) = 0 for all vector fields W .

Proof. If ∇ is flat, certainly R(e,W ) = 0 for all vector fields W . Conversely,
suppose R(e,W ) = 0 for all vector fields. Then substituting Z := e in (3.1) we get
immediately e ◦ R(W,Y )(X) = 0, i.e. R(W,Y )(X) = 0 for all vector fields W,Y,X,
and we are done.

Observe that the condition (3.1) appearing in the previous Lemma is exactly one
of the conditions that define an F -manifold with compatible connection [26]. Using
the above lemma we can prove the following useful flatness criterion.



886 A. ARSIE AND P. LORENZONI

Theorem 3.2. An F -manifold with compatible connection ∇ and flat unity e is
flat if and only if the operator Liee and the covariant derivative ∇ satisfy the following
condition:

Liee(∇XT )−∇X(LieeT )−∇[e,X]T = 0, (3.2)

for any vector field X and for any tensor field T .

Proof. Since the unity e is assumed to be a flat vector field, we have that Liee = ∇e

and therefore the condition (3.2) is equivalent to R(e,X)(T ) = 0. Now by Lemma
3.1 we know that ∇ is flat if and only if R(e,X) = 0 for all vector fields X.

Using the fact that X is an arbitrary vector field, we have the following Lemma

Lemma 3.3. Condition (3.2) is equivalent to

Liee(∇T )−∇(LieeT ) = 0, (3.3)

for any tensor fied T .

Proof. Observe that we can write ∇XT = (∇T )(X) = C(∇T ⊗X) for any vector
field X, where C is the contraction. Therefore using the property that Liee commutes
with contractions and it satisfies Leibniz rule with respect to the tensor product we
have

[Liee(∇T )−∇(LieeT )](X) = Liee((∇T )(X))−∇T (LieeX)−∇X(LieeT )

= Liee(∇XT )−∇T ([e,X])−∇X(LieeT )

= Liee(∇XT )−∇X(LieeT )−∇[e,X]T.

Observe that in the proof of Theorem 3.2 the symmetry of ∇c does not play any
role. The only hypotheses that were used are the presence of a flat identity e for the
product ◦ and condition (3.1) for the torsionless connection ∇.

4. The semisimple case.

4.1. Multi-flatness conditions in the semisimple case. We apply now the
flatness criterion discussed in the previous Section to study multi-flat structures in
the semisimple case. As a consequence of the previous results we have the following

Theorem 4.1. A semisimple F -manifold with compatible connection ∇ and flat
unity e is flat if and only if

e(Γi
ij) =

n∑
i=1

∂Γi
ij

∂ui
= 0, ∀i �= j,

where Γi
ij are the Christoffel symbols of ∇ in the canonical coordinates of ◦.

Proof. Under the current hypotheses, ∇ is flat if and only if (3.3) holds for an
arbitrary tensor field T . However, notice that (3.3) is automatically satisfied when
T is a function since covariant and Lie derivatives coincide on functions. Moreover,
the operators Liee and ∇i commute with contractions and satisfy Leibniz rule with
respect to tensor products. This easily implies that (3.3) holds for an arbitrary tensor
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fields T if and only if it holds for an arbitrary vector field T. Writing the right hand
side of (3.3) in canonical coordinates of ◦, for T an arbitrary vector field, we get

e
(
∂jT

i + Γi
jkT

k
)− ∂j(e(T

i))− Γi
jke(T

k) = e(Γi
jk)T

k,

since e commutes with ∂j in canonical coordinates. Therefore (3.3) is fulfilled if and
only if e(Γi

jk) = 0, due to the arbitrariness of T . On the other hand, for a natural

connection in canonical coordinates one already has Γi
jk = 0 i �= j �= k �= i, while

all the other non-vanishing components are expressed as linear combinations with
constant coefficients of Γi

ij , i �= j (see formula (2.7)).

Obviously, the flatness criterion provided by relation (3.3) and its equivalent forms
can be applied to the case of connections associated to general eventual identities. It
is easy to check that a torsionless connection ∇ compatible with the dual product
defined by E and satisfying the condition∇E = 0 has Christoffel symbols (in canonical
coordinates for ◦) of the form:

Γi
jk := 0, ∀i �= j �= k �= i,

Γi
jj := −

Ei

Ej
Γi
ij , i �= j,

Γi
ii := −

∑
l �=i

El

Ei
Γi
li −

∂iE
i

Ei
.

(4.1)

Given an eventual identity E with associated dual product ∗, it is useful to have
relations characterizing the flatness of the connection given by (4.1) in the canonical
coordinate for ◦. This characterization is provided by the following:

Theorem 4.2. Suppose that the functions Γi
ij satisfy Tsarev’s conditions (2.2),

then in canonical coordinates for ◦, the torsionless connection (4.1) is flat if and only
if

E(Γi
ij) = −(∂jEj)Γi

ij , i �= j.

Proof. Writing the invariant condition (3.3) in canonical coordinates for ◦ we get
the following conditions

E(Γi
ij) = −Γi

ij∂jE
j ,

E(Γi
jj) = Γi

jj∂iE
i − 2Γi

jj∂jE
j ,

E(Γi
ii) = −∂2

i E
i − Γi

ii∂iE
i.

The first condition is the statement of the Theorem. The second and third one
follow using the first one, the defining relations of the natural connection and the
obvious identities E(Ei) = Ei∂iE

i, E(∂iE
i) = Ei∂2

i E
i.

4.2. Non existence of semisimple F -manifolds with more than 3 com-
patible connections. We are going to apply Theorem 4.2 to study the existence
of multi-flat structures on semisimple F -manifolds. Recall that, by definition, given
an N -multi flat semisimple manifold, the N connections ∇(l), l = 0, . . . , N − 1 share
the same Christoffel symbols Γi

ij , i �= j in the canonical coordinates for ◦, while the



888 A. ARSIE AND P. LORENZONI

remaining ones are determined according to the formulas (4.1), where E is the cor-
responding eventual identity E(l). Therefore, given the E(l), l = 0, . . . N − 1, it is
possible to reconstruct N -multi-flat connections only if the system for Γi

ij (j is fixed):

E(l)(Γ
i
ij) + (∂jE

j
(l))Γ

i
ij = 0, l = 0, . . . N − 1 (4.2)

admits non-trivial solutions Γi
ij for all i �= j. Indeed, (4.2) is just the flatness condi-

tion of Theorem 4.2. It is possible to reduce the non-homogenous system (4.2) to a
homogenous one. To do this we introduce a fictitious additional variable un+1 and
assume that Γi

ij is defined implicitly via φ(u1, . . . , un, un+1) = c where c is a constant.
In this case the system (4.2) becomes

Ê(l)(φ) := E(l)(φ)− (∂jE
j
(l))u

n+1∂n+1φ = 0, l = 0, . . . , N − 1.

