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Abstract. Given a submanifold S ⊂ R
n of codimension at least three, we construct an asymptot-

ically Euclidean Riemannian metric on R
n with nonnegative scalar curvature for which the outermost

apparent horizon is diffeomorphic to the unit normal bundle of S.
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1. Introduction. An asymptotically Euclidean manifold is a Riemannian man-
ifold with an end on which the metric approaches the Euclidean metric. In such a
manifold, an outermost apparent horizon is a bounding minimal hypersurface which
encloses all other bounding minimal hypersurfaces. An asymptotically Euclidean man-
ifold can be interpreted as a time symmetric slice of an asymptotically Minkowskian
spacetime describing an isolated gravitational system. The dominant energy con-
dition on the spacetime then means that the time symmetric slice has nonnegative
scalar curvature. By the Hawking–Penrose singularity theorem the outermost appar-
ent horizon must be located inside the event horizon in the spacetime. The outermost
apparent horizon, which can be found with no further data than a time symmetric
slice, may therefore serve as a substitute for the event horizon, which depends on the
entire spacetime structure. The question which motivates the work in this paper is
the following: Which smooth manifolds can be found as outermost apparent horizons
in asymptotically Euclidean manifolds with nonnegative scalar curvature?

Outermost apparent horizons. We use the convention that the mean curva-
ture of an oriented hypersurface in a Riemannian manifold is the trace of its second
fundamental form, with positive sign if a variation in the direction of the oriented
normal ν increases area. In other words, the k-dimensional sphere of radius r in
(k+1)-dimensional Euclidean space has positive mean curvature k/r with respect to
the outward direction.

For spacetime initial data sets, the concepts of weakly outer trapped surfaces,
trapped regions, and outermost apparent horizons are defined using null expansions.
In our setting of Riemannian manifolds these definitions reduce to the following. Let
(M, g) be an n-dimensional connected Riemannian manifold with an asymptotically
Euclidean end. A compact hypersurface in M which separates the asymptotically
Euclidean end from the rest of the manifold is called weakly outer trapped if its mean
curvature with respect to the normal directed towards the asymptotically Euclidean
end is non-positive. The trapped region T is the union of compact sets with smooth
boundary for which the boundary is weakly outer trapped. The outermost apparent
horizon of (M, g) is the boundary ∂T of the trapped region. Note that the trapped
region may be empty.
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For asymptotically Euclidean manifolds with nonnegative scalar curvature and
smooth outermost apparent horizon, the induced metric on the horizon is conformal
to a metric with positive scalar curvature. The first result in this direction, when the
manifold has dimension three, is Hawking’s black hole topology theorem [13, Propo-
sition 9.3.2]. The general result, in higher dimensions, can be found in work by Cai,
Galloway and Schoen [3], [11], [10]. The proofs use the fact that the horizon is nec-
essarily stable and outer area minimizing. Hence our motivating question may be
refined: Is the existence of a positive scalar curvature metric sufficient for a com-
pact, bounding manifold to be the outermost apparent horizon in an asymptotically
Euclidean manifold of nonnegative scalar curvature? Note that there are bounding
manifolds which do not admit positive scalar curvature metrics, for instance the n-
dimensional torus. In the present paper we construct many new examples of outermost
apparent horizons, but we are far from answering the question completely.

Obvious examples of outermost apparent horizons are spheres, which appear in
constant time slices of the Schwarzschild spacetime. Chruściel and Mazzeo [5] con-
struct asymptotically Euclidean metrics for which the outermost apparent horizon is
diffeomorphic to a number of spheres. See also work by Corvino [6]. In the work
[16], Schwartz has a construction of outermost apparent horizons diffeomorphic to a
product of spheres. Unfortunately, there is a gap in Schwartz’s argument where the
horizon is implicitly assumed to be connected, and it does not seem to be possible to
repair this gap with the methods of that paper. An inspiration when searching for
horizons with nontrivial topology are examples of non-spherical black holes. The first
such example is the construction by Emparan and Reall of a black ring spacetime [9].
Another important example is the “Black Saturn” found by Elvang and Figueras [8].

In this paper we will construct examples of outermost apparent horizons which
are diffeomorphic to unit normal bundles of submanifolds of Euclidean space. Our
result is inspired by Schwartz [16], Chruściel and Mazzeo [5], as well as by Carr [4,
Theorem 1]. In [4], it is proved that boundaries of regular neighborhoods of embedded
cell complexes of codimension at least three admit metrics of positive scalar curvature.
For compact submanifolds, the boundary of a regular neighborhood is diffeomorphic
to the unit normal bundle.

Statement of results. Let S ⊂ R
n be a smooth submanifold. We denote the

unit normal bundle of S by UNS, so that UNxS is the sphere of unit vectors in the
fiber NxS of the normal bundle NS.

The main theorem of this paper is the following.

Theorem 1.1. Let n ≥ 3 and let S ⊂ R
n be a compact embedded smooth sub-

manifold of dimension m. Assume that n − m ≥ 3. For ε > 0 and x ∈ R
n \ S,

let

uε(x) := 1 + εn−m−2

∫
S

|x− y|−(n−2) dy

and let gε be the Riemannian metric on R
n \ S defined by

gε := u4/(n−2)
ε δ

where δ is the Euclidean metric on R
n. For sufficiently small ε > 0 it holds that

the outermost apparent horizon Σε of (Rn \ S, gε) is diffeomorphic to the unit normal
bundle UNS. In fact, Σε is the graph of a smooth function on UNS in normal
coordinates for S.
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The integrand in the definition of uε is the Green’s function of the Euclidean
Laplacian, and hence uε is harmonic and the scalar curvature of (Rn \ S, gε) is zero
(see [2, Theorem 1.159]). For large x we have

uε(x) = 1 + εn−m−2Hm(S)|x|−(n−2) +O(|x|−(n−1)),

where Hm denotes the m-dimensional Hausdorff measure with respect to the Eu-
clidean metric δ. Thus (Rn \ S, gε) has an asymptotically Euclidean end.

A neighborhood of S is another end of the manifold (Rn \S, gε), and the function
uε tends to infinity at S. The proof will show that the outermost apparent horizon
Σε encloses a tubular hypersurface of Euclidean radius proportional to ε around S.
It is possible to modify the harmonic function uε inside this tubular hypersurface to
give a smooth superharmonic function on all of Rn, thus removing the end at S. The
modification of uε can be done by appropriately cutting off the singularity at zero
of the function r �→ |r|−(n−2) appearing in the integral in the definition of uε. This
modification will not change the location of the outermost apparent horizon, and we
get the same type of examples of horizons in asymptotically flat manifolds but with
non-negative scalar curvature and no end near S. We conclude the following.

Theorem 1.2. Let S ⊂ R
n be a compact embedded smooth submanifold of codi-

mension at least 3. Then there is an asymptotically Euclidean metric on R
n with

non-negative scalar curvature for which the outermost apparent horizon is diffeomor-
phic to the unit normal bundle UNS. In fact, the horizon is the graph of a smooth
function on UNS in normal coordinates for S.

The basic idea of the proof of Theorem 1.1 is this: Since the conformal factor
is close to one outside of a neighborhood of S which shrinks as ε tends to zero, the
horizon (if it exists) is expected to approach S in this limit. Close to S, the difference
between S and its tangent space should be negligible, so the horizon Σε should be
close to the one we would have if S were a linear subspace, in which case Σε would
be a cylinder. If the horizon is locally close to a cylinder around the tangent space of
S, then it should be globally diffeomorphic to the unit normal bundle of S.

We now present some examples of outermost apparent horizons that can be found
with Theorem 1.1.

• Horizons diffeomorphic to products of spheres: Let n and m be positive in-
tegers such that n ≥ m + 3. Let S = Sm be the unit sphere in R

m+1 ⊂ R
n.

Then Theorem 1.1 gives an outermost apparent horizon diffeomorphic to
Sm × Sn−m−1.

• Horizons can have many components: Let n ≥ 3. Let S be a set of k points in
R

n. Then Theorem 1.1 gives an outermost apparent horizon Σ diffeomorphic
to the disjoint union of k spheres of dimension (n − 1). In general, we can
find examples of disconnected horizons using any choice of a disconnected
submanifold S. Refining the proof of Theorem 1.1 one can probably allow
the components of S to have different dimensions, which would allow examples
like the “Black Saturn”.

• Horizons can have any fundamental group: Let π be a finitely presented
group. Using the generators and relations of π, it is not difficult to construct
a compact hypersurface S ⊂ R

5 such that π1(S) = π. Embed R
5 in R

7. Theo-
rem 1.1 gives us an apparent horizon which is diffeomorphic to the unit normal
bundle of S ⊂ R

7. The fiber of this bundle is S2 so the long exact sequence
for the homotopy groups of a fibration tells us that π1(UNS) = π1(S) = π.
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This shows that every finitely presented group is the fundamental group of
an outermost apparent horizon in an asymptotically flat 7-dimensional scalar
flat Riemannian manifold.

Overview of the paper. In Section 2 we prove that the function uε near a
point of S is close to the function u∞ obtained by replacing S by its tangent space at
the point. This is proved by explicit computations involving rescaled versions of the
function uε.

In Section 3 we determine the mean curvature in gε of tubular hypersurfaces
around S. We find constants Cinner, Couter and Router such that the mean curvature
is negative for tubular hypersurfaces with radius smaller than Cinnerε and positive for
tubular hypersurfaces with radius between Couterε and Router.

In Section 4 we use these tubular hypersurfaces, the maximum principle of
Solomon and White, and a convergence argument to determine the location of outer
area minimizing stationary hypersurfaces. The conclusion is that any such hypersur-
face must be located between the tubular hypersurfaces of radii Cinnerε and Couterε.

