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THE VANISHING OF THE μ-INVARIANT FOR SPLIT PRIME
ZP -EXTENSIONS OVER IMAGINARY QUADRATIC FIELDS∗

VLAD CRIŞAN† AND KATHARINA MÜLLER‡

Abstract. Let K be an imaginary quadratic field, p a rational prime which splits in K into
two distinct primes p and p, and K∞ the unique Zp-extension of K unramified outside of p. For a
finite abelian extension L of K, we define L∞ = LK∞, and let X(L∞) be the Galois group of the
maximal abelian p-extension of L∞ which is unramified outside the primes of L∞ lying above p.
We use the Euler system of elliptic units and a suitable generalisation of Sinnott’s method to give
a rather elementary and completely self-contained proof that X(L∞) is always a finitely generated
Zp-module. This is the analogue for this split prime Zp-extension of the Ferrero-Washington theorem
for the cyclotomic Zp-extension. Our proof simplifies and clarifies earlier work by Schneps, Gillard,
and Oukhaba-Viguié.
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1. Introduction. Let K be an imaginary quadratic field and p a rational prime
which splits in K into two distinct primes p and p, respectively. By global class field
theory, there exists a unique Zp-extension K∞/K that is unramified outside p. Let L
be a finite abelian extension of K. We call L∞ := L ·K∞ the split prime Zp-extension
of L corresponding to p. It is an abelian extension of K. We shall fix the prime p once
and for all and omit explicit reference to it whenever it is clear from the context. We
regard all our number fields as subfields of an algebraic closure Q of Q; we also fix an
embedding of Q into C and an embedding of Q into Cp which induces the prime p,
respectively.

Let M∞ be the maximal p-abelian extension of L∞ that is unramified outside the
primes in L∞ lying above p. By a standard maximality argument, M∞/K is a Galois
extension. Hence, if we denote Γ := Gal(L∞/L), then X(L∞) := Gal(M∞/L∞)
becomes a Zp[[Γ]]-module in the natural way, and hence a module over Zp[[T ]] (the
power series ring over Zp with indeterminate T ), under an isomorphism Zp[[Γ]] ∼=
Zp[[T ]] obtained via a fixed topological generator for Γ. For every n ≥ 0, we let Ln

denote the unique extension of L of degree pn with Ln ⊂ L∞. Then Ln is an abelian
extension of the imaginary quadratic field K, so, by the Baker-Brumer theorem, the
p-adic Leopoldt conjecture holds for the intermediate fields Ln. It follows that X(L∞)
is a Zp[[T ]]-torsion module and hence it has a well-defined (up to units in Zp[[T ]])
characteristic polynomial of the form pμ ·f(T ) for some non-negative integer μ (called
the μ-invariant of X(L∞)) and some distinguished polynomial f ∈ Zp[[T ]].

In this article we shall prove the following result, which is equivalent to the as-
sertion that the μ-invariant of X(L∞) is zero.

Theorem 1. The Zp[[T ]]-module X(L∞) is a finitely generated Zp-module.

Theorem 1 was previously proved by Schneps ([Sch, Theorem III]) for L = K,
K of class number 1, p ≥ 5 and by Gillard ([Gil 2, Theorem I.2]) for any L abelian
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over K, p ≥ 5. Recently, Choi, Kezuka, Li ([C-K-L]) and Oukhaba, Viguié ([O-V])
have independently worked towards completing the proof of the theorem for the cases
p = 2 and p = 3. In [C-K-L], the result is proved for p = 2, K = Q(

√−q) with q ≡ 7
(mod 8) and L=Hilbert class field of K, while in [O-V] the result is proved for p = 2, 3
and any L, extending the methods in [Gil 2]. The purpose of this article is to give
a comprehensive and rather elementary proof for all fields L abelian over K and all
primes p.

Before we discuss our approach for proving Theorem 1 and the structure of the
paper, we give a useful reduction step. For an integral ideal a of K, we let K(a)
denote the ray class field modulo a and we let ωa be the number of roots of unity in
K which are 1 modulo a. We claim that it suffices to prove Theorem 1 when L is of
the form L = K(fp) (respectively L = K(fp2) for p = 2), where f = (f) is a principal
integral ideal of OK coprime to p with ωf = 1 (the last condition holds for any f �= (1)
upon replacing f by fm for a sufficiently large m). Indeed, first note that if J/L is
an arbitrary abelian extension and J∞ = J · L∞, then M(L∞) · J∞ ⊂ M(J∞). In
particular, if X(J∞) is a finitely generated Zp-module, so is X(L∞). This allows us
to assume that L = K(fpn) where f is as above and n is a positive integer. By class
field theory and Chinese remainder theorem, for every n ≥ 1 one has

Gal (K(fpn)/K(f)) ∼= (Z/pnZ)× .

The following simple application of Nakayama’s lemma serves two purposes: firstly,
it allows one to further reduce the exponent n of p in the definition of L; secondly,
it shows that one can prove Theorem 1 for p-solvable extensions of L, which are not
necessarily abelian over K.

Lemma 1. Let J/L be a finite Galois extension of order p and let J∞/J and
L∞/L be the split prime Zp-extensions of J and L, respectively, so that J∞ = L∞J.
If X(L∞) is a finitely generated Zp-module, then X(J∞) is also a finitely generated
Zp-module.

Proof. Let σ denote a generator of the Galois group G := Gal(J∞/L∞). Then
X(J∞) is a Zp[G]-module under the natural action. Let F be the maximal abelian
extension of L∞ contained in M(J∞). Then

R := Gal(F/J∞) ∼= X(J∞)/(σ − 1)X(J∞).

By Nakayama’s lemma, it suffices to prove that R is finitely generated. Define the set

S = {primes in L∞ coprime to p and ramified in J∞/L∞}.

We know a priori that S is finite. If S = ∅, we obtain M(L∞) = F; in this case, R is
finitely generated over Zp since X(L∞) is.

If S is not empty, consider for every prime q ∈ S its inertia group Iq inGal(F/L∞).
Since F/J∞ is unramified at each q ∈ S it follows that Iq ∩ R = {0}. Thus, Iq is
cyclic of order p. Let I be the group generated by all the Iq’s and let F′ = FI . Then
[F : F′] ≤ p|S|. The field F′ is contained in M(L∞). It follows that Gal(F′/L∞) is
finitely generated and hence so is R.

Combining Lemma 1 with our previous observations, it follows that for any prime
p, it suffices to consider fields L of the form L = K(fp) (resp. L = K(fp2) when p = 2),
with f = (f) as above.
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We let F := K(f), and for any n ≥ 0, we define

Fn = K(fpn), F∞ =
⋃
n≥0

Fn.

Having reduced the problem to the case L = K(fp) (resp. L = K(fp2) when p = 2),
one then has L∞ = F∞, and we shall subsequently work with F∞. We let t ≥ 0 be
such that

Kt = H(K) ∩K∞.

We also define the groups

G = Gal(F/K), H = Gal(F∞/K∞), G = Gal(F∞/F) ∼= Z×
p .

The diagram of fields and corresponding Galois groups is given below.

M(L∞)

K∞ L∞ = F∞

Kt H(K) F L

K

X(L∞)

H

Γ

G

Γ′

We shall now summarize our strategy for proving Theorem 1. Firstly, notice that
M(F∞)/K is a Galois extension. Secondly, since Gal(K∞/K) ∼= Zp, it follows that
there exists an isomorphism

Gal(F∞/K) ∼= H × Γ′, where Γ′ = Gal(K∞/K).