Notice that the above condition is required to hold only at the points of the hypersur-
face φ = c. In this way, determining φ can be interpreted as the problem of finding
hypersurfaces, locally represantable as

un+1 = Γi
ij(u

1, . . . , un), (4.3)

which are integral leaves of the distribution Δ generated by the vector fields {Ê(l)}.
Therefore we are interested in characterizing the integrable distributions gener-

ated by the extended vector fields Ê(l), l =, 0, . . . N−1, where by definition of multi-flat

F -manifold E(l) = (u1)l∂1 + ... + (un)l∂n, l = 0, . . . , N − 1, in canonical coordinate
for ◦ = ◦(0).

Theorem 4.3. Let Δ(i1,...,ik) be the distribution spanned by the vector fields

Ê(i1), . . . , Ê(ik) in the n + 1-dimensional space with coordinates (u1, . . . , un, un+1).
Then:

1. The distributions Δ(1,m) with m ∈ Z \ {1} are integrable and these are the
only integrable distributions of rank 2 among Δ(i1,i2).

2. Δ(0,1,2) is integrable.

3. Δ(0,1,2,3) is not integrable. Furthermore, at the points where ui �= uk (i �=
k, i, k = 1, ..., n) and un+1 �= 0 it is totally non-holonomic, that is the minimal
integrable distribution Δ̄ containing Δ(0,1,2,3) has dimension n+ 1.

4. More in general Δ(i1,...,ik), with i1 < i2 < · · · < ik is not integrable for
4 ≤ k ≤ n.

Proof. We have

[Ê(l), Ê(m)]
i =

{
(m− l)(ui)l+m−1 if i = 1, ..., n
−(m− l)(m+ l − 1)(uj)m+l−2un+1 if i = n+ 1

(4.4)

that is

[Ê(l), Ê(m)] = (m− l)Ê(m+l−1), l �= m,

[Ê(l), Ê(m)] = 0, l = m.

Since [Ê(m), Ê(1)] = Ê(m), the distribution Δ(m,1) is integrable. Moreover,

any other distribution of rank 2, Δ(i1,i2) is not integrable since [Êi1 , Êi2 ] = (i2 −
i1)Ê(i1+i2−1), and i1 + i2 − 1 = i1 or i1 + i2 − 1 = i2 implies either i2 = 1 or i1 = 1.
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Since Ê(0), Ê(1) and Ê(2) satisfy the commutation relations of sl(2,C):

[Ê(0), Ê(1)] = Ê(0), [Ê(0), Ê(2)] = 2Ê(1) and [Ê(1), Ê(2)] = Ê(2), we have that also
the distribution Δ(0,1,2) is integrable.

With regard to the fourth point, consider Δ(i1,...,ik), with i1 < · · · < ik and
4 ≤ k ≤ n. If the two indices i1, i2 are both strictly negative or if i1 < 0 and
i2 = 0, then [Ê(i1), Ê(i2)] /∈ Δ(i1,...,ik), due to the commutation relations. Thus we
can assume i1 ≥ 0 and the indices ik−1, ik strictly greater than 1. Therefore again we
have [Ê(ik−1), Ê(ik)] = (ik − ik−1)Ê(ik+ik−1−1) /∈ Δ(i1,...,ik), since ik + ik−1 − 1 > ik.

Finally, it remains to prove the third point. By the fourth point, the distribution
Δ(0,1,2,3) is not integrable. Given a collection of vector fields {Ê(l)}l∈L their Lie hull is

the collection of all vector fields of the form {Ê(l), [Ê(l), Ê(m)], [Ê(n), [Ê(l), Ê(m)]], . . . }
generated by the iterated Lie brackets. The minimal integrable distribution containing
Δ(i1,...,ik) is the minimal integrable distribution containing the Lie hull of the vector

fields {Ê(i1), . . . Ê(ik)}.
In order to compute the minimal integrable distribution containing Δ(0,1,2,3), we

consider the sub-bundle of the tangent bundle spanned by Ê(0), Ê(1), Ê(2), Ê(3), Ê(m) =
1

m−2 [Ê(2), Ê(m−1)], m = 4, 5, ..., n. To show that its rank is n + 1, it is sufficient to
show that the determinant of the A matrix does not vanish on an open set, where

A :=

⎛
⎜⎜⎜⎝

1 . . . 1 0
u1 . . . un −un+1

...
. . .

...
...

(u1)n . . . (un)n −n(uj)n−1un+1

⎞
⎟⎟⎟⎠ .

The matrix A can be written as

A =

⎛
⎜⎜⎜⎜⎝

1 . . . 1 −un+1 ∂
∂un+1 |un+1=uj1

u1 . . . un −un+1 ∂
∂un+1 |un+1=uj (u

n+1)

...
. . .

...
...

(u1)n . . . (un)n −un+1 ∂
∂un+1 |un+1=uj (u

n+1)n

⎞
⎟⎟⎟⎟⎠ .

Expanding the determinant of A along the last column, we get

det(A) =
n∑

k=0

Ak

(
−un+1 ∂

∂un+1 |un+1=uj
(un+1)k

)
,

where Ak are the corresponding minors. Since the Ak’s do not depend on un+1 we
can factor the derivative operator in front of the expansion and get:

det(A) = −un+1 ∂

∂un+1 |un+1=uj

(
n∑

k=0

Ak(u
n+1)k

)
= −un+1 ∂

∂un+1 |un+1=uj
det(V0,...,n),

where V0,...,n is the Vandermonde matrix. By the form of the Vandermonde determi-
nant, it is clear that det(A) �= 0 in the open subset Ω := {(u1, . . . , un, un+1) | ui �=
uk(i �= k, i, k = 1, ..., n), un+1 �= 0}.