In Section 5 we apply a convergence argument to prove that the outer area min-
imizing stationary hypersurfaces are graphs of smooth functions on UNS in normal
coordinates for S.

Finally, in Section 6, we combine the previous results and prove that there is
a unique outer area minimizing stationary hypersurface. This hypersurface is then
shown to coincide with the outermost apparent horizon, which proves Theorem 1.1.

Acknowledgements. We want to thank John Andersson, Lars Andersson,
Alessandro Carlotto, Michael Eichmair, Christos Mantoulidis, Anna Sakovich, and
Fernando Schwartz for helpful comments and discussions related to the work in this
paper.
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us improve the paper in ways we would not have been able to by ourselves. We are
deeply thankful for the work and effort made by this person.

Much of this work was done when the authors visited the IHP in Paris for the fall
2015 program on mathematical general relativity. We want to express our gratitude
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2. Rescaled metrics and their convergence. The purpose of this section
is to prove that, after suitable rescaling and change of coordinates, the metrics gε
converge as ε tends to zero. This is done in Corollary 2.3. The computations needed
are mainly contained in Lemma 2.1, where rescalings of the integral in the definition
of uε are studied.

For (x∞, x, ε) ∈ R
n × R

n × R
+ define the map Πε

x∞,x : Tx∞R
n → R

n to be the
composition Tx∞R

n → TxR
n → R

n of the isomorphism Tx∞R
n → TxR

n of tangent
spaces given by parallel transport with respect to the Euclidean metric δ, and the
map ζ �→ expδ(εζ). Here expδ is the exponential map for the Euclidean metric δ.
This map is used to focus attention on an ε-neighborhood of the point x; the pullback
by Πε

x∞,x of the ball of radius ε around x is the ball of radius 1 around the origin in
Tx∞R

n.
In the following it is helpful to keep in mind that Πε

x∞,x(ζ) is the same as x+ εζ
after natural identifications of points and vectors.

Lemma 2.1. Fix γ > m and β1, β2 > 0. Let xk ∈ S and εk > 0 be sequences with
xk → x∞ and εk → 0.
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(i) There are constants R and C depending on (S, x∞, γ, β1, β2) such that if k
is such that |xk − x∞| + εkβ1 ≤ R/2, and ζ ∈ Tx∞R

n satisfies |ζ| ≤ β1 and
distδ(ζ, Tx∞S) ≥ β2 then

εγ−m
k

∫
S

|Πεk
x∞,xk

(ζ)− y|−γ dy < C.

(ii) For all ζ /∈ Tx∞S it holds that

lim
k→∞

εγ−m
k

∫
S

|Πεk
x∞,xk

(ζ)− y|−γ dy =

∫
Tx∞S

|ζ − η|−γ dη.

In other words, the sequence of functions

Fk(ζ) := εγ−m
k

∫
S

|Πεk
x∞,xk

(ζ)− y|−γ dy

is uniformly bounded for ζ ∈ Tx∞R
n with |ζ| ≤ β1 and distδ(ζ, Tx∞S) ≥ β2, and it

converges pointwise to the function

F∞(ζ) :=

∫
Tx∞S

|ζ − η|−γ dη

on Tx∞R
n \ Tx∞S.

Proof. Let π : Tx∞R
n → Tx∞S denote the orthogonal projection and recall that

Nx∞S denotes the linear subspace of Tx∞R
n orthogonal to Tx∞S. Choose R > 0

such that there is an open neighborhood A ⊂ Tx∞S of 0, and a smooth function
σ : A → Nx∞S with

S ∩BR(x∞) = expδ(graphσ)

and such that σ can be extended smoothly to a neighborhood of A, with Lipschitz
constant smaller than β2/(4β1). We will consider integrals over S \ BR(x∞) and
S ∩BR(x∞) separately.

Part (i): Uniform boundedness. Note that

|Πεk
x∞,xk

(ζ)− x∞| ≤ |xk − x∞|+ εk|ζ|
≤ |xk − x∞|+ εkβ1.

Let k be such that |xk − x∞|+ εkβ1 ≤ R/2. Then

|Πεk
x∞,xk

(ζ)− y| ≥ |y − x∞| − |Πεk
x∞,xk

(ζ)− x∞|
≥ R−R/2

= R/2

for y ∈ S \BR(x∞), so∫
S\BR(x∞)

|Πεk
x∞,xk

(ζ)− y|−γ dy ≤
∫
S\BR(x∞)

(R/2)−γ dy

≤ (R/2)−γHm(S).
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Therefore

εγ−m
k

∫
S\BR(x∞)

|Πεk
x∞,xk

(ζ)− y|−γ dy → 0 (1)

as k → ∞, since γ > m and εk → 0.
We parametrize S ∩ BR(x∞) by η̂‖ �→ expδ(η̂‖ + σ(η̂‖)) where η̂‖ ∈ A. The

Jacobian of this map is represented by the matrix[
I

Jσ(η̂‖)

]
.

With this parametrization, the integral

εγ−m
k

∫
S∩BR(x∞)

|Πεk
x∞,xk

(ζ)− y|−γ dy

can be expressed as

εγ−m
k

∫
A

∣∣∣Πεk
x∞,xk

(ζ)− expδ
(
η̂‖ + σ(η̂‖)

)∣∣∣−γ

J (η̂‖) dη̂‖

where

J (η̂‖) =

√√√√det

([
I

Jσ(η̂‖)

]T [
I

Jσ(η̂‖)

])
=

√
det

(
I + Jσ(η̂‖)TJσ(η̂‖)

)
.

If xk ∈ S ∩BR(x∞) then xk = expδ(ξ
‖
k + σ(ξ

‖
k)) for some ξ

‖
k ∈ A. It holds that

Πεk
x∞,xk

(ζ) = expδ
(
ξ
‖
k + σ(ξ

‖
k) + εkζ

)
,

so

εγ−m
k

∫
S∩BR(x∞)

|Πεk
x∞,xk

(ζ)− y|−γ dy

= εγ−m
k

∫
A

∣∣∣expδ (ξ‖k + σ(ξ
‖
k) + εkζ

)
− expδ

(
η̂‖ + σ(η̂‖)

)∣∣∣−γ

J (η̂‖) dη̂‖

= εγ−m
k

∫
A

∣∣∣ξ‖k + σ(ξ
‖
k) + εkζ − η̂‖ + σ(η̂‖)

∣∣∣−γ

J (η̂‖) dη̂‖

= ε−m
k

∫
A

∣∣∣∣∣ζ − η̂‖ − ξ
‖
k

εk
− σ(η̂‖)− σ(ξ

‖
k)

εk

∣∣∣∣∣
−γ

J (η̂‖) dη̂‖.

By a change of variables η̂‖ = ξ
‖
k + εkη

‖ we see that

εγ−m
k

∫
S∩BR(x∞)

|Πεk
x∞,xk

(ζ)− y|−γ dy

=

∫
(A−ξ

‖
k)/εk

∣∣∣∣∣ζ − η‖ − σ(ξ
‖
k + εkη

‖)− σ(ξ
‖
k)

εk

∣∣∣∣∣
−γ

J (ξ
‖
k + εkη

‖) dη‖.

(2)
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We will now bound the integrand by an integrable function of η‖. Let L denote the
Lipschitz constant of σ and recall that

L < β2/(4β1).

Then ∣∣∣∣∣σ(ξ
‖
k + εkη

‖)− σ(ξ
‖
k)

εk

∣∣∣∣∣ ≤ Lεk|η‖|
εk

= L|η‖| < β2

4β1
|η‖|. (3)

By orthogonal decomposition of ζ ∈ Tx∞S ⊕Nx∞S we get∣∣∣∣∣ζ − η‖ − σ(ξ
‖
k + εkη

‖)− σ(ξ
‖
k)

εk

∣∣∣∣∣
2

= |π(ζ)− η‖|2 +
∣∣∣∣∣(ζ − π(ζ))− σ(ξ

‖
k + εkη

‖)− σ(ξ
‖
k)

εk

∣∣∣∣∣
2

.

(4)

By the triangle inequality and (3) we further have∣∣∣∣∣(ζ − π(ζ))− σ(ξ
‖
k + εkη

‖)− σ(ξ
‖
k)

εk

∣∣∣∣∣ ≥ |ζ − π(ζ)| −
∣∣∣∣∣σ(ξ

‖
k + εkη

‖)− σ(ξ
‖
k)

εk

∣∣∣∣∣
≥ distδ(ζ, Tx∞S)− β2

4β1
|η‖|

≥ β2 −
β2

4β1
|η‖|

so if |η‖| < 2β1 then ∣∣∣∣∣(ζ − π(ζ))− σ(ξ
‖
k + εkη

‖)− σ(ξ
‖
k)

εk

∣∣∣∣∣ > β2

2
.

This gives a good bound for small |η‖|. For large |η‖| we will use the following bound
instead. The orthogonal decomposition (4) tells us that∣∣∣∣∣ζ − η‖ − σ(ξ

‖
k + εkη

‖)− σ(ξ
‖
k)

εk

∣∣∣∣∣ ≥ |π(ζ)− η‖|

≥ |η‖| − |π(ζ)|
≥ |η‖| − |ζ|
≥ |η‖| − β1.