We fix once and for all such an isomorphism, which allows us to identify Γ′ with a
subgroup of Gal(F∞/K). By abusing notation, we shall also call this subgroup Γ′. For
each character χ of H one can consider the largest quotient of Gal(M(F∞)/F∞) on
which H acts through χ. We denote this quotient by Gal(M(F∞)/F∞)χ. The Main
Conjecture for X(F∞), formulated by Coates and Wiles in [Co-Wi 3] predicts that for
all characters χ of H, the characteristic ideal of Gal(M(F∞)/F∞)χ can be generated
by the power series corresponding to a p-adic L-function. Some cases of the Main
Conjecture were proven by Rubin in [Ru]. In our general setting, even though we
do not have the Main Conjecture, one can establish a correspondence between the μ-
invariants of certain p-adic L-functions and the μ-invariant of X(F∞). More precisely,
our method of proof will be to construct for every χ a p-adic L-function Lp,f(s, χ) and
show that the μ-invariant of each Lp,f(s, χ) is zero; we will then show that the sum
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of all μ-invariants μ (Lp,f(s, χ)) is the same as the μ-invariant of X(F∞), which will
establish Theorem 1. While some of the results that we prove have a correspondent (or
even generalizations) in the aforementioned articles, our approach for constructing the
p-adic L-functions uses only properties of certain rational functions on elliptic curves,
which makes the exposition more elementary.

The construction of the p-adic L-functions Lp,f(s, χ) is the first main building
block of our article and is carried out in detail in Section 2. In [Co-Go], building on
techniques previously developed in [Co-Wi 2] and [Co-Wi 3], Coates and Goldstein
presented a recipe for constructing the p-adic L-functions, provided one has an elliptic
curve defined over a number field F containing K, which has complex multiplication
by the ring of integers of K and for which F(Etors)/K is an abelian extension. We
shall follow closely this approach for constructing the p-adic L-functions, extending it
to our general setting. The first step will thus be to prove that when F = K(f) with f
as above, one can construct a suitable elliptic curve E/F.

For the vanishing of μ for the p-adic L-functions Lp,f(s, χ), we will extend the
argument given by Schneps in [Sch], where she uses the elliptic analogue of Sinnott’s
beautiful proof of μ = 0 for the cyclotomic Zp-extension of abelian number fields
(earlier proved by Ferrero and Washington in [Fe-Wa]).

2. Construction of the p-adic L-function.

2.1. Existence of a suitable elliptic curve. As before, we let f = (f) be an
integral ideal of K coprime to p and for which ωf = 1. As above, we let F = K(f) and
we let G = Gal(F/K). For a number field M, we let IM denote the group of ideles of
M. We begin by proving the following.

Lemma 2. There exists an elliptic curve E/F which satisfies the following prop-
erties.

a) E has CM by the ring of integers OK of K;
b) F (Etors) is an abelian extension of K;
c) E has good reduction at primes in F lying above p.

Proof. Let H = K(1) be the Hilbert class field of K. Every elliptic curve A/H
has an associated j-invariant jA and a Grössencharacter ψA/H : IH → K∗, where
K∗ denotes the multiplicative group of K. The invariant jA lies in a finite set J of
possible candidates with |J | = h (the class number of K) and ψA/H is a continuous
homomorphism whose restriction to H∗ ⊂ IH is the norm map. Gross proved in [Gr,
Theorem 9.1.3] that given a pair (j, ψ) with j ∈ J and ψ : IH → K∗ a continuous
homomorphism whose restriction to H∗ is the norm, there exists an elliptic curve
E0 defined over H, having complex multiplication by OK, with j(E0) = j and whose
Grössencharacter ψE0/H is precisely ψ. Consider thus an element j ∈ J and an elliptic
curve E0 defined over H with complex multiplication by OK with j(E0) = j. Since
H ⊂ F, we can regard our curve E0 as defined over F. We shall modify this elliptic
curve E0/F to satisfy all the required conditions. We begin by constructing an elliptic
curve satisfying a) and b).

Let ψE0/F be the associated Grössencharacter to E0/F. Shimura proved in [Shi,
Theorem 7.44] that the existence of an elliptic curve E/F satisfying b) is equivalent
to the existence of a Grössencharacter ϕ of K of infinity type (1, 0), for which

ψE/F = ϕ ◦NF/K.

Let ϕ be a Grössencharacter of K of infinity type (1, 0) and conductor f (recall that
ωf = 1). Let ψ = ϕ ◦ NF/K. Then χ := ψ

ψE0/F
: IF → K∗ has the property that
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χ(F∗) = 1. Therefore, under the reciprocity map of class field theory, we can regard
χ as a homomorphism χ : Gal(Fab/F) → K∗. Since the Galois group Gal(Fab/F) is
compact, it follows that the image of χ must lie in the finite multiplicative group
O×

K . In particular, χ is a character of finite order. Furthermore, O∗
K ⊂ Isom(E0),

where Isom(E0) denotes the group of Q-automorphisms of E0. Thus, we can view
the character χ as a map χ : Gal(Fab/F) → Isom(E0). A moment’s thought shows
that χ is a 1-cocycle, hence it defines an isomorphism class of elliptic curves defined
over F which has the same j-invariant as E0 (see [Gr, Section 3.3]). It follows that
the twist Eχ

0 is an elliptic curve defined over F, with the same j-invariant as E0 and
by [Gr, Lemma 9.2.5],1 one has that

ψEχ
0 /F = χ · ψE0/F = ϕ ◦NF/K.

It follows that if we set E = Eχ
0 , the curve E satisfies the properties a) and b).

Finally, once we have an elliptic curve satisfying conditions a) and b), part c)
follows from the fact that f is coprime to p and the primes of bad reduction are
precisely the primes dividing the conductor of ψE/F.

We now fix a Grössencharacter φ of K of conductor f and infinity type (1, 0)
and let E/F be an elliptic curve satisfying the conditions in Lemma 2 for which its
Grössencharacter ψE/F satisfies

ψE/F = φ ◦NF/K.

Since E has good reduction at the primes in F lying above p, there exists a generalized
Weierstrass model for E of the form

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6, (1)

for which the discriminant Δ(E) is coprime to any prime in F above p. We also
take the model (1) to be minimal at all primes lying above p. The Neron differential
attached to the above model is

ω =
dx

2y + a1x+ a3
.

We fix once and for all such a generalized model and differential ω for E. We also let
L denote the period lattice determined by the pair (E,ω).

For an element a ∈ OK, we identify a with the endomorphism of E whose differ-
ential is a and let Ea denote the kernel of this endomorphism; for an ideal a of K, we
let Ea denote

Ea =
⋂
a∈a

Ea.

With these notations, it is proved in [Co-Go, Lemma 3] that for any n ≥ 0, one
has F (Epn) = Fn.

For any σ ∈ Gal(F/K), we will write Eσ (resp. ωσ) for the curve (resp. the
differential) obtained by applying σ to the equation (1) of E (resp. to ω). Since
F(Etors)/K is an abelian extension of K, it follows that for any σ ∈ Gal(F/K),

1Gross only proves this when f = 1, but the result is true in general-see for example [Sil 2,
Exercise II.2.25].
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one has ψEσ/F = ψE/F. Moreover, as the F-isogeny class of E/F is determined by
the Grössencharacter of E/F, it follows that all the Galois conjugates of E are F-
isogeneous. Let a be any ideal in OK coprime to f and let σa denote its Artin symbol
in Gal(F/K). For an element σ ∈ Gal(F/K), we let Lσ be the lattice associated with
Eσ. The Weierstrass isomorphism M(z,Lσa

) : C/Lσa
→ Eσa(C) is given by

z →
(
℘Lσa

(z)− bσa
,
1

2

(
℘′
Lσa

(z)− aσa
1

(
℘Lσa

(z)− bσa

)− aσa
3

))
,

where ℘Lσa
is the Weierstrass ℘-function of Lσa

and bσa
=
(aσa

1 )
2
+4aσa

2

12 .
By the main theorem of complex multiplication, for any such a and any σ ∈

Gal(F/K) there exists a unique isogeny ησ(a) : E
σ → Eσσa defined over F, of degree

N(a), which satisfies

σa(u) = ησ(a)(u),

for any u ∈ Eσ[g], where (g, a) = 1. The kernel of this isogeny is precisely Eσ
a (see