Remark 4.4. Notice that the extended vector fields Z(l) := Ê(l+1) satisfy the
commutation relation

[Z(l), Z(m)] = [Ê(l+1), Ê(m+1)] = (m− l)Ê(m+l+1) = (m− l)Z(m+l),
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of the centerless Virasoro algebra.

The above theorem has this important consequence

Corollary 4.5. In the semisimple case non-trivial multi-flat F -manifolds with
more than 3 compatible flat structure do not exist.

Proof. Since the distribution Δ(0,1,2,...,m) with m ≥ 3 is totally non-holonomic
in Ω, the Chow-Rashevsky Theorem [8, 35] implies that there are no codimension
one integral leaves in each connected component of this subset. On the other hand,
the complement of Ω in R

n+1 is the union of the hyperplanes ui = uk (i �= k and
i, k < n+1) which are integral leaves of the distribution Δ(0,1,2...,m) but are not related
to solutions of the system (4.2) (since they cannot written in the form (4.3)) and the
hyperplane un+1 = 0 which is also an integral leave of the distribution Δ(0,1,2...,m).
The corresponding solution of the system (4.2) (Γi

ij = 0) defines the trivial multi-flat
structure.

Remark 4.6. Unlike the multi-flat case we have been analyzing, it is possible
to have multi-Hamiltonian structures encompassing more than three structures. An
example is given by the following n+ 1 metrics introduced in [18]:

g
(α)
ii =

∏
k �=i(u

k − ui)

(ui)α
, α = 0, ..., n. (4.5)

They are flat and thus their inverses define n+ 1 Hamiltonian structures of hydrody-
namic type that turn out to be compatible among each other.

4.3. Bi-flat and tri-flat semisimple F -manifolds. In this Section we present
the classification of three-dimensional semisimple bi-flat and tri-flat F -manifolds. Due
to the results of the previous section semisimple bi-flat F -manifolds are parameterized
by the solutions of the system

∂kΓ
i
ij = −Γi

ijΓ
i
ik + Γi

ijΓ
j
jk + Γi

ikΓ
k
kj , i �= k �= j �= i, (4.6)

E(0)(Γ
i
ij) = 0, i �= j (4.7)

E(1)(Γ
i
ij) = −Γi

ij , i �= j (4.8)

where E(0) =
∑n

i=1 ∂i and E(1) =
∑n

i=1 u
i∂i. It is easy to prove that the above system

is compatible and thus its general solution depends on n(n− 1) arbitrary constants.

Remark 4.7. For n = 2 Tsarev’s conditions (4.6) are empty. The general solu-
tion of the remaining conditions (4.7) and (4.8) depends on two arbitrary constants
ε1 and ε2. It coincides with the natural connection associated with the two-component
generalized ε-system.

4.3.1. Three-dimensional bi-flat F -manifolds . Three-dimensional bi-flat
F -manifolds are parameterized by solutions of Painlevé VI equation [2, 28]. This
result has been obtained reducing a generalized version of the Darboux-Egorov system
for the rotation coefficients βij to a system of ODEs equivalent to the sigma form of
Painlevé VI (see [2, 28] for details).

In this Section, we follow a different approach, based on the study of the sytem
(4.6,4.7,4.8). In particular we show that this system is equivalent to a system of six
first order ODEs admitting 4 independent first integrals. Moreover, we provide an
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explicit relation between the solutions of this system and the solutions of the generic
Painlevé VI equation. The values of the 4 parameters of the Painlevé VI equation are
related to the values of the first integrals of the system.

As a first step we have to solve the system

E(0)(Γ
i
ij) = [∂1 + ∂2 + ∂3]Γ

i
ij = 0,

E(1)(Γ
i
ij) = [u1∂1 + u2∂2 + u3∂3]Γ

i
ij = −Γi

ij ,

the solutions of which are given by Γi
ij =

Fij

(
u2−u3

u1−u2

)

ui−uj where Fij are arbitrary smooth
functions. Imposing Tsarev’s conditions and introducing the auxiliary variable z =
u2−u3

u1−u2 , we obtain the system

dF12

dz
=

(F12F13 − F12F23)z + F12F23 − F13F32

z(z − 1)
,

dF21

dz
=

(F21F23 − F21F13)z + F23F31 − F21F23

z(z − 1)
,

dF13

dz
=

(F12F23 − F12F13)z − F12F23 + F13F32

z(z − 1)
,

dF31

dz
=

(F31F12 − F32F21)z − F31F32 + F32F21

z(z − 1)
,

dF23

dz
=

(F21F13 − F21F23)z − F23F31 + F21F23

z(z − 1)
,

dF32

dz
=

(F32F21 − F31F12)z + F31F32 − F32F21

z(z − 1)
.

(4.9)

It is straightforward to check that the above system admits three linear first integrals

I1 = F12 + F13, (4.10)

I2 = F23 + F21, (4.11)

I3 = F31 + F32, (4.12)

and one quadratic first integral

I4 = F31F13 + F12F21 + F23F32. (4.13)

We consider also the cubic first integral

I5 = −I3I4 + I1I2I3

= F21F13F32 + F12F23F31 + (I2 − I3)F13F31 + (I1 − I3)F23F32.
(4.14)

where I1, I2, I3 are given by (4.10), (4.11) and (4.12) respectively. The correspondence
between solutions of the system (4.9) and solutions of the Painlevé VI equation is given
in terms of purely algebraic operations, as it is highlighted by the following Theorem:

Theorem 4.8. Let (F12(z), F21(z), F13(z), F31(z), F23(z), F32(z)) be a solution of
the system (4.9), then the function f(z) = F23F32 + zF12F21 − q1

2 is a solution of the
equation

[z(z − 1)f ′′]2 =[q2 − (d2 − d3)g2 − (d1 − d3)g1]
2 − 4f ′g1g2, (4.15)
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where g1 = f−zf ′+ q1
2 and g2 = (z−1)f ′−f+ q1

2 and the parameters d1, d2, d3, q1, q2
coincide with the values of the first integrals I1, I2, I3, I4, I5 on the given solution of
(4.9). Furthermore, equation (4.15) can be reduced to the sigma form of the generic
Painlevé VI equation.