Finally note that J (η̂‖) is bounded by some constant C ′ = C ′(S, x∞, β1, β2) on A
since σ can be extended smoothly beyond A. Hence∣∣∣∣∣ζ − η‖ − (σ(ξ

‖
k + εkη

‖)− σ(ξ
‖
k))

εk

∣∣∣∣∣
−γ

J (ξ
‖
k + εkη

‖)
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is bounded from above by the function

Φ(η‖) :=

⎧⎨⎩C ′
(

β2

2

)−γ

if |η‖| < 2β1,

C ′(|η‖| − β1)
−γ if |η‖| ≥ 2β1,

which is integrable on all of Tx∞S since γ > m. This means that we have now shown
that

εγ−m
k

∫
S

|Πεk
x∞,xk

(ζ)− y|−γ dy

≤ (R/2)−mHm(S)

+

∫
(A−ξ

‖
k)/εk

∣∣∣∣∣ζ − η‖ − σ(ξ
‖
k + εkη

‖)− σ(ξ
‖
k)

εk

∣∣∣∣∣
−γ

J (ξ
‖
k + εkη

‖) dη‖

≤ (R/2)−mHm(S) +

∫
(A−ξ

‖
k)/εk

Φ(η‖) dη‖

≤ (R/2)−mHm(S) +

∫
Tx∞S

Φ(η‖) dη‖

for xk ∈ R
n and εk > 0 such that |xk − x∞|+ εkβ1 ≤ R/2. Choosing

C(S, x∞, γ, β1, β2) := (R/2)−mHm(S) +

∫
Tx∞S

Φ(η‖) dη‖

completes the proof of the boundedness statement in part (i).

Part (ii): Pointwise convergence. We will now apply the dominated convergence
theorem to pass to the limit in (2). As preparation we first note that

lim
k→∞

σ(ξ
‖
k + εkη

‖)− σ(ξ
‖
k)

εk
= lim

ξ
‖
k→x∞
εk→0

σ(ξ
‖
k + εkη

‖)− σ(ξ
‖
k)

εk
= 0

since Jσ(x∞) = 0. For the same reason,

lim
k→∞

J (ξ
‖
k + εkη

‖) = lim
ξ
‖
k→x∞
εk→0

√
det(I + Jσ(ξ

‖
k + εkη‖)TJσ(ξ

‖
k + εkη‖)) = 1.

Let χ
(A−ξ

‖
k)/εk

denote the characteristic function of the set (A− ξ
‖
k)/εk. Using the ex-

istence of the integrable function Φ we can apply the dominated convergence theorem
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to see that

lim
k→∞

∫
(A−ξ

‖
k)/εk

∣∣∣∣∣ζ − η‖ − σ(ξ
‖
k + εkη

‖)− σ(ξ
‖
k)

εk

∣∣∣∣∣
−γ

J (ξ
‖
k + εkη

‖) dη‖

= lim
k→∞

∫
Tx∞S

χ
A−ξ

‖
k

εk

(η‖)

∣∣∣∣∣ζ − η‖ − σ(ξ
‖
k + εkη

‖)− σ(ξ
‖
k)

εk

∣∣∣∣∣
−γ

· J (ξ
‖
k + εkη

‖) dη‖

=

∫
Tx∞S

lim
k→∞

∣∣∣∣∣ζ − η‖ − σ(ξ
‖
k + εkη

‖)− σ(ξ
‖
k)

εk

∣∣∣∣∣
−γ

J (ξ
‖
k + εkη

‖) dη‖

=

∫
Tx∞S

|ζ − η‖|−γ dη‖.

This together with (2) means that we have now shown that

lim
k→∞

εγ−m
k

∫
S∩BR(x∞)

|Πεk
x∞,xk

(ζ)− y|−γ dy =

∫
Tx∞S

|ζ − η‖|−γ dη‖,

which together with (1) completes the proof of part (ii).

In the next proposition we prove that the functions Fk from Lemma 2.1 converge
in Cr(K) for compact domains K.

Proposition 2.2. Fix γ > m. Let xk ∈ S and εk > 0 be sequences with xk → x∞
and εk → 0. Let K ⊂ Tx∞R

n \ Tx∞S be compact. Then for r ∈ N the functions Fk

converge to F∞ in Cr(K) as k → ∞.

Proof. Fix r ∈ N. We will apply Lemma 2.1. Let

β1 := max
ζ∈K

|ζ|,

β2 := min
ζ∈K

distδ(ζ, Tx∞S).

For each l ∈ N let

Dl :=
l−1∏
i=0

(γ + i).

We have ∣∣∣∣ ∂

∂xi1
· · · ∂

∂xil
|x− y|−γ

∣∣∣∣ ≤ Dl|x− y|−(γ+l)

so ∣∣∣∣ ∂

∂ζi1
· · · ∂

∂ζil
εγ−m
k |Πεk

x∞,xk
(ζ)− y|−γ

∣∣∣∣
≤ Dlε

γ+l−m
k |Πεk

x∞,xk
(ζ)− y|−(γ+l).
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By applying Lemma 2.1 for all exponents {γ + l | 0 ≤ l ≤ r + 1} we get constants Cl

such that

Dlε
γ+l−m
k

∫
S

|Πεk
x∞,xk

(ζ)− y|−(γ+l) dy ≤ Cl.

This means that

∂

∂ζi1
· · · ∂

∂ζil
Fk(ζ) =

∂

∂ζi1
· · · ∂

∂ζil
εγ−m
k

∫
S

|Πεk
x∞,xk

(ζ)− y|−γ dy

= εγ−m
k

∫
S

∂

∂ζi1
· · · ∂

∂ζil
|Πεk

x∞,xk
(ζ)− y|−γ dy

≤ Dlε
γ+l−m
k

∫
S

|Πεk
x∞,xk

(ζ)− y|−(γ+l) dy

≤ Cl.

Hence we have uniform bounds for ||Fk||Cr+1(K).
From the uniform bounds on ||Fk||Cr+1(K) and the pointwise convergence of Fk

to F∞ it follows that Fk → F∞ in Cr(K).

As a corollary we can determine what the metrics gεk converge to after appropriate
rescaling and change of coordinates.

Corollary 2.3. Let K ⊂ Tx∞R
n \ Tx∞S be compact. Let xk ∈ S and

εk > 0 be sequences with xk → x∞ and εk → 0. Then the rescaled pullback met-
rics ε−2

k (Πεk
x∞,xk

)∗(gεk) on K converge in every Cr(K) to

u4/(n−2)
∞ δ

where δ is the Euclidean metric on K ⊂ Tx∞R
n and

u∞(ζ) := 1 +

∫
Tx∞S

|ζ − η|−(n−2) dη.

Proof. With γ = n−2 we have uεk(Π
εk
x∞,xk

(ζ)) = 1+Fk(ζ) and u∞(ζ) = 1+F∞(ζ).
Since n− 2 > m it follows from Proposition 2.2 that

uεk(Π
εk
x∞,xk

(ζ)) → u∞(ζ)

in Cr(K) as k → ∞. The corollary follows since ε−2
k (Πεk

x∞,xk
)∗(δ) = δ.

3. The mean curvature of tubular hypersurfaces. By the tubular hyper-
surface of radius a around S, denoted Tub(S, a), we mean the image of UNS under
the map ζ �→ expδ(aζ). Recall that expδ is the exponential map for the Euclidean
metric δ.

We need to understand the behaviour of S and Tub(S, a) under the rescaling stud-
ied in the previous section. By writing S as a graph over Tx∞S in normal coordinates,
we conclude the following.

Lemma 3.1. Let xk ∈ S and εk > 0 be sequences with xk → x∞ and εk → 0.
Then

(Πεk
x∞,xk

)−1(S) → Tx∞S
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and

(Πεk
x∞,xk

)−1(Tub(S, aεk)) → Tub(Tx∞S, a)

smoothly on compact subsets of Tx∞R
n as k → ∞.

Here, smooth convergence of submanifolds Nk means that if k is sufficiently large
then in normal coordinates for the limit submanifold N∞, each Nk is the graph of a
smooth function on N∞, and these functions converge smoothly to 0 as k → ∞.

The cylinder Tub(Tx∞S, a) has mean curvature (n − m − 1)a−1 in the metric
δ. Thus, we can use Lemma 3.1 to compute the mean curvature of Tub(S, a) in the
Euclidean metric δ when the radius a is small. See also for instance [14, Section 4].

Lemma 3.2. The mean curvature of Tub(S, a) in the Euclidean metric δ is

(n−m− 1)a−1 +O(1)

as a → 0, where the bounded term O(1) depends only on the geometry of S.

The tubular hypersurfaces Tub(Tx∞S, a) with varying a give a foliation of Tx∞R
n\

Tx∞S by cylinders with constant mean curvature in the metric u
4/(n−2)
∞ δ. In the next

lemma we see that this foliation contains exactly one minimal hypersurface.

Lemma 3.3. Let

â :=

(
Dn,m

1− Cn,m

Cn,m

)1/(n−m−2)

where

Cn,m :=
(n− 2)(n−m− 1)

2(n− 1)(n−m− 2)

and

Dn,m :=

∫
Rm

(1 + |η|2)−(n−2)/2 dη.

Then the mean curvature of Tub(Tx∞S, a) in the metric u
4/(n−2)
∞ δ is zero for a = â,

negative for 0 < a < â and positive for a > â.

Proof. For ζ ∈ Tub(Tx∞S, a) it holds that

u∞(ζ) = 1 +

∫
Tx∞S

|ζ − η|−(n−2) dη

= 1 +

∫
Tx∞S

(a2 + |η|2)−(n−2)/2 dη

= 1 + a−(n−m−2)

∫
Rm

(1 + |η|2)−(n−2)/2 dη

= 1 + a−(n−m−2)Dn,m.