[Co-Go, proof of Lemma 4] ). From now on, we shall write η(p) and ηa(p) for the
isogenies ηe(p) : E → Eσp and ησa

(p) : Eσa → Eσaσp , respectively. As explained in
[Co-Go, p. 341], there exists a unique Λ(a) ∈ F∗ such that

ωσa ◦ η(a) = Λ(a)ω, (2)

which can also be written as

η(a) ◦M(z,L) =M (Λ(a)z,Lσa
) . (3)

Note that Λ satisfies the cocycle condition

Λ(ab) = Λ(a)σ(b)Λ(b). (4)

It follows that we can extend the definition of Λ to the set of all fractional ideals
coprime to f so that (4) remains valid. Moreover, when a is integral with σa = 1,
we obtain further that Λ(a) = φ(a) (see [dS, p. 42] for details). The choice of the
embedding of F in C gives a non-zero complex number Ω∞ ∈ C (which is well-defined
up to multiplication by a root of unity in K) such that L = Ω∞OK (see the discussion
before relation (13) in [Co-Go]). Furthermore, it is proved in [Co-Go, p. 342], that
for any integral ideal a coprime to f one has the relation

Λ(a)Ω∞a−1 = Lσa
. (5)

Let v be the prime in F lying above p which is induced by our fixed embedding of
Q into Cp and let mv denote the maximal ideal of O(Fv). Let Ip be the ring of integers
in the completion of the maximal unramified extension of Fv. Let π be a generator of
the prime ideal of Ip. Then Ip/πIp has characteristic p and is algebraically closed.
Lubin showed in [Lu, Corollary 4.3.3] that if the reduction at π of a formal group
has height one, then it is isomorphic to the formal multiplicative group over Ip. We

recall that E has good reduction at every v above p. For each σ ∈ G, let Êσ,v denote
the formal group giving the kernel of reduction modulo v on the elliptic curve Eσ/F

(see [Sil 1, Proposition V.2.2]). Note that Êσ,v is a relative Lubin-Tate formal group
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in the sense of de Shalit ([dS, Chapter I] and [dS, Lemma II.1.10]). Since we chose a

p-minimal model for E, a parameter for the formal group Êσ,v is given by

tσ = −xσ/yσ.

When σ is the identity, we shall simply write Êv, t, etc. Since p splits in K and p is
a prime of good reduction, the reduction of E modulo v is injective on the set Ep.
It follows that the reduction of E modulo v has to contain p-torsion points, which
implies that the reduction of E modulo v has height 1 (see [Sil 1, Theorem V.3.1].)
We obtain the following result.

Lemma 3. There exists an isomorphism βv between the formal multiplicative
group Ĝm and the formal group Êv, which can be written as a power series t =
βv(w) ∈ Ip[[w]] .

As noted in [Co-Go], the isomorphism in Lemma 3 is unique up to composition

with an automorphism of Ĝm over Ip and the group of automorphism of Ĝm over
Ip can be identified with Z×

p . We fix once and for all an isomorphism βv(w) and
we let Ωv denote the coefficient of w in βv(w). In particular, it follows that Ωv is
a unit in Ip. For an integral ideal a of K coprime to f, the isogeny η(a) induces a
homomorphism

η̂(a) : Êv → Êσa,v,

which is defined over O(Fv). When a is coprime to fp, it becomes an isomorphism.

It follows that one can construct an isomorphism βv
a = η̂(a) ◦ βv between Ĝm and

Êσa,v. We also let Ωa,v be the coefficient of w in βv
a(w). As proven for example in

[Co-Go, Lemma 6], the relation between Ωv and Ωa,v is given by

Ωa,v = Λ(a)Ωv. (6)

We also let Ĝa denote the formal additive group. One has the following com-
mutative diagram of formal groups, in which we denoted by Log the isomorphism
between Ĝm and Ĝa:

Ĝm Êv Êv,σa

Ĝa Ĝa

βv

Log

η̂(a)

M

·Λ(a)

Ma

2.2. The basic rational functions. We will now introduce the basic rational
functions for the elliptic curve E/F, as given in [Co]. To motivate the choice of the
rational functions we will introduce, we need some additional notations.

For any lattice L we define

s2(L) = lim
s↘0

∑
w∈L\{0}

w−2 · |w|−2s, A(L) =
1

π
Area(C/L),

and

η(z, L) = A(L)−1z + s2(L)z.
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With these notations, we define the θ-function for the lattice L by

θ(z, L) = Δ(L) exp(−6η(z, L)z)σ(z, L)12,

where σ(z, L) is the Weierstrass σ-function of L.

For every non-trivial ideal m of K and any σ ∈ Gal(K(m)/K), the Robert’s in-
variant is defined by ϕm(σ) = θ(1,mc−1)m, where m is the least positive integer in

m ∩ Z and σ =
(

K(m)/K
c

)
. As proved for example in [dS, Chapter II Section 2.4], one

has the identity

ϕm(1)
N(a)−( K(m)/K

a ) =

(
θ(1,m)N(a)

θ(1, a−1m)

)m

. (7)

For an integral ideal m of K and a character χ, we define the L-series of χ with

modulus m by

Lm(χ, s) =
∑

χ(a)N(a)−s,

where the sum is over all integral ideals a coprime to m. The following theorem proved
in [Sie, Theorem 9] (see also [dS, Chapter II, Theorem 5.1]) gives a useful relation
between global L-functions and logarithms of Robert-invariants.

Theorem 2. Let m be an non-trivial integral ideal of K and let χ be a character
of finite order of conductor m. Let L∞,m(χ, s) = (2π)−sΓ(s)Lm(χ, s). Then

L∞,m(χ, 0) =
−1

12mωm

∑
σ∈Gal(K(m)/K)

χ(σ) log |ϕm(σ)|2,

where m is the smallest positive integer in m∩Z and log denotes the standard logarithm
function on R.

In the same way in which in the class number formula the product
∏
χ
L(χ, 1) can

be expressed in terms of the class number, the discriminant and the regulator of the
field, it turns out that the product∏

χ

1

12mωm

∑
σ∈Gal(K(m)/K)

χ(σ) logϕm(σ) (p-adic logarithm here)

can also be expressed in terms of the p-part of the class number, the p-adic regulator
and the p-adic discriminant of the field. On the other hand, Coates and Wiles proved
in [Co-Wi 1, Theorem 11] a relation between the μ-invariant of the Galois group
Gal(M(F∞)/F∞) and these p-adic quantities (see Corollary 1 in Section 4 for the
precise statement). In view of these facts, our aim is to prove a p-adic analogue of
Theorem 2. Since we construct our p-adic L-function using rational functions on the
elliptic curve, we will need these rational functions to have a form closely related to
the Robert’s invariant.

We recall that G = Gal(F/K). For σ ∈ G, we let Pσ denote a generic point on
Eσ and let x(P ) denote its x-coordinate in the model (1). By abuse of notation, if u
denotes a rational function on Eσ, we shall write u(z) for u ◦M(z,Lσ).
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For any α ∈ OK that is non-zero, coprime to 6 and not a unit, we define the
rational function ξα,σ(Pσ) on Eσ by

ξα,σ(Pσ) = cσ(α)
∏

S∈Vα,σ

(x(Pσ)− x(S)) ,

where Vα,σ is any set of representatives of the non-zero α-division points on Eσ modulo
{±1} and cσ(α) is a canonical 12th root F of the quotient Δ(α−1Lσ)/Δ(Lσ)

NK/Q(α)

(here Δ stands for the Ramanujan’s Δ-function)-see [Co, Appendix, Proposition 1]
and [Co, Appendix, Theorem 8].

The following identity, which is proved for example in [Go-Sch, Theorem 1.9],
shows the connection between our rational function and the Theta function (compare
with (7)):

ξα,σ(z)
12 =

θ
(
z, α−1Lσ

)
θ (z,Lσ)

N(α)
. (8)

An important result about our rational functions is that their logarithmic deriva-
tives can be related to special values of Hecke L-functions attached to φk. To state
this result, we will need some additional definitions.