Proof. Let (F12(z), F21(z), F13(z), F31(z), F23(z), F32(z)) be a solution of the
system (4.9) and d1, d2, d3, q1, q2 the corresponding values of the first integrals
I1, I2, I3, I4, I5. In analogy with [2, 28] we introduce the function f(z) = F23F32 +
zF12F21 − q1

2 satisfying f ′ := F12F21. Indeed

d

dz
(F12F21) =

F23F31F12 − F13F32F21

z(z − 1)
,

d

dz
(F23F32) = −F23F31F12 − F13F32F21

z − 1
,

d

dz
(F13F31) =

F23F31F12 − F13F32F21

z
.

Summarizing we have

F12F21 = f ′, F23F32 = f − zf ′ +
q1
2

= g1.

Taking into account that F31F13 + F12F21 + F23F32 = q1, we obtain

F31F13 = (z − 1)f ′ − f +
q1
2

= g2.

Using these relations we get (4.15). Up to an inessential sign the above equation coin-
cides with the equation (4.3) appearing in [28] and, as a consequence, it is equivalent
to the sigma form of the generic Painlevé VI equation (see [28] for details).

This proves that each solution of (4.9) determines a specific Painlevé VI equation
and it identifies a unique solution of the corresponding Painlevé VI equation itself.
To get solutions of the system (4.9) starting from solutions of the equation (4.15) one
can proceed in the following way.

Given a specific instance of equation (4.15) and a solution f(z), define d1 as a
root of the cubic polynomial

λ3 − (2d13 − d23)λ
2 + (d213 − d13d23 − q1)λ+ q1d13 − q2

and d2 and d3 as d2 = d1 − d13 + d23, d3 = d1 − d13. In this way the parameters
d1, d2, d3, q1, q2 satisfy the identity q2 = −d3q1 + d1d2d3. Notice that the constants
d1, d2, d3, q2 are determined up to a sign, since the equation (4.15) is invariant under
the simultaneous substitutions

d1 → −d1, d2 → −d2, d3 → −d3, q2 → −q2.

Given d1, d2, d3, q1 and f(z) one can reconstruct the solution of the system (4.9)
solving the algebraic system

F12 + F13 = ±d1, F23 + F21 = ±d2, F31 + F32 = ±d3, F12F21 = f ′,

F23F32 = g1 = f − zf ′ +
q1
2
, F13F31 = g2 = (z − 1)f ′ − f +

q1
2
.
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The solution is

F12 = ± μf ′

μd2 − g1
, F21 = ±

(
d2 − g1

μ

)
, F13 = ±

(
d1 − μf ′

μd2 − g1

)
,

F31 = ± (−μ+ d3) , F23 = ±g1
μ
, F32 = ±μ,

(4.16)

where μ satisfies

(f ′ − d1d2)μ
2 + (d1d2d3 + d1g1 − d2g2 − d3f

′)μ− d1d3g1 + g1g2 = 0.

Indeed, defining the constants d1, d2, d3 and the functions Fij as above it is not difficult
to prove that

[z(z − 1)f ′′]2 = [F23F31F12 − F13F32F21]
2.

Since the functions Fij are defined up to a sign, in a neighborhood of a point z0 �= 0, 1
such that f ′′(z0) �= 0 we can always choose the simultaneous sign of Fij in such a way
that the following relation holds:

z(z − 1)f ′′ = F23F31F12 − F13F32F21.

Taking into account the definition of the functions g1 and g2 we obtain the system

(F12F21)
′ = f ′′, (F13F31)

′ = (z − 1)f ′′, (F23F32)
′ = −zf ′′,

(F12 + F13)
′ = 0, (F21 + F23)

′ = 0, (F31 + F32)
′ = 0.

It is easy to check that it is equivalent to the system (4.9) provided that f ′′ �= 0.

4.3.2. Three-dimensional tri-flat F -manifolds. In this brief Section we pro-
vide a complete classification of tri-flat F -manifolds in dimension 3.

First of all we have to solve the system

E(0)(Γ
i
ij) = [∂1 + ∂2 + ∂3]Γ

i
ij = 0,

E(1)(Γ
i
ij) = [u1∂1 + u2∂2 + u3∂3]Γ

i
ij = −Γi

ij ,

E(2)(Γ
i
ij) = [(u1)2∂1 + (u2)2∂2 + (u3)2∂3]Γ

i
ij = −2ujΓi

ij .

The general solution is given by

Γ1
12 =

C12(u
3 − u1)

(u2 − u1)(u2 − u3)
, Γ1

13 =
C13(u

1 − u2)

(u3 − u1)(u3 − u2)
, Γ2

21 =
C21(u

2 − u3)

(u1 − u3)(u1 − u2)
,

Γ2
23 =

C23(u
1 − u2)

(u3 − u1)(u3 − u2)
, Γ3

31 =
C31(u

2 − u3)

(u1 − u3)(u1 − u2)
, Γ3

32 =
C32(u

3 − u1)

(u2 − u1)(u2 − u3)
,

where C12, C21, C13, C31, C23, C32 are arbitrary constants. Imposing Tsarev’s condi-
tion we obtain immediately the following constraints

C13 = −C12, C23 = −C21, C32 = −C31, C12 + C23 + C31 = 1.

Remark 4.9. Semisimple Frobenius manifolds are special examples of bi-flat F -
manifolds, but it is not difficult to prove that Frobenius manifolds with tri-Hamiltonian
structure studied in [36], in general, do not constitute a special subclass of tri-flat F -
manifolds.
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5. The non-semisimple regular case. In this Section we are interested in
F -manifolds that are not semisimple, but that satisfy still a regularity condition. In
order to deal with the non-semisimple regular case we will use a result of David and
Hertling [10] about the existence of local “canonical coordinates” for non-semisimple
regular F -manifolds with an Euler vector field. Let us summarize the main results of
their work which are relevant for our situation.

Definition 5.1 ([10]). An F -manifold (M, ◦, e, E) where E is an Euler vector
field is called regular if for each p ∈M the endomorphism Lp := Ep◦ : TpM → TpM
has exactly one Jordan block for each distinct eigenvalue.