Since the mean curvature of Tub(Tx∞S, a) in the metric δ is (n−m− 1)a−1 we find
that its mean curvature in the metric u

4/(n−2)
∞ δ is

u−2/(n−2)
∞

(
n−m− 1

a
+ 2

n− 1

n− 2

d

da
lnu∞

)
= (1 + a−γDn,m)−

2
n−2

1

a

(
(γ + 1)− 2γ

n− 1

n− 2

a−γDn,m

1 + a−γDn,m

)
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where we have set γ := n−m− 2. From this it is not complicated to verify the claim
of the lemma.

In the following proposition we show that a tubular hypersurface around S with
radius in a certain interval has positive mean curvature in (Rn \ S, gε).

Proposition 3.4. There are constants Couter > 0 and Router > 0 such that
for all sufficiently small ε > 0 it holds for all Couterε ≤ a ≤ Router that the tubular
hypersurface Tub(S, a) has positive mean curvature in (Rn \ S, gε).

Proof. Suppose that the result does not hold. Then for every choice of C and R
there is a sequence εk → 0 and a sequence ak with Cεk ≤ ak ≤ R such that Tub(S, ak)
contains at least one point xk where the mean curvature is nonpositive.

We first consider the case where ak → 0 and there is a subsequence for which
εk/ak converges to a positive number L. Note that then L ≤ 1/C. We rescale by Lak
around the point xk using the map ΠLak

x∞,xk
. Then by Lemma 3.1 we have

(ΠLak
x∞,xk

)−1(Tub(S, ak)) → Tub(Tx∞S, 1/L).

It holds that

(Lak)
−2(ΠLak

x∞,xk
)∗(gεk)(ζ)

=

(
1 + εn−m−2

k

∫
S

|ΠLak
x∞,xk

(ζ)− y|−(n−2) dy

)4/(n−2)

δ

=

(
1 +

(
εk
Lak

)n−m−2

Fk(ζ)

)4/(n−2)

δ

where

Fk(ζ) = (Lak)
n−m−2

∫
S

|ΠLak
x∞,xk

(ζ)− y|−(n−2) dy.

We conclude from Proposition 2.2 applied with εk = Lak that

lim
k→∞

(Lak)
−2(ΠLak

x∞,xk
)∗(gεk)(ζ) = (1 + F∞(ζ))

4/(n−2)
δ

= (u∞(ζ))
4/(n−2)

δ

where

F∞(ζ) =

∫
Tx∞S

|ζ − η|−(n−2) dη.

Choose C > â. Then 1/L ≥ C > â so that by Lemma 3.3 the limit cylinder
Tub(Tx∞S, 1/L) has positive mean curvature in the limit metric u

4/(n−2)
∞ δ. This

contradicts the assumption that the mean curvature of Tub(S, ak) in the metric gεk
is nonpositive at xk for every k.

Second, we consider the case where ak → 0 and εk/ak → 0. In this case we rescale
by ak around the point xk using the map Πak

x∞,xk
, in which case

(Πak
x∞,xk

)−1(Tub(S, ak)) → Tub(Tx∞S, 1).
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From a computation like in the previous case we find that

lim
k→∞

a−2
k (Πak

x∞,xk
)∗(gεk) = δ.

Since Tub(Tx∞S, 1) has positive mean curvature in the metric δ we again find a
contradiction.

Finally, we consider the case where there is a subsequence for which ak → a∞ �= 0.
Then a∞ ≤ R. If R is sufficiently small, the tubular hypersurfaces Tub(S, ak) stay
in a compact set bounded away from S and the metrics gεk tend uniformly to the
Euclidean metric δ on this compact set. Choosing R sufficiently small compared to
the geometry of S we find from Lemma 3.2 that the limit surface Tub(S, a∞) has
positive mean curvature in the limit metric δ, which contradicts the assumption of
nonpositive mean curvature of Tub(S, ak) in gεk at xk.

The following proposition states that any tubular hypersurface around S with
sufficiently small radius has negative mean curvature in (Rn \ S, gε). The proof is
similar to the proof of the previous proposition, and we omit it.

Proposition 3.5. There is a constant Cinner > 0 such that for all sufficiently
small ε > 0 it holds for all 0 < a ≤ Cinnerε that the tubular hypersurface Tub(S, a)
has negative mean curvature in (Rn \ S, gε).

4. The location of outer area minimizing stationary hypersurfaces. The
purpose of this section is to prove that for small ε, all outer area minimizing sta-
tionary bounding hypersurfaces in (Rn \ S, gε) are contained in the region between
Tub(S,Cinnerε) and Tub(S,Couterε). In this paper, we use the word “hypersurface” to
mean a smooth hypersurface. Note that this means that the closure of a hypersurface
might contain singular points. We begin by introducing the relevant terminology.

Let (M, g) be an asymptotically Euclidean Riemannian manifold. A hypersurface
Σ ⊂ M is called bounding if its closure Σ is compact and Σ is the reduced boundary of
a Caccioppoli set (see for instance [12], in particular [12, Chapter 3 and Remark 3.2]),
the complement of which is a neighborhood of the asymptotically Euclidean end. We
call this Caccioppoli set the region inside Σ. The bounding hypersurface Σ encloses
a bounding hypersurface Σ′ if the region inside Σ contains the region inside Σ′. We
say that a bounding hypersurface in (Rn \ S, gε) encloses the end at S if it encloses
Tub(S, a) for all sufficiently small a > 0. We define the regular and singular sets of
a hypersurface Σ as follows: The regular set reg(Σ) is the set of points in Σ which
have a neighborhood in which Σ is a connected hypersurface. The singular set is
sing(Σ) = Σ \ reg(Σ). We say that Σ is nonsingular if sing(Σ) = ∅. We only consider
hypersurfaces Σ for which Σ = reg(Σ), in other words that no points where Σ is
smooth have been left out.

Let Σ be a bounding hypersurface in (M, g), and let E be the region inside Σ.
Then Σ is outer area minimizing if its area is not greater than the perimeter of any
Caccioppoli set containing E. A hypersurface Σ in a Riemannian manifold (M, g)
is stationary if the first variation of its area vanishes when Σ is deformed in the
direction of any vector field with compact support in M . A hypersurface is stable if,
in addition, the second variation of area is nonnegative for such vector fields. We will
use the concept of stationarity for Σ in M = R

n \ S as well as in M = R
n. Note that

every outer area minimizing stationary hypersurface is stable.
The outer area minimizing property gives local area bounds, as expressed in the

following lemma. We denote k-dimensional Hausdorff measure with respect to a metric
g by Hg

k.
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N

Σ

E

Fig. 1: ∂(E ∪N) is an outward variation of Σ and hence has at least the same area. This
gives a bound for the area of Σ ∩N .

Lemma 4.1. Let Σ be an outer area minimizing hypersurface in an asymptotically
Euclidean Riemannian manifold (M, g). Let N ⊂ M be an open set with compact
closure and piecewise smooth boundary. Then

Hg
n−1(Σ ∩N) ≤ Hg

n−1(∂N).

Proof. Let E be the region inside Σ. The set ∂(E ∪ N) is an outward variation
of Σ, as shown in Figure 1, and hence

Hg
n−1(Σ) ≤ Hg

n−1(∂(E ∪N)).

Splitting this inequality into the part inside N and the part outside N we have

Hg
n−1

(
Σ ∩N

)
+Hg

n−1

(
Σ \N

)
≤ Hg

n−1

(
∂(E ∪N) ∩N

)
+Hg

n−1

(
∂(E ∪N) \N

)
.

Since Σ \N = ∂(E ∪N) \N the above inequality reduces to

Hg
n−1(Σ ∩N) ≤ Hg

n−1(∂(E ∪N) ∩N).

Since Σ ∩N ⊆ Σ ∩N and ∂(E ∪N) ∩N ⊆ ∂N we obtain the desired bound.

For the proof of Proposition 4.5 and Proposition 5.1 we will use a convergence
result for stable hypersurfaces. We have not been able to find a proof of this result
in the exact form we need, but it follows from the work of Schoen and Simon in [15]
and we sketch a proof.

Theorem 4.2 (Schoen–Simon [15]). Let Ω be an orientable smooth manifold of
dimension n and let K ⊂ Ω be compact. Let h∞ be a Riemannian metric on Ω, let
hk be a sequence of smooth Riemannian metrics on Ω, and let Γk be a sequence of
hypersurfaces in Ω. Assume that

• Γk ∩K �= ∅ for all k,
• each Γk is a stable hypersurface for the metric hk,
• Hh∞

n−3(sing(Γk)) = 0,
• for every open set Ω′ with compact closure Ω′ ⊆ Ω

– the metrics hk converge to h∞ uniformly in Cr(Ω′) for every r, and
– lim supk→∞ Hhk

n−1(Γk ∩ Ω′) < ∞.
Then there is

• a subsequence of Γk, still denoted Γk, and
• a hypersurface Γ∞ ⊂ Ω
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such that
• Γk → Γ∞ as varifolds,
• Hh∞

α (sing(Γ∞)) = 0 if α > n− 8 and α ≥ 0,
• Γ∞ ∩K �= ∅,
• Γ∞ is a stable hypersurface in the metric h∞,
• for every open set Ω′ with compact closure Ω′ ⊆ Ω \ sing(Γ∞)

– Hh∞
n−1(Γ∞ ∩ Ω′) ≤ lim supk→∞ Hhk

n−1(Γk ∩ Ω′), and
– the subsequence Γk converges smoothly to Γ∞ (disregarding multiplicity)

on Ω′.

The smooth convergence of Γk to Γ∞ on Ω′, disregarding multiplicity, means that
if k is sufficiently large then in normal coordinates for Γ∞, each Γk is the union of
graphs of a finite number of smooth functions on Γ∞, and these functions converge
in C∞(Γ∞ ∩ Ω′) to 0 as k → ∞.