Let Q be the point on E given by the image of ρ := Ω∞/f under the Weierstrass
isomorphism. Then Q becomes a primitive f -torsion point on E. Let σ ∈ Gal(F/K)
be arbitrary and let a be an integral ideal coprime to αf such that σa = σ. We define

ξα,σ,Q(z) = ξα,σ(z + Λ(a)ρ),

and denote the corresponding rational function on Eσ by ξα,σ,Q(Pσ). Note that while
Λ(a) does depend on the choice of the ideal a, the definition of ξα,σ,Q(z) depends only
on the Artin symbol σa and not on the choice of a. It is proved in [Co, Theorem 4]
that for any integral ideal b coprime to αf one has the identity

ξα,σσb
(ησ(b)(Pσ)) =

∏
U∈Eσ

b

ξα,σ(Pσ ⊕ U), (9)

where ⊕ denotes the usual addition operation on the elliptic curve.
It follows that

ξα,σσb,Q (ησ(b)(Pσ)) =
∏

U∈Eσ
b

ξα,σ,Q (Pσ ⊕ U) . (10)

For every n ≥ 0, we fix once and for all a primitive pnth root of unity ζpn such

that ζppn+1 = ζpn . For a fixed n ≥ 0, we can regard Ĝm as defined over Ip[ζpn ]. Then

ζpn − 1 becomes a pn-torsion point on Ĝm and for an integral ideal a coprime to αfp,

βv
a maps ζpn − 1 to a pn-torsion point on Êσa,v. Let zn be a corresponding pn-torsion
point for the lattice Lσa

. We define wn similarly by starting with the map βv instead.
In particular, by (3), it follows that zn ≡ Λ(a)wn (mod Lσa

). Since wn is a p
n-torsion

point for L and ρ is an f-torsion point for L, it follows that wn + ρ is a pnf-torsion
point for L. In particular, we can write

Ω−1
∞ (wn + ρ) = qn/p

nf,

for some integral ideal qn in OK coprime to pf.
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For an arbitrary abelian extension M/K, if ϕ : IK → C is a Grössencharacter
whose conductor divides the conductor of M/K, we let ϕ also denote the associated
function on the group of ideals of K coprime to the conductor of M/K. Then for an
ideal c of K, the partial Hecke L-function is defined by

L

(
ϕ,

(
M/K

c

)
, s

)
=
∑
a

ϕ(a)/N(a)s,

where
(

M/K
c

)
denotes the Artin symbol of c in Gal(M/K) and the sum ranges over

all integral ideals a of K that are coprime to the conductor of M/K and satisfy(
M/K
a

)
=
(

M/K
c

)
.

We can now prove the promised connection between our rational functions and
special values of L-functions. To simplify notations, for a character � defined on ideals
of K, we will simply write �(α) for �((α)), whenever α ∈ K. From now on, we will
also view all Grössencharacters φ as functions on the ideals of K.

Proposition 1. Let φ denote the Grössencharacter of K for which ψE/F =
φ ◦NF/K. Let n ≥ 0 be an integer and let qn and zn be constructed as above. Let σ be
an arbitrary element in Gal(Fn/K) and let a be an integral ideal of K prime to f such

that
(

Fn/K
a

)
= σ. Then for any α coprime to fp and any positive integer k one has(

d

dz

)k

log (ξα,σ,Q(z))|z=zn
=

(
−fφ(apn)

Ω∞Λ(a)

)k

(k − 1)!×(
N(α)L

(
φ
k
,

(
Fn/K

qna

)
, k

)
− φk(α)L

(
φ
k
,

(
Fn/K

qna(α)

)
, k

))
.

Remark 1. We note that the definition of ξα,σ,Q(z) depends only on the restric-
tion of σ to Gal(F/K), but that the point zn does depend on the element σ ∈ Gal(Fn/K)
we choose. Also, the above relation implies directly that the right hand side is inde-
pendent of the choice of the ideal a, since the left hand side is.

Proof. When n = 0, this is [Co-Go, Theorem 5]. For the general case, we will
follow a similar approach. Our main reference for the following definitions is [Go-Sch,
Section 1]. For every positive integer k and every lattice L we define the function

Hk(z, s, L) =
∑
ω∈L

(z + ω)
k

|z + ω|2s ,

for any Re(s) > k/2 + 1. As noted in [Go-Sch], this function has an analytic con-
tinuation over the whole s-plane. We also let E∗

k(z, L) be the value of Hk(z, s, L) at
s = k.

We define

θ̃(z, L) = exp(−s2(L)z
2/2)σ(z, L),

where σ(z, L) is the Weierstrass σ-function of L.
Using (8), it follows that

ξ2α,σ(z) =

(
cσ(α)

θ̃(z, α−1Lσ)

θ̃(z,Lσ)N(α)

)2

.
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It is also proved in [Go-Sch, Corollary 1.7] that for any z0 ∈ C \ L one has

d

dz
log θ̃(z + z0, L) = z0A(L)

−1 +

∞∑
k=1

(−1)k−1E∗
k(z0, L)z

k−1. (11)

If we let z = z̃ + zn, then one has(
d

dz

)k

log ξα,σ,Q(z)|z=zn
=

(
d

dz̃

)k

log ξα,σ(z̃ + zn + Λ(a)ρ)|z̃=0 . (12)

Combining (11) and (12), it follows that(
d

dz̃

)k

log ξα,σ(z̃ + zn + Λ(a)ρ)|z̃=0

=

(
d

dz̃

)k−1
⎛⎝ ∞∑

j=1

(−z̃)j−1E∗
j (zn + Λ(a)ρ, α−1Lσ)

⎞⎠∣∣∣∣∣∣
z̃=0

−
(

d

dz̃

)k−1
⎛⎝ ∞∑

j=1

(−z̃)j−1N(α)E∗
j (zn + Λ(a)ρ,Lσ)

⎞⎠∣∣∣∣∣∣
z̃=0

= (k − 1)!(−1)k (E∗
k (zn + Λ(a)ρ,Lσ) ·N(α)− αkE∗

k (α(zn + Λ(a)ρ),Lσ)
)
.

The final ingredient that we need is the relation between Hk(z, s, L) and the partial
Hecke L-function. One can easily show (see for example [Go-Sch, Proposition 5.5] or
[dS, Chapter II, Proposition 3.5]) that

E∗
k(Λ(a)(wn + ρ),Lσ) =

(
φ(aqn)

(wn + ρ)Λ(a)

)k

L

(
φ
k
,

(
Fn/K

aqn

)
, k

)
, (13)

and similarly

E∗
k(αΛ(a)(wn + ρ),Lσ) =

(
φ(aqn(α))

(α)(wn + ρ)Λ(a)

)k

L

(
φ
k
,

(
Fn/K

aqn(α)

)
, k

)
. (14)

Using (13) and (14), and noting that φk(qn)(wn + ρ)−k = φk(pn)(fΩ−1
∞ )k, our result

follows.

We now define the following sets of integral ideals of K that we will use throughout
the rest of this article. For every n ≥ 0, we let Cn be a set of integral ideals a of OK

coprime to fp with the property that as a ranges over Cn, the set of Artin symbols(
Fn/K

a

)
covers each element in Gal(Fn/K) exactly once.

For each σ ∈ G, we let a ∈ C0 be such that
(

F/K
a

)
= σ and define

Yα,a(Pσ) =
ξα,σ,Q(Pσ)

p

ξα,σσp,Q(ησ(p)(Pσ))
,

and we let Yα,a(z) stand for the corresponding elliptic function for the lattice Lσa
.

Using (9), it follows that ∏
R∈Eσ

p

Yα,a (Pσ ⊕R) = 1. (15)
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By a slight abuse of notation, we will also write Yα,a(tσa
) for the tσa

-expansion of
Yα,a(z). The following lemma is the key step in constructing a measure on Gal(F∞/K)
using our rational functions.