Theorem 5.2 ([10]). Let (M, ◦, e, E) be a regular F -manifold of dimension
greater or equal to 2 with an Euler vector field E of weight one. Furthermore as-
sume that locally around a point p ∈ M , the operator L has only one eigenvalue.
Then there exists locally around p a distinguished system of coordinates {u1, . . . , un}
( a sort of “generalized canonical coordinates” for ◦) such that u2(p) �= 0 and

e = ∂u1 , ckij = δki+j−1, E = u1∂u1 + · · ·+ un∂un . (5.1)

Notice that here we have performed a shift of the variables u1 and u2 compared
to the coordinate system identified in [10] to obtain simpler formulas.

Let us point out that if the endomorphisms Lp := Ep◦ consist of different Jordan
blocks with distinct eigenvalues, then the results of [10] can be readily extended
using Hertling’s Decomposition Lemma [20]. However, in the case in which there are
multiple Jordan blocks with the same eigenvalues no results are available to the best
of our knowledge.

5.1. Three-dimensional non-semisimple bi-flat F -manifolds. In the three
dimensional case, assuming regularity, one has only three possibilities (see the matrices
L1, L2, L3 in formula (1.9)). One is the semisimple case (in which L has the form L1),
one is the case with one Jordan block and all eigenvalues equal (this corresponds to
L = L3) and this is the situation we analyze in detail in the first part of the next
section. In the third case (corresponding to L = L2) there is a non-trivial 2×2 Jordan
block with one eigenvalue and a second distinct eigenvalue. This last case is analyzed
in detail in the second part of the next section

5.1.1. The case of one single eigenvalue and one Jordan block. In this
section, we use canonical coordinates for a regular non-semisimple bi-flat F -manifold
in dimension three to show that locally these structures are parameterized by solutions
of the full Painlevé IV equations.

Theorem 5.3. Let (M,∇,∇∗, ◦, ∗, e, E) be a regular bi-flat F -manifold in dimen-
sion three such that Lp has three equal eigenvalues. Then there exist local coordinates
{u1, u2, u3} such that

1. e, E, ◦ are given by (5.1).
2. The Christoffel symbols Γi

jk for ∇ are given by:

Γ1
23 = Γ1

32 = Γ2
33 =

F1

(
u3

u2

)
u2

, Γ3
23 = Γ3

32 =
F2

(
u3

u2

)
u2

, Γ2
23 = Γ2

32 =
F3

(
u3

u2

)
u2

,

Γ1
22 =

F4

(
u3

u2

)
u2

, Γ2
22 =

F5

(
u3

u2

)
u2

, Γ3
22 =

F6

(
u3

u2

)
u2

, Γ3
33 =

F3

(
u3

u2

)
− F4

(
u3

u2

)
u2

,
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where the functions F1, . . . , F6 satisfy the system

dF1

dz
= 0,

dF2

dz
= 2F4F3z + 2F2F1z − 2F5F1z + F6F1 − F2F3 + F4 − F3,

dF3

dz
= −F4F3 − F2F1 + F5F1 − F1,

dF4

dz
= F4F3 + F2F1 − F5F1 − F1,

dF5

dz
= F4F3z + F2F1z − F5F1z − F6F1 + F2F3 + F1z − F3,

dF6

dz
= −2F4F3z

2 − 2F2F1z
2 + 2F5F1z

2 − F6F1z + F2F3z

+ F4F6 − F4z + F 2
2 − F2F5 + F3z − F2.

(5.2)

in the variable z = u3

u2 while the other symbols are identically zero.
3. The dual product ∗ is obtained via formula (1.2) using ◦ and E.
4. The Christoffel symbols Γ∗i

jk for ∇∗ are obtained via formula (1.8).

Proof. Due to David-Hertling results, there exist local coordinates such that
e, E, ◦ are given by (5.1). To determine the Christoffel symbols Γk

ij for the torsionless
connection ∇ in these coordinates we start imposing the following conditions:

• compatibility with ◦: Γi
mlc

m
jk −Γm

lkc
i
jm−Γi

mjc
m
lk +Γm

jkc
i
lm = 0, 1 ≤ l, j, k ≤ 3,

• torsion freeness of the connection: Γk
ij = Γk

ji,

• flatness of unity: ∇e = 0 ⇐⇒ Γi
1j = 0.

This provides a system of algebraic equations for Γk
ij . These symbols are in general

functions of u1, u2, u3. Imposing the commutativity of ∇ and Liee, coming from the
flatness of ∇ we obtain that the symbols Γk

i,j do not depend on u1.
Now we use the expression of the Euler vector field in the canonical coordinates

and impose the commutativity of ∇∗ with LieE, coming from the flatness of ∇∗. We
obtain:

Em∂mΓ∗i
jk − Γ∗m

jk ∂mEi + Γ∗i
mk∂jE

m + Γ∗i
jm∂kE

m + ∂j∂kE
i = 0.

Since Γ∗i
jk are expressed uniquely in terms of Γi

jk, the previous system of PDEs reduces

to a system for the unknown Γi
jk. In particular, we observe that for [j, k, i] = [3, 2, 2]

we get the PDE:

u2(∂u2Γ2
32) + ∂u3Γ2

32u
3 + Γ2

32 = 0,

and for [j, k, i] = [2, 3, 3] and [j, k, i] = [3, 1, 1] we get an identical PDE for Γ3
32 and

Γ1
32 respectively. The general solutions of these PDEs can be obtained directly with

the method of characteristics yielding

Γ1
32 = F1

(
u3

u2

)
1

u2
, Γ3

32 = F2

(
u3

u2

)
1

u2
, Γ3

32 = F3

(
u3

u2

)
1

u2
.

Substituting these solutions in the remaining equations, we obtain similar conditions
for Γ2

22, Γ
1
22 and Γ3

22:

Γ1
22 = F4

(
u3

u2

)
1

u2
, Γ2

22 = F5

(
u3

u2

)
1

u2
, Γ3

22 = F6

(
u3

u2

)
1

u2
.
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Imposing the zero curvature conditions for ∇, we obtain the system (5.2) for the

unknown functions Fi in the variable z = u3

u2 .

The system (5.2) reduces to the full Painlevé IV family of equations.

Theorem 5.4. Regular bi-flat F -manifolds in dimension three such that Lp has
three equal eigenvalues and one Jordan block are locally parameterized by solutions of
the full Painlevé IV equation.