Proof. In this proof, we let singC2(Γ) denote the singular part of Γ in the C2

sense. Cover Ω by balls of a fixed small radius. Applying [15, Theorem 2] in each ball
we obtain a (possibly empty) stable C2 hypersurface Γ∞, with Hh∞

α (singC2(Γ∞)) =
0 if α > n − 8 and α ≥ 0, to which a subsequence Γk converges in the sense of
varifolds. Moreover, there is at least one ball in which Γ∞ ∩ K �= ∅. Taking a
diagonal subsequence we can patch these locally defined hypersurfaces together to a
hypersurface Γ∞ ⊂ Ω with Γ∞ ∩K �= ∅.

Let Ω′ be an open set with compact closure Ω′ ⊆ Ω\singC2(Γ∞). Since Γk → Γ∞
as varifolds, we have Hh∞

n−1(Γ∞ ∩ Ω′) ≤ lim supk→∞ Hhk
n−1(Γk ∩ Ω′).

Using [15, Inequality (1.18)] one can prove that varifold convergence implies con-
vergence in Hausdorff distance (see also [15, Remark 10 on p. 779]). Hence [15,
Theorem 1] is applicable at every point of Γ∞ ∩ Ω′, telling us that the hypersurfaces
Γk∩Ω′ eventually become graphs of functions over the tangent space of Γ∞∩Ω′ at the
chosen point. This theorem also gives uniform C2 bounds for these functions, which
implies subsequential convergence in C1,α for all α ∈ (0, 1). The hypersurfaces Γk∩Ω′

are graphs of functions satisfying the minimal surface equations for a converging se-
quence of metrics. By ellipticity of the minimal surface equations, we conclude C∞

convergence and that Γ∞∩Ω′ is smooth, which implies that sing(Γ∞) = singC2(Γ∞).

Having completed these preliminaries, we continue the study of the location of
outer area minimizing stationary bounding hypersurfaces in (Rn \ S, gε). Since the
metrics gε converge uniformly to the Euclidean metric outside of a neighborhood of
S as ε → 0 we conclude the following.

Proposition 4.3. Let Sn−1(R) denote the sphere of radius R around the origin
in R

n. There is a constant Rend such that, for small ε, it holds that Sn−1(R) has
positive mean curvature in (Rn, gε) if R ≥ Rend.

Using the maximum principle of Solomon and White [18] we can prove the fol-
lowing proposition.

Proposition 4.4. Every stationary bounding hypersurface Σ in (Rn \ S, gε) is
contained in the region between Tub(S,Cinnerε) and Sn−1(Rend).

Proof. Let a := infx∈Σ distδ(x, S). It holds that 0 < a since Σ ⊂ R
n \ S is

compact. Let N denote the region outside Tub(S, a). Suppose for contradiction that
a ≤ Cinnerε. By Proposition 3.5 the hypersurface ∂N = Tub(S, a) has negative mean
curvature. Since Σ is a stationary hypersurface with Σ ∩ ∂N �= ∅, the maximum
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principle of Solomon and White [18, Theorem, p. 686 and Remarks 1 and 2, pp. 690-
691] and [19, Theorem 4] implies that the mean curvature of at least one connected
component of ∂N is zero, which is a contradiction. Hence Σ is contained in the region
outside Tub(S,Cinnerε).

A similar argument using a := supx∈Σ distδ(x, 0) and Proposition 4.3 proves that
Σ is contained in the region inside Sn−1(Rend).

The previous result restricts the location of outer area minimizing stationary
hypersurfaces to within a large coordinate sphere. We will now prove that they
actually collapse to S as ε → 0. The proof is inspired by the proof of [5, Theorem 3.2].

Proposition 4.5. Let R > 0. For sufficiently small ε > 0, every outer area min-
imizing stationary hypersurface Σ in (Rn \ S, gε) with Hn−3(sing(Σ)) = 0 is enclosed
by Tub(S,R).

Proof. Suppose for contradiction that there is a sequence εk → 0, a sequence Σk

of outer area minimizing stationary hypersurfaces in (Rn \ S, gεk), and a sequence of
points xk ∈ Σk such that distδ(xk, S) > R. Note that gεk converges to the Euclidean
metric δ uniformly on compact subsets in R

n \ S. Moreover, since Σk is outer area
minimizing we have Hgεk

n−1(Σk) ≤ Hgεk
n−1(S

n−1(Rend)) which is uniformly bounded. By
Theorem 4.2, applied with Ω equal to R

n \ S and K being the closure of the region
between Tub(S,R) and Sn−1(Rend), there is then a nonempty stable hypersurface Σ∞
in (Rn \ S, δ) such that Hδ

α(sing(Σ∞) \ S) = 0 for all nonnegative α > n− 8 and

Hδ
n−1(Σ∞ ∩ Ω′) ≤ lim sup

k→∞
Hgεk

n−1(Σk ∩ Ω′)

for all compact sets Ω′ ⊂ R
n \ S. Moreover, Σ∞ is enclosed by Sn−1(Rend) since this

holds for each Σk by Proposition 4.4.

The hypersurface Σ∞ is stationary in (Rn \ S, δ). We now prove that it is sta-
tionary as a hypersurface in (Rn, δ). We need to prove that

∫
Σ∞

divδΣ∞(X) dHδ
n−1 = 0

for all compactly supported vector fields X on R
n. Here divδΣ∞(X) is the divergence

of X along the hypersurface Σ∞ in the Euclidean metric δ. For this, we define a
family of smooth cut-off functions ηρ for all sufficiently small ρ > 0 by

ηρ(x) := η

(
distδ(x, S)

ρ

)

where η : [0,∞) → [0, 1] is a smooth increasing function such that η(1) = 0 and
η(2) = 1, with derivative η′(t) < 2 for all t. Since Σk → Σ∞, and each Σk is outer
area minimizing so that Lemma 4.1 is applicable, there are constants C1, C2, and C3
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such that∫
Σ∞

|dηρ| dHδ
n−1 ≤ 2

ρ
Hδ

n−1(Σ∞ ∩ supp(dηρ))

=
2

ρ
Hδ

n−1(Σ∞ ∩ {x ∈ R
n | ρ < distδ(x, S) < 2ρ})

≤ C1

ρ
Hgεk

n−1(Σk ∩ {x ∈ R
n | ρ < distδ(x, S) < 2ρ})

≤ C1

ρ
Hgεk

n−1(Tub(S, ρ) ∪ Tub(S, 2ρ))

≤ C2

ρ
Hδ

n−1(Tub(S, ρ) ∪ Tub(S, 2ρ))

= C3ρ
n−m−2,

where the intermediate inequalities hold for all sufficiently large k. Since Σ∞ is
stationary as a hypersurface in (Rn \ S, δ) it holds that∫

Σ∞
divδΣ∞(ηρX) dHδ

n−1 = 0.

Let π denote the δ-orthogonal projection of TRn onto TΣ∞. Since divδΣ∞(ηρX) =

ηρ div
δ
Σ∞(X) + π(X)(ηρ) and n−m− 2 ≥ 1 we have∣∣∣∣∫

Σ∞
divδΣ∞(X) dHδ

n−1

∣∣∣∣ = lim
ρ→0

∣∣∣∣∫
Σ∞

ηρ div
δ
Σ∞(X) dHδ

n−1

∣∣∣∣
= lim

ρ→0

∣∣∣∣∫
Σ∞

π(X)(ηρ) dHδ
n−1

∣∣∣∣
≤

(
sup
Σ∞

|X|
)

lim
ρ→0

∫
Σ∞

|dηρ| dHδ
n−1

≤
(
sup
Σ∞

|X|
)

lim
ρ→0

C3ρ
n−m−2

= 0.

Hence Σ is stationary as a hypersurface in (Rn, δ).
Let L : Rn → R be a nonzero linear function. Let a := supx∈Σ L(x). Since Σ

is compact, a < ∞. The hyperplane L−1(a) is a connected minimal hypersurface in
(Rn, δ) and Σ is stationary. According to the maximum principle of Solomon and
White [18, Theorem, p. 686 and Remarks 1 and 2, pp. 690-691] and [19, Theorem 4],
the hyperplane L−1(a) is contained in Σ which contradicts compactness of Σ.

We summarize the results of this section in the following proposition.

Proposition 4.6. For all sufficiently small ε > 0, every outer area minimizing
stationary hypersurface Σ in (Rn \ S, gε) with Hn−3(sing(Σ)) = 0 must be contained
in the region between Tub(S,Cinnerε) and Tub(S,Couterε).

Proof. By Proposition 4.4 and Proposition 4.5 it is sufficient to prove that Σ does
not intersect the region between Tub(S,Couterε) and Tub(S,Router). Proposition 3.4
tells us that this region is foliated by hypersurfaces with positive mean curvature,
which means that Σ cannot intersect it without contradicting the maximum principle
of Solomon and White, as in Proposition 4.4.
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5. Tubularity of outer area minimizing stationary hypersurfaces. In this
section we will prove Proposition 5.2, which states that if ε > 0 is sufficiently small,
then every outer area minimizing stationary hypersurface Σ in (Rn \ S, gε) which
encloses the end at S and has Hn−3(sing(Σ)) = 0 is diffeomorphic to the unit normal
bundle of S. The idea of the proof is the following. By using a contradiction argument
it is sufficient to study a sequence of such hypersurfaces Σk close to xk for a convergent
sequence (xk, εk) → (x∞, 0). We prove that, after rescaling around the points xk, the
hypersurfaces Σk converge smoothly to a cylinder around Tx∞S. For this convergence
we use the area bounds from Lemma 4.1, which we obtained by using the fact that the
hypersurfaces are outer area minimizing. Since the rescaled hypersurfaces converge
smoothly to a cylinder, they must be the union of graphs of a number of smooth
functions on the cylinder provided k is sufficiently large. By using the outer area
minimizing property again we can prove that, near xk, each hypersurface is the graph
of a single smooth function, thereby proving the proposition.