Lemma 4. For an integral ideal a of OK coprime to f, let σa denote the Artin
symbol of a in Gal(F/K). Then the series Yα,a(tσa

) lies in 1+mv[[tσa
]] and the series

hα,a(tσa
) := 1

p log(Yα,a(tσa
)) has coefficients in O(Fv).

Proof. The following proof is a straightforward extension of similar results proved
in the literature (see for example [Co-Go, Lemma 9] or [Co-Wi 2, Lemma 23]). Let

η̂σa
(p) : Êσa,v → Êσaσp,v be the formal power series induced by ησa

(p). As p splits
completely in K, we have N(p) = p, hence

η̂σa
(p)(tσa

) ≡ tpσa
(mod mv).

Let mα,σa
(tσa

) be the development of the rational function ξα,σa,Q(Pσa
) as a power

series in tσa
. Given

mα,σa
(tσa

) =
∑
n≥0

cnt
n
σa
,

it follows that

mα,σaσp

(
η̂σa

(p)(tσa
)
)
≡
∑
n≥0

cpnt
pn
σa

≡ mp
α,σa

(mod mv).

Since mα,σa
(tσa

) is a unit (see for example the proof of [Co-Wi 2, Lemma 23]), it
follows that Yα,a(tσ) ≡ 1 (mod mv), which completes our proof.

2.3. The p-adic L-function. We will now show how the results we obtained
in the previous section can be used for constructing a measure on Gal(F∞/K) with
respect to which we define our p-adic L-function. We begin by recalling some basic
definitions and properties of measures.

For any prime p, the group Z×
p has a decomposition

Z×
p = V × U,

where V is the group consisting of the (p−1)th roots of unity in Zp (resp. {±1} when
p = 2) and U = 1 + pZp (resp. 1 + 4Z2 when p = 2). For an element α ∈ Z×

p , we
denote by 〈α〉 its projection onto the second factor. If we fix a topological generator
u of U , then the map x → ux gives an isomorphism of topological groups between Zp

and U .
Let G be a profinite group and let A be the ring of integers of a complete subfield

of the completion of the algebraic closure of Qp. We let ΛA(G) denote the ring of
A-valued measures defined on G, where the product is given by the usual convolution
of measures. If G is finite, there is an isomorphism ΛA(G) ∼= A[G] given by

ν →
∑
σ∈G

ν({σ})σ,

while for an infinite profinite group there is an isomorphism ΛA(G) ∼= A[[G]] under
the usual inverse limits taken over the normal subgroups of finite index:

ΛA(G) = lim←−ΛA(G/H) ∼= lim←−A[G/H] = A[[G]].
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For a general profinite abelian group G, following de Shalit, we define a pseudo-
measure on G to be any element in the localization of ΛA(G) with respect to the
set of non-zero divisors (see [dS, Section I.3.1]). Given a measure ν on G and any
compact subset O of G, we can define the measure ν|O on G by restricting ν to O
and extending it by 0. Our main interests will be in the cases when G = Gal(F∞/K)
and G = Zp, respectively.

When G = Zp, there is an isomorphism ΛA(Zp) ∼= A[[w]] due to Mahler, given by
associating to a measure ν the element∫

Zp

(1 + w)xdν.

By our previous observation, for O ⊆ Zp compact open, there is an inclusion ΛA(O) ↪→
ΛA(Zp). For the particular case when O = Z×

p , if F (w) is the power series associated
with ν, we know by [Si, Lemma 1.1] that the power series associated with ν|Z×

p
is

ν|Z×
p
→ F (w)− 1

p

∑
ζp=1

F (ζ(1 + w)− 1). (16)

Throughout this article, we shall use ν∗ to denote the measure ν|Z×
p
.

For a measure ν ∈ ΛA(Zp) and a ∈ Z×
p we define the measure ν ◦ a by ν ◦ a(O) =

ν(aO) for any O ⊆ Zp compact open. It then follows that

ν ◦ a|O = ν|aO ◦ a. (17)

Moreover, if F (w) is the power series associated with ν, then the power series associ-
ated with ν ◦ a is

ν ◦ a → F
(
(1 + w)−a − 1

)
. (18)

We can now proceed to the construction of our measure. For every a ∈ C0, we
define Bα,a(w) = hα,a (β

v
a(w)). By Lemma 4, the series Bα,a(w) lies in Ip[[w]], so

it corresponds to a measure να,a ∈ ΛIp
(Zp). The identity (15) combined with the

aforementioned lemma from [Si] implies that the measure να,a is actually supported
on Z×

p .
Let Ψp : G → Z×

p be the isomorphism giving the action of G on the p-power
division points of E. Under this isomorphism, the measure να,a can be regarded as
an element of ΛIp

(G). Notice that for any k ≥ 0, one has

∫
Gal(F∞/F)

Ψk
pdνα,a = DkBα,a(w)|w=0,

where D = (1 + w) d
dw . If we let exp denote the isomorphism Ĝa → Ĝm, the substi-

tution w = exp(z)− 1 yields further∫
Gal(F∞/F)

Ψp(x)
kdνα,a =

( d

dz

)k
Bα,a(exp(z)− 1)|z=0

= Ωk
a,v

( d

dz

)k
Bα,a(exp(z/Ωa,v)− 1)|z=0.
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More generally, if we are interested in evaluating Dk Bα,a(w)|w=w1
, we can make

the substitution w1 = exp(z1/Ωa,v)− 1, and noting that

βv
a (exp(z/Ωa,v)− 1) =M (Λ(a)z,Lσa

) ,

it follows that

Dk Bα,a(w)|w=w1
= Ωk

a,vΛ(a)
−k

(
d

dz

)k
1

p
log Yα,a (M (Λ(a)z,Lσa

))|z=z1
. (19)

For every a ∈ C0, we constructed a measure να,a ∈ ΛIp
(G). For every such a, we

let να,a ◦ σa denote the pushforward measure on σ−1
a G induced by σa, and we extend

να,a ◦ σa to a measure on Gal(F∞/K) by 0. Consider now

να :=
∑
a∈C0

να,a ◦ σa.

Then να becomes an Ip-valued measure on Gal(F∞/K).
Weil showed in [We] that, under our fixed embedding Q ↪→ Cp, the character φ

can be extended continuously to a character

φ̃ : Gal(F∞/K)→ C×
p ,

which satisfies the property that φ̃
((

F∞/K
a

))
= φ(a), for any ideal a in K coprime

to fp. Furthermore, for any σ ∈ G one has φ̃(σ) = Ψp(σ) (see [Co-Go, p. 352] for

details). By a slight abuse of notation, we will simply write φ for φ̃, since it will
always be clear from the context what φ stands for.

The rest of the work we do in this section follows closely the exposition in [dS,
Chapter II, Section 4].

Lemma 5. a) Let χ be a character of Gal(F/K). Then for every k ≥ 0 one has∫
Gal(F∞/K)

χφk dνα =

(
1− χφk(p)

p

) ∑
a∈C0

Ωk
a,vχφ

k(σ−1
a )

(
d

dz

)k

log ξα,σa,Q(z)|z=0 .

b) Let n ≥ 1 be a positive integer and assume χ is a character of Gal(Fn/K) with
the property that pn is the exact power of p dividing its conductor. We define the
Gauss sum

τ(χ) =
1

pn

∑
γ∈Gal(Fn/F)

χ(γ)ζ
−Ψp(γ)
pn .

Then for every k ≥ 0 one has∫
Gal(F∞/K)

χφk dνα

= τ(χ)
∑
a∈Cn

Ωk
a,vχφ

k(σ−1
a )

(
d

dz

)k

log ξα,σa,Q(z)|z=M−1◦βv
a(ζpn−1) .
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Proof. This result is the analogue of [dS, Chapter II, Theorem 4.7] and [dS,
Chapter II, Theorem 4.8]. For part a), using the fact that φ and Ψp coincide on
Gal(F∞/F), it follows that∫

Gal(F∞/F)

φkdνα ◦ σ−1
a

= Ωk
a,v

(
d

dz

)k

Bα,a

(
exp

(
z

Ωa,v

)
− 1

)∣∣∣∣
z=0

= Ωk
a,v

(
d

dz̃

)k
1

p
log Yα,a(z̃)|z̃=0

= Ωk
a,v

(
d

dz̃

)k (
log ξα,σa,Q(z̃)−

1

p
log ξα,σaσp,Q (Λ(p)

σa z̃)

)∣∣∣∣
z̃=0

.