Proof. It is straightforward to check that the system of ordinary differential
equations given by (5.2) admits the following integrals of motion:

I1 = F1, I2 = 2F1z + F3 + F4, I3 = −2F3z + F4z − F2 − F5.

Using these first integrals, the system can be reduced to a system of three ODEs given
by:

dF4

dz
= 4I21z

2 − 2I1I2z + F4I1z + I2F4 − I3I1 − F 2
4 − 2I1F5 − I1,

dF5

dz
= −4I21z3 + 6I2I1z

2 − 9F4I1z
2 − 2I22z + 6I2F4z + I3I1z − 4F 2

4 z − I2I3

−I2F5 + I3F4 + F4F5 − I1F6 + 3I1z − I2 + F4,

dF6

dz
= −4I2I1z3 + 12F4I1z

3 + 2I22z
2 − 9I2F4z

2 − 4I3I1z
2 + 8F 2

4 z
2

−6I1F5z
2 + 3I2I3z + 5I2F5z − 5I3F4z − 8F4F5z − I1F6z − 6I1z

2

+3I2z + I23 + 3I3F5 + F6F4 − 5F4z + 2F 2
5 + I3 + F5.

We further reduce this system to a second order ODE in the following way. First
we express F5 in terms of F4 and its first derivative using the first equation, obtaining
(here and thereafter we assume I1 �= 0):

F5 =
1

2I1

(
−dF4

dz
+ 4I21z

2 − 2I2I1z − I3I1 − I1 + F4I1z + I2F4 − F 2
4

)
.

We substitute this in the second equation and solve for F6:

F6 =
1

2I21

[
d2F4

dz2
− (I1z − F4)

dF4

dz
+ I1I2 − I1I2I3 − 2I21z − 2I1I

2
2z + 2I21I3z+

+8I21I2z
2 − 8I31z

3 + (I1I3 − I22 + 9I1I2z − 14I21z
2)F4 + (2I2 − 7I1z)F

2
4 − F 3

4

]
.

Substituting these expressions for F5 and F6 in terms of F4 and its derivatives in the
last ODE of the system above, we obtain a third order nonlinear ODE for F4. Multi-
plying it by 2I21 (−I1z+ I2−F4), it is possible to recognize that it is a total derivative
with respect to z of an expression involving the second derivative of F4. Integrating
this expression one obtains the nonlinear second order ODE for the function F4 = F :

+(I2 − I1z − F )
d2F

dz2
+

1

2

(
dF

dz

)2

+ I1
dF

dz
+ C + 2I1I2(I1I3 − I22 − I1)z +

+I21 (8I
2
2 − I1I3 + I1)z

2 − 10I31I2z
3 + 4I41z

4 + (2I1I3 − 2I1 − I22 )I2F +

+(2I1 + 11I22 − 2I1I3 − 23I1I2z + 13I21z
2)I1zF +

(
I1 − I1I3 +

7

2
I22

)
F 2 +

−
(
17I2 − 31

2
I1z

)
I1zF

2 + 8I1zF
3 − 4I2F

3 +
3

2
F 4 = 0,
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where C is the constant of integration. Now we show that this ODE can be reduced
to the full Painlevé IV equation.

First we do a change of variables of the form F (z) = f(z) − I1z + I2 in order

to obtain a term of the form f(z)d
2f

dz2 which is the term that appears in Painlevé IV.
Doing this we obtain the following ODE:

f
d2f

dz2
=

1

2

(
d2f

dz2

)
+

3

2
f4 + (2zI1 + 2I2) f

3 +

(
1

2
I21z

2 + I1I2z − I1b+
1

2
I22

)
f2 + c,

where b = I3−1 and c = C+I1I
2
2I3− 1

2I
2
1−I22I1. Introducing the affine transformation

z =
√

2
I1
t− I2

I1
and the function y(t) =

√
2
I1
f
(√

2
I1
t− I2

I1

)
the previous ODE becomes:

y
d2y

dt2
=

1

2

(
dy

dt

)2

+
3

2
y4 + 4ty3 + 2

(
t2 − b

)
y2 + c,

which is indeed the full Painlevé IV family.

Remark 5.5. In the proof of the previous Theorem we have assumed that I1 �= 0,
hence the genericity statement. If I1 = 0 then the system (5.2) reduces to a system
of ODEs that can be integrated explicitly. In particular, using the integrals of motion
I1 = 0, I2 and I3, the system obtained by reduction and involving only F4, F5 and F6

is lower triangular.

5.1.2. The case of two distinct eigenvalues and two Jordan blocks. In
this subsection we analyze the case in which the operator Lp has two distinct eigevan-
lues, one eigenvalue with algebraic multiplicity two (and nontrivial 2×2 Jordan block),
while the other eigenvalue is simple.

Theorem 5.6. Let (M,∇,∇∗, ◦, ∗, e, E) be a non-semisimple regular bi-flat F -
manifold in dimension three such that Lp has exactly two distinct eigenvalues and
two Jordan blocks. Then there exist local coordinates {u1, u2, u3} around p such that
u2(p) �= 0, u3(p) �= 0 and

1. e, E, ◦ are given by

e = ∂u1 + ∂u3 (5.3)

E = u1∂u1 + u2∂u2 + u3∂u3 (5.4)

cijk = δki+j−1 if 1 ≤ i, j, k ≤ 2 (5.5)

c333 = 1 (5.6)

cijk = 0 in all other cases (5.7)

2. The Christoffel symbols Γi
jk for ∇1 are given by:

Γ3
13 =

F4

(
u3−u1

u2

)
u2

, Γ1
22 =

F3

(
u3−u1

u2

)
u2

, Γ2
22 =

F6

(
u3−u1

u2

)
u2

,

Γ3
23 =

F1

(
u3−u1

u2

)
u2

, Γ1
31 =

F2

(
u3−u1

u2

)
u2

, Γ2
31 =

F5

(
u3−u1

u2

)
u2

,

Γ1
11 = −Γ1

31, Γ2
11 = −Γ2

31, Γ3
11 = −Γ3

13, Γ2
12 = −Γ1

31, Γ3
12 = −Γ3

23,



898 A. ARSIE AND P. LORENZONI

Γ2
21 = −Γ1

31, Γ3
21 = −Γ3

23, Γ2
23 = Γ1

31,

Γ1
33 = −Γ1

31, Γ2
33 = −Γ2

31, Γ3
33 = −Γ3

13,

where the functions F1, . . . F6 satisfy the system

dF1

dz
= −F3F4 − F 2

1 + F1F6 + F1

z
,

dF2

dz
=

F3F5 − F2F1 − F2

z
,

dF3

dz
= 0,

dF4

dz
= −F3F4 − F 2

1 + F1F6 + F4z + F1

z2
,

dF5

dz
=
−F5F1z + F5F6z + F2F4z + F3F5 − F5z − F2F1 − F2

z2
,

dF6

dz
= −2F3F5 + 2F2F1.