The contradiction part of the argument is contained in Proposition 5.2, while the
local result is the following proposition.

Proposition 5.1. Let xk → x∞ be a convergent sequence of points in S and let
εk → 0. For each k, let Σk be an outer area minimizing stationary hypersurface in
(Rn \ S, gεk) which encloses the end at S and has Hn−3(sing(Σk)) = 0. Then for all
sufficiently large k there is an open set Uk ⊆ S containing xk such that, in normal
coordinates, the set Σk ∩ expδ((Cinnerεk, Couterεk)UNUk) is the graph of a smooth
function on the unit normal bundle UNUk of Uk.

Proof. Throughout the proof, expδ denotes the normal exponential map of
S ⊂ R

n in the Euclidean metric δ, and we consider only ε > 0 which are sufficiently
small for expδ : [Cinnerε, Couterε]UNS → R

n to be an embedding.

Step 1: Rescaling. Consider the metrics

hk := ε−2
k

(
Πεk

x∞,xk

)∗
(gεk)

on

Ω := Tx∞R
n \ Tx∞S.

By Corollary 2.3 these metrics converge in Cr(Ω′) for every r ≥ 0 and every open set
Ω′ with compact closure Ω′ ⊆ Ω to

h∞ := u4/(n−2)
∞ δ

where

u∞(ζ) = 1 +

∫
Tx∞S

|ζ − η|−(n−2) dη.

Define

Γk :=
(
Πεk

x∞,xk

)−1
(Σk).

Then Γk is an outer area minimizing stable hypersurface for the metric hk.

Step 2: Convergence. We are now going to apply Theorem 4.2 with Ω, hk, h∞, and
Γk as defined in Step 1, and with K := [Cinner/2, 2Couter]UNx∞S. Proposition 4.6
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tells us that the intersection Γk∩K is nonempty for sufficiently large k. By Lemma 4.1
it holds that

Hhk
n−1(Γk ∩ Ω′) ≤ Hhk

n−1(∂Ω
′)

for every open set Ω′ with compact closure Ω′ ⊆ Ω and piecewise smooth boundary.
This, together with the smooth convergence hk → h∞, tells us that

lim sup
k→∞

Hhk
n−1(Γk ∩ Ω′) ≤ lim sup

k→∞
Hhk

n−1(∂Ω
′) = Hh∞

n−1(∂Ω
′).

With these choices, Theorem 4.2 is applicable, giving a stable hypersurface Γ∞ and
a subsequence of Γk, still denoted Γk, which are such that

• Γk → Γ∞ as varifolds,
• Hh∞

α (sing(Γ∞)) = 0 if α > n− 8 and α ≥ 0,
• Γ∞ ∩K �= ∅,
• Γ∞ is a stable hypersurface in the metric h∞,
• for every open set Ω′ with compact closure Ω′ ⊆ Ω \ sing(Γ∞)

– Hh∞
n−1(Γ∞ ∩ Ω′) ≤ lim supk→∞ Hhk

n−1(Γk ∩ Ω′), and
– the subsequence Γk converges smoothly to Γ∞ (disregarding multiplic-

ity) on Ω′.
By the above,

Hh∞
n−1(Γ∞ ∩ Ω′) ≤ Hh∞

n−1(∂Ω
′). (5)

Step 3: Identifying the limit. We will now show that Γ∞ = Tub(Tx∞S, â) with â
as in Lemma 3.3. Suppose for contradiction that Γ∞ \Tub(Tx∞S, â) �= ∅. Then either
Γ∞ contains points strictly outside of Tub(Tx∞S, â), or it contains points strictly in-
side of Tub(Tx∞S, â). We derive a contradiction only in the former case; the argument
for a contradiction in the latter case is analogous. Let

a := sup
ξ∈Γ∞

dist(ξ, Tx∞S) > â

as illustrated in Figure 2. We will use a sequence of translations and an application
of Theorem 4.2 to reduce to the case where the supremum is attained.

Let ξi ∈ Γ∞ be a sequence of points such that dist(ξi, Tx∞S) → a. As above,
let K := [Cinner/2, 2Couter]UNx∞S. Let ΩK be an open neighborhood of K with
compact closure ΩK ⊂ Ω and piecewise smooth boundary. Note that the metric h∞
has translational symmetry along Tx∞S. For each i let τi be a translation along Tx∞S
with τi(ξi) ∈ K. Let Γi

∞ := τi(Γ∞) ∩ ΩK . Then, by the translation symmetry of h∞
and by inequality (5),

Hh∞
n−1(Γ

i
∞) = Hh∞

n−1(τi(Γ∞) ∩ ΩK)

= Hh∞
n−1(Γ∞ ∩ τ−1

i (ΩK))

≤ Hh∞
n−1(∂(τ

−1
i (ΩK)))

= Hh∞
n−1(∂ΩK).

This means that

Hh∞
n−1(Γ

i
∞ ∩ Ω′) ≤ Hh∞

n−1(∂ΩK)
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Tx∞S

Γ∞
Tub(Tx∞S, a)

Fig. 2: The surface Γ∞ approaches
Tub(Tx∞S, a) from the inside.

Tx∞S

Γ∞
∞

Tub(Tx∞S, a)

Fig. 3: After translations, the surface Γ∞
∞

is tangent to Tub(Tx∞S, a) from the in-
side.

for every open set Ω′ with compact closure Ω′ ⊆ ΩK . The hypersurfaces Γi
∞ all

intersect the compact set K. By Theorem 4.2, a subsequence of Γi
∞ converges to a

stable hypersurface Γ∞
∞.

Let ξ∞ be a limit point of the sequence τi(ξi). Since Γi
∞ → Γ∞

∞ in Hausdorff
distance (see [15, Remark 10 on p. 779]) it holds that ξ∞ ∈ Γ∞∞. This proves that
the supremum a of dist(·, Tx∞S) on Γ∞∞ is attained at ξ∞ ∈ K ⊂ ΩK . The sta-
tionary hypersurface Γ∞

∞ ⊂ ΩK is contained in the region inside Tub(Tx∞S, a), and
ξ∞ ∈ Γ∞∞ ∩ Tub(Tx∞S, a) as in Figure 3. Since we have assumed for contradic-
tion that a > â, Lemma 3.3 tells us that Tub(Tx∞S, a) has positive mean curva-
ture. As in Proposition 4.4, this contradicts the maximum principle of Solomon and
White. Hence supξ∈Γ∞ dist(ξ, Tx∞S) = â. Similarly, infξ∈Γ∞ dist(ξ, Tx∞S) = â, so
that Γ∞ ⊆ Tub(Tx∞S, â).

The hypersurfaces Σk enclose the end at S, so each Γk separates
(
Πεk

x∞,xk

)−1
(S)

from faraway points in R
n, in the sense that every continuous curve from(

Πεk
x∞,xk

)−1
(S) from faraway points in R

n intersects Γk. This means that the hy-
persurface Γ∞ separates Tx∞S from faraway points in the normal space Nx∞S. The
only subset of Tub(Tx∞S, â) which separates Tx∞S from such points is Tub(Tx∞S, â)
itself, so Γ∞ = Tub(Tx∞S, â). By our convention, Γ∞ = reg Γ∞, so it holds that Γ∞
is nonsingular.

Step 4: Determining the multiplicity. To simplify notation we introduce a
rescaling in the normal direction defined for r ∈ R and ζ ∈ Tx∞R

n by

r ∗ ζ = π(ζ) + r(ζ − π(ζ)).

Recall that π denotes the orthogonal projection π : Tx∞R
n → Tx∞S.

In the previous step we found that the hypersurfaces Γk converge smoothly to
Tub(Tx∞S, â) on each compact set, if we disregard multiplicities. We will now prove
that the multiplicity is one. Choose an open neighborhood U ⊂ Tx∞S of 0 with
compact closure. The smooth convergence of Γk to Tub(Tx∞S, â) on (Cinner, Couter) ∗
Tub(U, 1) implies for any ρ > 0 that for all sufficiently large k, there is a finite set of
smooth functions

Ψ1
k, . . . ,Ψ

N
k : Tub(U, 1) → (Cinner, Couter)

such that

sup
ζ∈Tub(U,1)
i∈{1,...,N}

|Ψi
k(ζ)− â| < ρ
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Tx∞S

Γ∞

Γk

(Cinner, Couter) ∗ U

Fig. 4: The hypersurface Γk is the union
of graphs of functions Ψi

k. The set Ek is
shown in light grey.

Tx∞S

Γ∞

Γk

(Cinner, Couter) ∗ U

Fig. 5: The set Dk is shown in dark grey.

and such that the maps ω �→ Ψi
k(ω) ∗ ω together give a surjective map⊔

i∈{1,...,N}
Tub(U, 1) → Γk ∩ (Cinner, Couter) ∗ Tub(U, 1),

see Fig. 4. The functions (Ψi
k)1≤i≤N may agree at some points, but since we assume

that Hn−3(sing(Σk)) = 0, this intersection set has zero (n−3)-dimensional Hausdorff
measure. Thus, we may order the functions so that Ψ1

k < Ψ2
k < · · · < ΨN

k except on
a set with zero (n− 3)-dimensional Hausdorff measure.