It follows that∫
Gal(F∞/K)

χφkdνα

=
∑
a∈C0

χφk(σ−1
a )Ωk

a,v

(
d

dz̃

)k (
log ξα,σa,Q(z̃)−

1

p
log ξα,σaσp,Q (Λ(p)

σa z̃)

)∣∣∣∣
z̃=0

.

Reordering the sum

S :=
∑
a∈C0

Ωk
a,vχφ

k(σ−1
a )

(
d

dz̃

)k
1

p
log ξα,σaσp,Q (Λ(p)

σa z̃))

∣∣∣∣
z̃=0

according to a′ = ap and using the fact that Ωk
ap,v = Ωk

a,v (Λ(p)
σa)

k
(see (6)), it follows

that

S =
χφk(p)

p

∑
a∈C0

Ωk
a,vχφ

k(σ−1
a )

(
d

dz

)k

log ξα,σa,Q(z)|z=0 .

This completes the proof of part a).
For part b), we use a similar strategy. For b ∈ Cn, we let σb denote the Artin

symbol of b in Gal(Fn/K) and we define

Bα,b(w) = hα,b (β
v
b(w)) .

We will perform similar computations as above. For a character χ of Gal(Fn/K) for
which n is the exact power of p dividing its conductor we have∫

Gal(F∞/K)

χφkdνα =
∑
b∈Cn

χφk(σ−1
b )

∫
Gal(F∞/Fn)

φkdνα ◦ σ−1
b .

Again, using the fact that φ and Ψp act in the same way on Gal(F∞/F), it follows
that ∫

Gal(F∞/Fn)

φkdνα ◦ σ−1
b =

∫
Gal(F∞/Fn)

Ψk
pdνα ◦ σ−1

b .
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Using the fact that the indicator function of 1 + pnZp is 1
pn

pn−1∑
j=0

ζ
(x−1)j
pn , it follows

that ∫
Gal(F∞/Fn)

Ψk
pdνα ◦ σ−1

b =
1

pn

pn−1∑
j=0

Dk Bα,b(w)|w=ζj
pn

−1 ζ
−j
pn .

To simplify the writing, we define

Rα,b(w) := log ξα,σb|F,Q(β
v
b(w)).

We recall that the measure associated with Bα,b(w) is obtained by restricting
the measure associated with Rα,b(w) to Z×

p . In particular, if we restrict the measure
associated with Bα,b(w) to the subgroup 1+ pnZp of Z×

p , we obtain the restriction to
1+pnZp of the measure associated with Rα,b(w). Hence the quantity we are interested
in computing is given by

1

pn

pn−1∑
j=0

Dk Rα,b(w)|w=ζj
pn

−1 ζ
−j
pn ,

which can be rewritten as

1

pn

∑
j:p�j

Dk Rα,b(w)|w=ζj
pn

−1 · ζ−j
pn +

1

pn

∑
j:p|j

Dk Rα,b(w)|w=ζj
pn

−1 · ζ−j
pn .

A simple check using the definitions shows that

Dk Rα,b(w)|w=ζj
pn

−1 = Ψp(γ)
−kDk Rα,bj

(w)
∣∣
w=ζpn−1

,

where γ ∈ Gal(F∞/F) is such that γ(ζpn) = ζjpn (i.e. Ψp(γ) ≡ j (mod pn)) and bj is

the unique ideal in K with the property that
(

F∞/K
bj

)
=
(

F∞/K
b

)
γ. It follows that

1

pn

∑
j:p�j

Dk Rα,b(w)|w=ζj
pn

−1 · ζ−j
pn = Ψp(γ)

−k 1

pn

∑
j:p�j

Dk Rα,bj
(w)
∣∣
w=ζpn−1

ζ−j
pn .

Moreover, when we consider the expression∑
b∈Cn

χφk(σ−1
b )

1

pn

∑
p|j

Dk Rα,b(w)|w=ζj
pn

−1 · ζ−j
pn ,

notice that if c ∈ Cn is such that σc fixes K(fpn−1) (i.e. σc defines an element in
Gal(F∞/K(fpn−1)), then

Dk Rα,ac(w)|w=ζa
pn−1−1 = Ψp(c)

kDk Rα,a(w)|w=ζa
pn−1−1 .

Furthermore, since n is the exact power of p dividing the conductor of χ, it follows
that ∑

σ∈Gal(Fn/Fn−1)

χ(σ) = 0.
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If we partition the elements in Cn according to cosets modulo the group
Gal(F∞/K(fpn−1)), we get∑

b∈Cn

χφk(σ−1
b )

1

pn

∑
p|j

Dk Rα,b(w)|w=ζj
pn

−1 · ζ−j
pn

=
∑
b∈Cn

χφk(σ−1
b )

1

pn

pn−1−1∑
a=0

Dk Rα,b(w)|w=ζa
pn−1−1 · ζ−a

pn−1

=
∑

c∈Cn−1

∑
d∈Cn

σd∈Gal(F∞/Fn−1)

χφk(σ−1
c σ−1

d )
1

pn

pn−1−1∑
a=0

Dk Rα,cd(w)|w=ζa
pn−1−1 · ζ−a

pn−1

= 0.

Finally,∑
b∈Cn

χφk(σ−1
b )

1

pn

∑
j:p�j

Dk Rα,bj
(w)
∣∣
w=ζpn−1

ζ−j
pn Ψp(γ)

−k

=
∑

b′∈Cn

Dk Rα,b′(w)|w=ζpn−1

1

pn

∑
b′=bγ

χφk(σ−1
b )Ψp(γ)

−kζ
−Ψp(γ)
pn

=
∑

b′∈Cn

Dk Rα,b′(w)|w=ζpn−1

1

pn
χφk(σ−1

b′ )
∑

γ∈Gal(Fn/F)

χ(γ)ζ
−Ψp(γ)
pn

= τ(χ)
∑
b∈Cn

χφk(σ−1
b )Dk Rα,b(w)|w=ζpn−1 ,

with τ(χ) defined as in the statement. Using (19), part b) follows.

Let n ≥ 0 be an integer and let χ be a character whose conductor divides fpn

and with the property that n is the exact power of p in its conductor. Consider the
character ε = χφk and the set

S =

{
γ ∈ Gal (K(fpnp∞)/K) : γ|K(fp∞) =

(
K(fp∞)/K

pn

)}
.

We define the sum G(ε) as

G(ε) =
φk(pn)

pn

∑
γ∈S

χ(γ)ζ−γ
pn .

We note that G(ε) is well-defined, since ζpn ∈ K(fpnp∞). We also know (see for

example [Go-Sch, Lemma 4.9]) that G(ε) lies in a CM field and that G(ε)G(ε) =
pn(k−1).

Theorem 3. Let χ, ε and G(ε) be defined as above. Then there exists a p-adic
unit uχ depending on χ such that for all k ≥ 1 one has∫

Gal(F∞/K)

ε dνα =
Ωk

v

Ωk∞
(k − 1)!(−1)kfkuχG(ε)

(
1− ε(p)

p

)
(N(α)− ε(α)) · Lf(ε, k).
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Proof. When n = 0, by Proposition 1 and Lemma 5 a), it follows that∫
Gal(F∞/K)

χφkdνα =
Ωk

v

Ωk∞
(k − 1)!(−1)kfk

(
1− χφk(p)

p

)
×

∑
a∈C0

χφk(σ−1
a )φk(a)

(
N(α)L(φ, σa, k)− φk(α)L(φ

k
, σa(α), k)

)
.