(5.8)

in the variable z = u3−u1

u2 while the other symbols not obtainable from the
above list using the symmetry of the connection are identically zero.

3. The dual product ∗ is obtained via formula (1.2) using ◦ and E.
4. The Christoffel symbols Γ∗i

jk for ∇∗ are obtained via formula (1.8).

Proof. The first point of the Theorem is a direct consequence of the results of [10]
and of Hertling’s Decomposition Lemma (Thereom 2.11 from [20]) . Imposing that
∇ is torsionless, that it is compatible with ◦, and that it satisfies ∇e = 0, we obtain
the following constraints on Γk

ij :

Γ1
11 = −Γ1

31, Γ2
11 = −Γ2

31, Γ3
11 = −Γ3

13, Γ1
12 = 0, Γ2

12 = −Γ1
31,

Γ1
33 = −Γ1

31, Γ2
33 = −Γ2

31, Γ3
33 = −Γ3

13,

Γ3
12 = −Γ3

23, Γ1
21 = 0, Γ3

21 = −Γ3
23,

Γ3
22 = 0, Γ1

23 = 0, Γ2
23 = Γ1

31,

together with the trivial constraints Γk
ij = Γk

ji.
Once we have expressed the Christoffel symbols of ∇∗ in terms of the Christoffel

symbols of ∇ (using (1.8)), imposing the commutativity of ∇∗ with LieE and the
commutativity of Liee with ∇, we obtain a system of PDEs for the variables Γk

ij . This

system in particular implies that Γk
ij(u

1, u2, u3) can be expressed as functions of two

variables, as Γk
ij(u

2, u3 − u1). Following a procedure similar to the process described
in the proof of Theorem 5.3, we can solve the two systems and we find that (here

z = u3−u1

u2 ):

Γ3
13 =

F4(z)

u2
, Γ1

22 =
F3(z)

u2
, Γ2

22 =
F6(z)

u2
,
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Γ3
23 =

F1(z)

u2
, Γ1

31 =
F2(z)

u2
, Γ2

31 =
F5(z)

u2
, Γ2

32 =
F2(z)

u2
,

for arbitrary smooth functions Fi(z). At this point, we impose the remaining condi-
tions. Imposing the zero curvature conditions for∇, we obtain the system of equations
(5.8).

Now we prove that the system (5.8) can be reduced to Painlevé V equation.

Theorem 5.7. Regular bi-flat F -manifolds in dimension three such that Lp has
two distinct eigenvalues and two Jordan blocks are locally parameterized by solutions
of the full Painlevé V equation.

Proof. It is straightforward to check that I1 = F3, I2 = F1−F4z and I3 = F6+2F2

are constant along the solutions of the system (5.8). Using these three integrals of
motion in the system above we reduce it to the following three ODEs:

dF2

dz
= −F2F4 +

I1F5 − I2F2 − F2

z
, (5.9)

dF4

dz
= 2F2F4 + F 2

4 +
2I2(F2 + F4)− (I3 + 2)F4

z
− I1F4 − I22 + I2I3 + I2

z2
, (5.10)

dF5

dz
= −2F5F2 − F5F4 − I2F5 − I3F5 + F5

z
+

I1F5 − I2F2 − F2

z2
. (5.11)

Solving for F5 in (5.9) and for F2 in (5.10) and substituting in (5.11) we obtain a
third order ODE. Using the integrating factor μ = (−F4(z)z

2 − I2z+ I1)z we get the
second order nonlinear ODE for the function F4 = F :

2z4(I2 + Fz)(I1 − I2z − Fz2)
d2F

dz2
− z5(I1 − 2I2z − 2Fz2)

(
dF

dz

)2

+

+2z3(4I1I2 − 3I22z + 3I1Fz − 4I2Fz2 − F 2z3)
dF

dz
+

+I22 (2I
3
2z

2 − 2I22I3z
2 − 2I22z

2 + 4CI1z + 2I21I2 − 2I21I3 − 2I21 − 3I1z) +

+2I2
(
5I32z

3 − 4I22I3z
3 − 5I1I

2
2z

2 + 2I1I2I3z
2 − 4I22z

3 + 4CI1z
2+

+5I21I2z − 2I21I3z + 2I1I2z
2 − I2z

3 − I31 − 2I21z − I1z
2
)
F +

z
(
20I32z

3 − 12I22I3z
3 − 25I1I

2
2z

2 + 8I1I2I3z
2 − 12I22z

3 + 4CI1z
2+

+12I21I2z − 2I21I3z + 8I1I2z
2 − 2I2z

3 − I31 − 2I21z
)
F 2 +

4z3(5I22z
2 − 2I2I3z

2 − 5I1I2z + I1I3z − 2I2z
2 + I21 + I1z)F

3 +

−z5(−10I2z + 2I3z + 5I1 + 2z)F 4 + 2F 5z7 = 0,

where C is an integration constant. The above equation can be reduced to Painlevé
V first using the nonlinear transformation:

F (z) =
I1
z2

H(z)

H(z)− 1
− I2

z

and then setting z = 1
s and G(s) = H(z) = H

(
1
s

)
. The final result is the Painlevé V

equation

d2G

ds2
=

(
1

2G
+

1

G− 1

)(
dG

ds

)2

− 1

s

dG

ds
+

1

s2
(G− 1)2

(
aG+

b

G

)
+

cG

s
+

dG(G+ 1)

G− 1

where a = −2I22 + 2I2I3 − 2C + 2I2 + 2, b = − 1
2I

2
2 , c = I1(I3 + 1), d = − 1

2I
2
1 .
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�
Remark 5.8. In the proof of the previous Theorem we have assumed that I1 �= 0,

hence the genericity statement. If I1 = 0 then the system (5.8) reduces to a system of
ODEs that can be integrated explicitly.