Our goal is now to show that N = 1. To do this, we will use an argument similar
to the one we used in Lemma 4.1 to obtain area bounds. Since Γk is bounding, it
encloses a region Ek. Choose an open neighborhood V ⊂ Tx∞S of 0 with smooth
boundary such that V ⊂ U . Let

Dk := {r ∗ ω | ω ∈ Tub(V, 1),Ψ1
k(ω) ≤ r ≤ ΨN−1

k (ω)},

as shown in Figure 5. The boundary of Dk has a “vertical” component

∂⊥Dk := {r ∗ ω | ω ∈ ∂ Tub(V, 1),Ψ1
k(ω) ≤ r ≤ ΨN−1

k (ω)}.

Of course Ek ⊆ Ek∪Dk so ∂(Ek∪Dk) is an outward variation of Γk. In this variation
the boundary is changed by adding the hypersurface ∂(Ek ∪Dk) \ ∂Ek and removing
the hypersurface ∂Ek \∂(Ek∪Dk). To estimate the area added and removed, we note
that

∂(Ek ∪Dk) \ ∂Ek ⊆ ∂⊥Dk

and

∂Ek \ ∂(Ek ∪Dk) =

N−1⋃
i=1

{Ψi
k(ω) ∗ ω | ω ∈ Tub(V, 1)},

up to sets of zero (n−3)-dimensional Hausdorff measure. On the set (Cinner, Couter)∗
Tub(U, 1) all metrics hk and h∞ are conformal to the Euclidean metric with uniformly
bounded conformal factors. Therefore there are constants C+ and C− depending on
U , Cinner, and Couter, but not depending on ρ and k, such that

Hhk
n−1(∂

⊥Dk) ≤ ρC+Hh∞
n−2(∂ Tub(V, 1))
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and

Hhk
n−1

(
{Ψi

k(ω) ∗ ω | ω ∈ Tub(V, 1)}
)
≥ C−Hh∞

n−1(Tub(V, 1))

for all 1 ≤ i ≤ N − 1.
The hypersurface Γk is outer area minimizing, since Σk is outer area minimizing

by assumption. Hence ∂(Ek ∪Dk) has at least the same area as Γk in hk. This means
that

Hhk
n−1(∂Ek \ ∂(Ek ∪Dk)) ≤ Hhk

n−1(∂(Ek ∪Dk) \ ∂Ek).

With the above estimates we get

N − 1 ≤ ρC+Hh∞
n−2(∂ Tub(V, 1))

C−Hh∞
n−1(Tub(V, 1))

.

Choosing ρ such that the right hand side is less than 1 we conclude that N = 1.
We have now proved that, for all sufficiently large k, there is a single function Ψk :=
Ψ1

k : Tub(U, 1) → (Cinner, Couter) such that the map ω �→ Ψk(ω)∗ω is a diffeomorphism

Tub(U, 1) → Γk ∩ (Cinner, Couter) ∗ Tub(U, 1).

We will now use the function Φk to write Σk as a graph. Let Pk := Πεk
x∞,xk

(Tx∞S)
of Rn. This is the tangent space of S at x∞ considered as an affine subspace of Rn.
Define the map

Ψ̂k : UNPk ⊃ UNÛk → Tub(Pk, εk) → Tub(Tx∞S, 1) → (Cinnerεk, Couterεk)

by

Ψ̂k(ω) := εkΦk

((
Πεk

x∞,xk

)−1 (
expδ(εkω)

))
where Ûk := Πεk

x∞,xk
(U) ⊂ Pk. Let

Ω̂k := expδ((Cinnerεk, Couterεk)UNÛk).

With these choices, Σk is the graph of Ψ̂k over Ûk in the sense that

Σk ∩ Ω̂k = expδ
(
{Ψ̂k(ω)ω | ω ∈ UNÛk}

)
.

If |dΨ̂k| is bounded and there is an open set Ω̃k ⊆ Ω̂k containing xk in which the
tangent spaces to S are sufficiently close to being parallel to Pk, then Σk is the graph
of a smooth function Ψ̃k over some open set Ũk ⊂ S containing xk in the sense that

Σk ∩ Ω̃k = expδ
(
{Ψ̃k(ω)ω | ω ∈ UNŨk}

)
,

as shown in Figure 6. By letting k be sufficiently large, and letting Ω̃k ⊆ Ω̂k be
sufficiently small, this condition on the tangent spaces of S is satisfied. Moreover,
|dΨ̂k| is bounded since |dΨk| → 0 when k → 0. Hence, in normal coordinates, the set
UNŨk ∩ Σk is the graph of a smooth function on the unit normal bundle UNŨk of
Ũk. Choosing Uk = Ũk completes the proof.
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xk

Σk

Pk

S

Ω̃

Fig. 6: Since Σk is the graph of a function on UNPk with bounded gradient and S is close
to Pk, it follows that it is also the graph of a function on UN ˜Uk for some ˜Uk ⊂ S.

Proposition 5.1 globalizes in the following manner.

Proposition 5.2. For sufficiently small ε > 0 it holds that every outer area
minimizing stationary hypersurface Σ in (Rn \S, gε) which encloses the end at S and
has Hn−3(sing(Σ)) = 0 is diffeomorphic to the unit normal bundle UNS. In fact, each
such hypersurface Σ is the graph of a smooth function on UNS in normal coordinates
for S.

Proof. Suppose for contradiction that this is not true. Then there is a sequence
εk → 0 and outer area minimizing stationary hypersurfaces Σk in (Rn\S, gεk) such that
Σk is not the graph of a smooth function on UNS in normal coordinates for S. From
Proposition 4.6 we know that Σ is contained in the image of (Cinnerεk, Couterεk)UNS
in normal coordinates. Hence, for each k there is a point xk ∈ S such that if Uk ⊆ S
is an open neighborhood of xk then Σk ∩ expδ((Cinnerεk, Couterεk)UNUk) is not the
graph of a smooth function on UNUk in normal coordinates. Taking a convergent
subsequence xk → x∞, this contradicts Proposition 5.1.

6. Proof of the main theorem. In this section we prove existence and unique-
ness of an outermost outer area minimizing stationary hypersurface Σε which encloses
the end at S and has Hn−3(sing(Σε)) = 0, in other words one which is not enclosed
by any other such hypersurface. Further, we prove that this hypersurface is the out-
ermost apparent horizon, which by definition is the boundary of the trapped region.
This, combined with the conclusion of the previous section proves our main theorem.

There are general results in dimensions 3 ≤ n ≤ 7 stating that the boundary of the
trapped region is smooth, and hence is the unique outermost outer area minimizing
stationary hypersurface; see [7, Theorem 5.1] and [1, Theorem 4.6]. In our special
case, the uniqueness can be deduced by a simpler argument which does not need the
dimensional restriction.

First, we prove that there are outer area minimizing stationary hypersurfaces
outside any obstacle in the form of a bounding hypersurface with negative mean
curvature.

Proposition 6.1. Let T be a bounding nonsingular hypersurface in (Rn \ S, gε)
which encloses the end at S and has negative mean curvature. There is at least one
outer area minimizing stationary hypersurface Σ in (Rn \S, gε) which encloses T and
is such that Hh∞

α (sing(Σ)) = 0 if α > n− 8 and α ≥ 0.
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Proof. Let L ⊂ R
n be the closure of the region inside T . Let Ω ⊂ R

n be the
open region between T and Sn−1(Rend). Consider the Caccioppoli sets F such that
L ⊆ F ⊆ L ∪ Ω. By the existence theorem for minimal sets (see for instance [12,
Theorem 1.20]) there is a set E which minimizes perimeter among all such sets. This
minimizer E may be chosen such that ∂E = ∂∗E; see [12, Theorem 4.4]. Here ∂∗E is
the reduced boundary of E; see [12, Definition 3.3].

The reduced boundary ∂∗E is a rectifiable varifold (see [17, Theorem 14.3]) which
is area minimizing with respect to T and S(Rend) as obstacles, since E minimizes
perimeter with respect to such variations. By Proposition 4.3 the sphere Sn−1(Rend)
has positive mean curvature, and by hypothesis T has negative mean curvature. Hence
it follows from the maximum principle of Solomon and White [18, Theorem, p. 686 and
Remarks 1 and 2, pp. 690-691] and [19, Theorem 4] that ∂∗E does not intersect ∂Ω.
This means that ∂∗E is actually a solution to an area minimization problem without
obstacles, and hence smooth (compare [12, Theorem 8.4]). Let Σ = ∂∗E. Now
sing Σ ⊆ ∂E \ ∂∗E, and it holds by [12, Theorem 11.8] that Hα(sing(∂E \ ∂∗E)) = 0
for all α > n− 8 and α ≥ 0.

By construction, Σ encloses T . It coincides with the global area minimizer outside
of T since the global area minimizer cannot intersect the region outside Sn−1(Rend)
(which by Proposition 4.3 can be foliated by positive mean curvature spheres) without
contradicting the maximum principle of Solomon and White. Hence Σ is also outer
area minimizing.

By Proposition 3.5, the tubular hypersurface Tub(S,Cinnerε) has negative mean
curvature if ε > 0 is sufficiently small, which yields the following.

Corollary 6.2. For all sufficiently small ε > 0 there is at least one outer area
minimizing stationary hypersurface Σ in (Rn \S, gε) which encloses the end at S and
is such that Hh∞

α (sing(Σ)) = 0 if α > n− 8 and α ≥ 0.

Note that it follows from Proposition 5.2 that the hypersurface Σ from Corol-
lary 6.2 is nonsingular.

To prove that there is a unique outermost outer area minimizing stationary hy-
persurface, we also need to be able to find such hypersurfaces outside the union of
two obstacles with possibly nonempty singular parts. However, in this case, we only
need to consider obstacles which are outer area minimizing and stationary.