The sum in the right hand side can be further rewritten as∑
a∈C0

χφk(σ−1
a )φk(a)(N(α)− χφk(α))L

(
φ
k
, σa, k

)
= (N(α)− ε(α))Lf

(
φ
k
χ−1, k

)
.

When n ≥ 1, using Proposition 1 and Lemma 5 b), it follows in a similar manner that∫
Gal(F∞/K)

χφkdνα

=

(−Ωvf

Ω∞

)k

(k − 1)!φk(pn)τ(χ)χ(qn)(N(α)− ε(α))Lf(φ
k
χ−1, k).

Let q′n be a prime in K with the property that

N(q′n) ≡ 1 (mod pn) and

(
F(pn)/K

q′n

)
=

(
F(pn)/K

pn

)
.

With this choice of q′n, it is proved in [dS, p. 75] that χ(q
′
n)φ

k(pn)τ(χ) = G(ε). If we
set uχ = χ(qn)/χ(q

′
n), then uχ is clearly a p-adic unit and since G(ε) = 1 for n = 0,

the result follows.

We now have all the ingredients for proving the main theorem in the construction
of the p-adic L-functions. We recall that H = Gal(F∞/K∞). Let m = |H| and let
Dp = Ip (μm), the ring obtained by adjoining the mth roots of unity to Ip.

Theorem 4. There exists a unique measure ν on Gal(F∞/K) taking values in
Dp such that for any ε = φkχ, with k ≥ 1 and χ a character of conductor dividing
fpn for some n ≥ 0, one has

Ω−k
v

∫
Gal(F∞/K)

ε dν = Ω−k
∞ (−1)k(k − 1)!fkuχG(ε)

(
1− ε(p)

p

)
Lf(ε, k),

with uχ as defined in the proof of Theorem 3.

Proof. The following proof is exactly the same argument as the one given in [dS,
Chapter II, Theorem 4.12], but we redo it here for the convenience of the reader. We
first note that for α1 and α2 coprime to pf, it follows from Theorem 3 that

να1

(
N(α2)− σ(α2)

)
= να2

(
N(α1)− σ(α1)

)
(equality as measures), (20)

where for an integral ideal a of K coprime to fp, σa stands for the Artin symbol of a
in Gal(F∞/K). Indeed, by Theorem 3 we know that the integrals of the two measures
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against any character of the form ε = φχ with χ a character of finite order are the
same. Since the set of such characters φχ separates measures, it follows that the two
measures are equal, as claimed.

We recall that we have a decomposition

Gal(F∞/K) = H × Γ′,

with H = Gal(F∞/K∞) and Γ′ ∼= Gal(K∞/K). One then has an isomorphism

D[[Gal(F∞/K)]] ∼= D[[Γ′]][H] ∼= D[[X]][H].

Moreover, there exists an isomorphism

Q⊗D[[Gal(F∞/K)]] ∼= Q⊗D[[Γ′]]m,

given by sending element 1⊗λ ∈ Q⊗D[[Gal(F∞/K)]] to 1⊗ (θ1(λ), . . . θm(λ)), where
θ1, . . . , θm are the characters of H.

For any character θ of H and α ∈ OK non-unit and coprime to 6fp, one has

θ
(
σ(α) −N(α)

)
= θ
(
σ(α)

∣∣
H

) · σ(α)

∣∣
Γ′ −N(α).

Notice also that for any such α, the element σ(α)

∣∣
Γ′ is non-trivial and that θ

(
σ(α)

∣∣
H

)
is a root of unity. In particular, one has that θ

(
σ(α) −N(α)

)
is a non-zero divisor in

D[[Gal(F∞/K)]].
In view of (20), in order to prove that να/(N(α) − σ(α)) is an integral measure,

it suffices to prove that as we range over the elements α ∈ OK such that α is non-unit
and coprime to 6fp, one has that the gcd of the polynomials θ(σ(α)−N(α)) ∈ Dp[[X]]
is 1. To this end, we let m ≥ 0 be the exact power of p dividing f, so that ζpm ∈ F∞,
but ζpm+1 �∈ F∞. Then, for any element γ′ × g ∈ Γ′ ×H fixing ζpm , any u ∈ 1+ pmZp

and any n ≥ m, one can find αn ∈ OK such that{
σ(αn)

∣∣
Fn
= (γ′ × g)|Fn

N(αn) ≡ u (mod pn).

It follows that the sequence θ(σ(αn)−N(αn)) approximate θ(g)(1+X)a−u, for some
a ∈ pmZp. It is now easy to see that as we range a and u, the series θ(g)(1+X)a − u
cannot have a common divisor, which shows that θ(σ(α)−N(α)) | θ(να). In particular,
there exists νθ ∈ Dp[[Γ

′]] such that

θ
(
σ(α) −N(α)

) · νθ = θ(να),

for any α ∈ OK non-unit and coprime to fp.
Let eθ =

1
m

∑
g∈H

θ(g)g−1 and consider

ν =
∑
θ∈Ĥ

νθeθ.

Then mν is a measure satisfying

ν · (σ(α) −N(α)) = να.
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To finish, we argue that ν is itself a measure as follows. Assume by contradiction
that this was not the case. Let D◦

p be the maximal ideal in Dp. Choose an element
μ ∈ Dp[[Gal(F∞/K)]] such that μ �∈ D◦

p[[Gal(F∞/K)]] and

μ = cν, but μ
(
N(α)− σ(α))

) ∈ D◦
p.

We decompose μ as

μ =
∑
g∈H

μg · g, μg ∈ Dp[[Γ
′]].

Since μ �∈ D◦
p[[Gal(F∞/K)]], we can assume without loss of generality that μ1 �∈

D◦
p[[Gal(F∞/K)]]. Then(

σ(α) −N(α)
) · μ = ∑

g∈H

(
μhgσ(α)

∣∣
Γ′ −N(α)μg

)
g,

where h =
(
σ(α)

∣∣
H

)−1
. It follows that

μhg ≡ μgN(α)
(
σ(α)

∣∣
Γ′
)−1

(mod D◦
p[[Gal(F∞/K)]]), for all g ∈ H.

If d is the order of h, it follows that

μ1

(
1−
(
N(α)

(
σ(α)

∣∣
Γ′
)−1
)d)

≡ 0 (mod D◦
p[[Gal(F∞/K)]]).

Since μ1 �∈ D◦
p[[Gal(F∞/K)]], it follows that

N(α)d ≡ (σ(α)

∣∣
Γ′
)d

(mod D◦
p[[Gal(F∞/K)]]),

which is a contradiction. The conclusion follows.

So far, we constructed a measure ν on Gal(F∞/K) with values in Dp. There is an
implicit dependence of ν on f, since F∞ = K(fp∞). For later purposes, we will need
to be able to define measures (or pseudo-measures) for integral ideals g | f. For such
an ideal g, we define the pseudo-measure ν(g) on Gal(K(gp∞)/K) by

ν(g) := ν(f)|Gal(K(gp∞)/K)

∏
l|f
l�g

(
1−
(
σl|K(gp∞)

)−1
)−1

, (21)

where ν(f)|Gal(K(gp∞)/K) is the measure on Gal(K(gp∞)/K) induced from ν(f). We

note that whenever g is such that ωg = 1, the ν(g) we defined above is the same as
the measure we would have obtained by constructing ν(g) directly, using the same
methods we used for constructing ν(f) (compare also with the comments from [dS,
Theorem II.4.12]). It follows that whenever g �= (1), ν(g) is a measure, while for
g = 1 we have that ν(1) is a pseudo-measure, but for any topological generator γ of
Γ′, (1− γ)ν(1) is also a measure.

Definition 1. For any integral ideal g | f and any character χ of the group
Gal(K(gp∞)/K), we define the p-adic L-function by

Lp,g(χ) =

⎧⎪⎨⎪⎩
∫

Gal(K(gp∞)/K)

χ−1dν(g) if g �= (1) or χ �= 1∫
Gal(K(gp∞)/K)

1 d ((1− γ)ν((1)) if g = (1) and χ = 1,
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where γ is a topological generator of Γ′.