5.2. Regular case and confluences of Painlevé equations. In this Section,
we have shown that there exists an intimate relationship between regular bi-flat F -
manifolds in dimension three on one hand and Painlevé transcendents on the other.
Our analysis leads us to conclude that regular bi-flat F -manifolds in dimension three
are characterized by continuous and discrete moduli. The discrete moduli are provided
by the Jordan normal form for the operator L, which in turns determines which of
the Painlevé equations controls the continuous moduli.

Furthermore, the well-known confluence of the Painlevé equations is associated
to a corresponding degeneration of the form of the operator L characterizing regular
three-dimensional bi-flat F -manifold. In this way, confluences of the Painlevé equa-
tions are mirrored in the collision of eigenvalues and the creation of non-trivial Jordan
blocks according to the following diagram:

PV I��

��

confluence �� PV��

��

confluence �� PIV��

��
L1

degeneration of distinct eigenvalues

preserving regularity
�� L2

degeneration of distinct eigenvalues

preserving regularity
�� L3

As an open problem, let us mention the fact that it would be interesting to extend
this correspondence to include the remaining Painlevé transcendents on one side and
possibly non-regular bi-flat F -manifolds on the other.

5.3. Multi-flat F -manifolds in the regular non-semisimple case. In this
Subsection we are going to study three-flat and multi-flat F -manifolds in the regular
non-semisimple case. For simplicity we focus our attention on the case in which the
Jordan normal form of the operator L contains only one Jordan block with the same
eigenvalues.

5.3.1. Tri-flat F -manifolds. The next theorem shows that regular three-flat
F -manifolds in dimension three such that Lp has three equal eigenvalues are locally
represented as follows.

Theorem 5.9. Let (M,∇0 = ∇,∇1,∇2, ◦0 = ◦, ◦1, ◦2, E0 := e, E1 := E,E2 :=
E ◦ E) be a regular three-flat F -manifold in dimension three such that Lp has three
equal eigenvalues. Then there exist local coordinates {u1, u2, u3} such that

1. The vector fields e and E and the product ◦ are given by (5.1).
2. The Christoffel symbols Γi

jk for ∇ are given by:

Γ1
23 = Γ1

32 = Γ2
33 =

f1
u2

, Γ3
32 = Γ3

23 =
F2

(
u3

u2

)
u2

, Γ2
32 = Γ2

23 =
f3
u2

,

Γ1
22 =

F4

(
u3

u2

)
u2

, Γ2
22 =

F5

(
u3

u2

)
u2

, Γ3
22 =

F6

(
u3

u2

)
u2

, Γ3
33 =

f3 − F4

(
u3

u2

)
u2

,
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where f1 and f3 are constants and the functions F2, F4, F5, F6 are given by

F2 = −f1z2 − 1, F4 = −2f1z, F5 = −f1z2 − 2f3z, F6 = −f3z2 + 2z (5.12)

in the variable z = u3

u2 while the other Christoffel symbols are identically zero.
3. The products ◦1 and ◦2 are obtained via formula (1.2) using as eventual iden-

tities E and E2 respectively.

4. The Christoffel symbols Γ
(1)i
jk and Γ

(2)i
jk are obtained via formula (1.8).

Proof. The first part of the proof is the same as the proof given for Theorem
5.3. Imposing the additional conditions coming from the flatness of ∇(2) we get the
formulas for Γi

jk appearing in the statement of the theorem.

5.3.2. An example with infinitely many compatible flat structures.
With similar computations it is possible to add further connections and try to con-
struct F -manifolds with four or more compatible flat connections. A very remarkable
phenomenon is the following: once a quadri-flat F -manifold has been constructed, no
new conditions arise if one tries to equip it with further flat compatible connections.
In other words, regular quadri-flat F -manifolds in dimension three with an operator
L consisting of a single Jordan block are automatically ”infinitely”-flat F -manifolds.

Theorem 5.10. The data

ckij = δki+j−1,

E(l) = El = (u1)l∂u1 + lu2(u1)l−1∂u2 +

(
lu3(u1)l−1 +

1

2
(l2 − l)(u2)2(u1)l−2

)
∂u3 ,

and

Γ
(l)1
11 = − l

u1
, Γ

(l)2
11 =

lu2(la2 + la+ a+ 2)

(a+ 2)(u1)2

Γ
(l)3
11 =

l((2la2 + 2la+ a+ 2)u1u3 − (la2 + 2la+ a+ 2)(u2)2 + (lab+ 2lb)u1u2)

(a+ 2)(u1)3

Γ
(l)1
12 = Γ

(l)1
21 = 0, Γ

(l)2
12 = Γ

(l)2
21 = − l(a2 + 2a+ 2)

(u1)(a+ 2)
, Γ

(l)3
23 = Γ

(l)3
32 =

a

u2

Γ
(l)3
12 = Γ

(l)3
21 =

l((la2 + a2 + 2la+ 4a+ 4)(u2)2 − 2a2u1u3 − (2ab+ 4b)u1u2)

2u2(a+ 2)(u1)2
,

Γ
(l)1
13 = Γ

(l)1
31 = Γ

(l)2
13 = Γ

(l)2
31 = Γ

(l)1
22 = 0, Γ

(l)3
13 = Γ

(l)3
31 = − l(a+ 1)

u1
,

Γ
(l)3
22 = − ((la2 + 3la+ 2l)(u2)2 − (ab− 2b)u1u2 + 2au1u3)

(a+ 2)u1(u2)2
, Γ

(l)2
22 =

a(a+ 1)

u2(a+ 2)

Γ
(l)1
23 = Γ

(l)1
32 = Γ

(l)2
23 = Γ

(l)2
32 = Γ

(l)1
33 = Γ

(l)2
33 = Γ

(l)3
33 = 0,

locally define a regular three dimensional multi-flat F -manifold (M,∇(l), ◦l, E(l), l =
0, 1, 2...) for any value of the constants a and b.
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