Proposition 6.3. Let Σ1 and Σ2 be outer area minimizing stationary hyper-
surfaces in (Rn \ S, gε) which enclose the end at S and have Hn−3(sing(Σ1)) =
Hn−3(sing(Σ2)) = 0. If ε > 0 is sufficiently small, there is an outer area mini-
mizing stationary hypersurface Σ which encloses both Σ1 and Σ2, and is such that
Hh∞

α (sing(Σ)) = 0 if α > n− 8 and α ≥ 0.

Proof. Assume without loss of generality that Σ1 and Σ2 have no common con-
nected components.

It follows from Proposition 5.2 that Σ1 and Σ2 are nonsingular. Let E1 denote the
closure of the region inside Σ1 and let E2 denote the closure of the region inside Σ2.
Let L := E1 ∪E2 ⊂ R

n. Let Ω ⊂ R
n be the open region between ∂L and Sn−1(Rend).

As in Proposition 6.1 we obtain a Caccioppoli set E with ∂E = ∂∗E which minimizes
perimeter among those which contain E1 ∪ E2. Let Σ = ∂∗E. By the maximum
principle of Solomon and White, Σ cannot intersect the outer boundary Sn−1(Rend).

We begin by proving that Σ cannot intersect Σ1 ∩Σ2. Suppose for contradiction
that there is a point x ∈ Σ∩Σ1∩Σ2. Let νi denote the outward-directed unit normal



HORIZONS DIFFEOMORPHIC TO UNIT NORMAL BUNDLES 1037

vector field of Σi. It cannot hold that ν1 = −ν2 anywhere, since Proposition 5.2 tells
us that Σ1 and Σ2 are graphs over UNS in normal coordinates. Let (ν∗)x be the unit
vector in the direction (ν1)x + (ν2)x, so that gε((ν∗)x, (νi)x) > 0.

For the proof we need, in a neighborhood of x, a stationary nonsingular hyper-
surface Σ∗ with x ∈ Σ∗ ⊂ E1 ∪ E2, and normal vector (ν∗)x at x. If ν1 = ν2 at x,
we choose Σ∗ to be an open neighborhood of x in Σ1. If not, then the intersection
of Σ1 and Σ2 is transverse, in which case I := Σ1 ∩ Σ2 is a smooth submanifold of
codimension 2 in R

n. Extend ν∗ be the unit vector field on I in direction ν1 + ν2.
Let Σ∗ be a hypersurface which contains I, is orthogonal to ν∗ along I, and has non-
positive mean curvature. This exists since the mean curvature of I in direction ν∗
can be compensated by the curvature in the direction orthogonal to I and ν∗. After
shrinking Σ∗ if necessary it holds that Σ∗ ⊂ E1 ∪ E2. Extend ν∗ to a unit normal
vector field on all of Σ∗.

If Σ∗ ⊆ Σ, it holds that Σ∗, Σ1 and Σ2 all agree in a neighborhood of x since Σ
encloses Σ1 and Σ2, which in turn enclose Σ∗. This proves that Σ∩Σ1∩Σ2 is an open
subset of both Σ1 and Σ2. It is also a closed subset since Σ, Σ1 and Σ2 are closed
sets. Since we assumed that Σ1 and Σ2 have no common connected component, this
is a contradiction.

Suppose instead that Σ∗ is not a subset of Σ. The proof of [18, Theorem, p. 686]
then gives a vector field v which defines a variation which strictly decreases the area
of Σ. It is not obvious that this vector field is outward-directed along Σ1 and Σ2.
However, by choosing ε and s in [18, pp. 687-690] sufficiently small, we may arrange
that the functions us,t,ε in that proof are C1-close to the function u for all t sufficiently
close to 0. This means that τ may be chosen arbitrarily close to 0, so that the function
us,τ in the proof is arbitrarily close to u in C1 norm. This, in turn, means that the
vector field v can be chosen arbitrarily close to our vector field ν∗, so that v is outward-
directed along Σ1 and Σ2 in a neighborhood of x. Since Σ minimizes area outside
of E1 ∪ E2 and the variation along v decreases area, we have a contradiction. This
completes the proof that Σ ∩ Σ1 ∩ Σ2 = ∅.

Let x ∈ Σ∩Σ1. Then x /∈ Σ2, so we can apply the maximum principle of Solomon
and White to conclude that x is an interior point of Σ ∩ Σ1 in Σ1. The set Σ ∩ Σ1

is closed in Σ1. Hence every connected component of Σ1 is either contained in Σ or
disjoint from Σ. Similarly, every connected component of Σ2 is either contained in Σ
or disjoint from Σ.

Fix i ∈ {1, 2}. We will show, using the argument from [19, Theorem 4], that every
connected component of Σ either coincides with a connected component of Σi or is
disjoint from Σi. Suppose for contradiction that there is a point x ∈ Σi∩(Σ \ Σi). Let
W be the connected component of Σ1 containing x. Let W ′ = Σ−W , where we view
Σ and W as unit density rectifiable varifolds. Since W is stationary and Σ minimizes
area to first order in the complement of E1 ∪ E2, it holds that W ′ minimizes area
to first order in this region. We can then apply the maximum principle of Solomon
and White in a neighborhood of x to see that the support of W ′ includes W , which
is a contradiction. Hence every connected component of Σ either coincides with a
connected component of Σi or is disjoint from Σi.

The connected components which coincide with connected components of Σ1 or
Σ2 are stationary, since the hypersurfaces Σ1 and Σ2 are stationary. The connected
components which are disjoint from Σ1 and Σ2 are solutions to an area minimization
problem without obstacles, and hence stationary. This means that Σ is stationary.
Since it is the global area minimizer in the complement of E1∪E2 it is also outer area
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minimizing. As in Proposition 6.1 it follows that Hh∞
α (sing(Σ)) = 0 if α > n− 8 and

α ≥ 0.

Having proved that there is an outer area minimizing stationary hypersurface
enclosing the end at S, we turn our attention to proving that there is an outermost
such hypersurface, and that this outermost hypersurface is unique.

Proposition 6.4. For all sufficiently small ε > 0, there is a unique outermost
outer area minimizing stationary hypersurface Σε in (Rn \ S, gε) which encloses the
end at S and has Hn−3(sing(Σε)) = 0.

Proof. We begin by proving that there is at least one outermost outer area
minimizing stationary hypersurface. The set of outer area minimizing stationary
hypersurfaces Σ which enclose the end at S and have Hn−3(sing(Σ)) = 0 is nonempty
by Corollary 6.2 and forms a partially ordered set under the relation that Σ1 ≤ Σ2

if Σ2 encloses Σ1. We want to prove that there is a maximal element under this
partial order, since such an element is outermost. By Zorn’s lemma it is sufficient
to verify that every nonempty chain has an upper bound. Let A be a chain. For
Σ ∈ A, let ΩΣ be the interior of the region inside Σ. Then

⋃
Σ∈A ΩΣ is an open cover

of itself, and since it is a subset of R
n it has a countable subcover

⋃∞
i=1 ΩΣi . The

sequence ΩΣ1
⊆ ΩΣ2

⊆ . . . is increasing since A is a chain. By Theorem 4.2 there
is a subsequence of Σk converging as varifolds to a stationary hypersurface Σ∞ with
Hgε

α (sing(Σ∞)) = 0 if α > n − 8 and α ≥ 0. Then Hgε
n−1(Σ∞) = limk→∞ Hgε

n−1(Σk),
so since each Σk is outer area minimizing it holds that Σ∞ is outer area minimizing.
Hence Σ is an upper bound for the chain. Hence Zorn’s lemma tells us that there
is an outermost outer area minimizing stationary hypersurface Σ which encloses the
end at S and has Hn−3(sing(Σ)) = 0.

Suppose that there were two different such hypersurfaces Σ1 and Σ2. Then the
previous proposition produces one which encloses both of them, which is a contradic-
tion. Hence there is a unique outermost outer area minimizing stationary hypersurface
Σε which encloses the end at S and has Hn−3(sing(Σε)) = 0.

The uniqueness of Σε implies that it coincides with the outermost apparent hori-
zon, as shown in the following proposition.

Proposition 6.5. If ε > 0 is sufficiently small, the hypersurface Σε in (Rn\S, gε)
is the boundary of the trapped region.

Proof. We know from Proposition 5.2 that Σε is nonsingular and hence contained
in the trapped region Tε of (Rn \ S, gε).

Let x ∈ ∂Tε. We want to show that x ∈ Σε. Choose a sequence xk → x contained
in the interior of the trapped region. Then for each k there is a weakly outer trapped
surface Tk enclosing the point xk. Since Tk is weakly outer trapped, it also encloses the
end at S. Let Σk denote an outer area minimizing stationary hypersurface enclosing
Tk obtained from Proposition 6.1. Using Theorem 4.2 as in the proof of Proposition 6.4
we obtain a subsequential limit hypersurface Σ′ which is still outer area minimizing,
encloses the end at S, and encloses or contains x. Since Σε is an outermost outer
area minimizing stationary hypersurface, it encloses Σ′ by Proposition 6.3. Hence x
is enclosed by or contained in Σε. This completes the proof.

Finally, we prove the main theorem of this paper.

Proof of Theorem 1.1. There is a unique outermost outer area minimizing sta-
tionary hypersurface Σε with Hn−3(sing(Σε)) = 0 by Proposition 6.4, and this hyper-
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surface is a smooth graph over UNS in normal coordinates by Proposition 5.2. From
Proposition 6.5 we know that Σε is the outermost apparent horizon of (Rn \ S, gε).
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