Theorem 5. Let m be a non-trivial integral ideal of K of the form m = hpn,
for some h | f and a positive integer n with the property that for any prime ideal l

dividing f, the Artin symbol
(

K(pn)/K
l

)
is non-trivial. Let χ be a character of finite

order whose conductor divides m with the property that pn is the exact power of n
dividing the conductor of χ. We define

Lp,m(χ) = Lp,h(χ),

with Lp,h(χ) as defined in Definition 1. Then one has

Lp,m(χ) = − 1

12hωh
uχG(χ

−1)
∑

σ∈Gal(K(m)/K)

χ(σ) logϕm(σ),

where uχ and G(χ) are as in Theorem 3, h is the smallest positive integer in h ∩ Z,
and ωh denotes the number of roots of unity in K which are 1 modulo h.

Proof. The case when m = fpn is an easy computation using Lemma 5, Theorem 4
and (7). For the general case, for an integral ideal g of K and a character ϑ of
Gal(K(g)/K), we define

Tg(ϑ) = − 1

12gωg
G(ϑ−1)

∑
σ∈Gal(K(g)/K)

ϑ(σ) logϕg(σ).

It is proved in [Ku-La, Chapter 11, Theorem 2.1] that for two ideals g | g′, and ϑ a
character of Gal(K(g)/K), one has

Tg′(ϑ) =
∏
l|g′
l�g

(1− χ(l))Tg(ϑ). (22)

The general case follows from our definition of Lp,m, the relation (22) and the fact
that the character χ acts non-trivially on each prime dividing f.

We can now define the p-adic L-function associated with a character χ of H.

Definition 2. We recall that we fixed a decomposition

Gal(F∞/K) = Γ′ ×H,

where Γ′ ∼= Gal(K∞/K) and H = Gal(F∞/K∞). We also fix a topological generator
γ of Γ′ and an isomorphism

κ : Γ′ → 1 + qZp,

where q = p if p is odd and q = 4 otherwise. Let χ be a character of H and let gχ be
the prime to p-part of its conductor. We define the p-adic L-function of the character
χ as

Lp(s, χ) =

∫
Gal(K(gχp∞)/K)

χ−1κsdν(gχ) if χ �= 1;

Lp(s, χ) =

∫
Gal(K(p∞)/K)

χ−1κs d ((1− γ)ν(1)) if χ = 1.
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3. Vanishing of the μ-invariant of the p-adic L-function. We recall that
our strategy for proving that the Iwasawa’s μ-invariant of X(F∞) is zero is to asso-
ciate to each p-adic L-function Lp(s, χ) a certain invariant (called the μ-invariant of
Lp(s, χ)), prove that this invariant is zero for each χ, and then show that the sum
over all μ(Lp(s, χ)) coincides with μ (X(F∞)).

We will now define the μ-invariant of Lp(s, χ). Let F (w) be an element in Dp[[w]].
By Weierstrass preparation theorem, F (w) can be written as F (w) = U(w)π′mg(w),
where π′ is a uniformizer of Dp, U(w) is a unit in Dp[[w]], g(w) is a distinguished
polynomial and m is a non-negative integer. Then one defines μ(F ) = m.

Fix now a character χ of H. It is well-known that Lp(s, χ) is an Iwasawa function,

i.e. there exists G̃(w,χ) ∈ Dp[[w]] such that

G̃(us − 1, χ) = Lp(s, χ),

where u = κ(γ), with κ and γ as in Definition 2. We define

μ (Lp(s, χ)) = μ
(
G̃(w,χ)

)
.

The main theorem of this section is the following.

Theorem 6. For every prime p, and for every character χ of H we have

μ (Lp(s, χ)) = 0.

For our approach, it will be more convenient to work with the μ-invariant associ-
ated with the function

Lp,f(s, χ) :=

∫
Gal(F∞/K)

χ−1κsdν.

We first notice that if Gf(w,χ) is the power series associated with Lp,f(s, χ), then

μ(Gf(w,χ)) = 0 implies μ(G̃(w,χ)) = 0. To show that μ (Gf(w,χ)) = 0 it will be in
turn easier to use Theorem 3. To this end, we also fix some α ∈ OK non-unit and
coprime to 6pf and let G(w,χ) ∈ Dp[[w]] be defined as

G(us − 1, χ) =

∫
Gal(F∞/K)

χ−1κsdνα.

We note that by Theorem 4, there exists a power series hχ(w) ∈ Dp[[w]] such that

hχ(w)Gf(w,χ) = G(w,χ).

Therefore, in order to prove Theorem 6, it suffices to show that μ (G(w,χ)) = 0.
We recall that t ≥ 0 was chosen such that

H(K) ∩K∞ = Kt,

where H(K) denotes the Hilbert class field of K. We define the following sets
R1 = {coset representatives of Gal(L∞/F) in Gal(L∞/Kt)};
R2 = {coset representatives of Gal(L∞/Kt) in Gal(L∞/K)}.
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Notice that we can choose the elements in R1 to lie in H and the elements in R2

to lie in the subgroup Γ′ of Gal(L∞/K). We fix such a choice for both R1 and R2.
Then the set

R = {σ1σ2 : σ1 ∈ R1, σ2 ∈ R2}

is a complete set of coset representatives for Gal(L∞/F) in Gal(L∞/K). We also let
ω denote the Teichmüller character of Zp and let i ≥ 0 be such that χ−1 acts on
Gal(L/F) like ωi. Then one has

G(us − 1, χ) =
∑
σ∈R

χ−1κs(σ)

∫
G

χ−1κsdνα ◦ σ

=
∑

σ1∈R1

χ−1(σ1)
∑

σ2∈R2

κs(σ2)

∫
G

ωiκsdνα ◦ σ.

We will now introduce the notion of a Γ-transform. Let p be a prime and let μ
be a measure on Z×

p taking values in Dp. For 0 ≤ i ≤ p− 2 (i = 0, 1 when p = 2), we
define the ith Γ-transform of the measure μ by

Γ(i)
μ (s) =

∫
Z×
p

ωi(x)〈x〉sdμ.

Let G(i)(w, μ) ∈ Dp[[w]] be the Iwasawa function corresponding to Γ
(i)
μ .

Using the isomorphism G ∼= Z×
p and that Gal(F∞/F) = Gal(K∞/K)p

t

, it follows
by the above computations that one has

G(us − 1, χ) =
∑

σ2∈R2

κs(σ2)
∑

σ1∈R1

χ−1(σ1)Γ
(i)
να◦σ (p

ts).

Since the quantities χ−1(σ1) are independent of s, we obtain further

G(us − 1, χ) =
∑

σ2∈R2

κs(σ2)Γ
(i)∑
σ1∈R1

χ−1(σ1)να◦σ
(
pts
)
. (23)

To be able to make further progress, we will need some further properties of Γ-
transforms. For a Dp-valued measure μ with corresponding power series Fμ(w) ∈
Ip[[w]], we denote by Dμ the measure corresponding to DFμ(w), where we recall that
D = (1 + w) d

dw . Then one has the following result.

Lemma 6. For any prime p and any i as above, one has

Γ(i)
μ (s) = Γ

(i−1)
Dμ (s− 1),

where the quantity i− 1 should be read modulo p− 1 (resp. modulo p for p = 2).

Proof. The result is well-known for p odd. For p = 2, the proof is similar and we
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provide it below. For integers s ≡ 1 (mod 2), one has∫
Z×
2

〈x〉sdμ =
∫
Z×
2

xsω(x)dμ

=

∫
1+4Z2

xsdμ−
∫

−1+4Z2

xsdμ

=

∫
1+4Z2

xs−1d(Dμ)−
∫

−1+4Z2

xs−1d(Dμ)

=

∫
Z×
2

xs−1ω(x)d(Dμ)

=

∫
Z×
2

〈x〉s−1ω(x)d(Dμ).

The cases when s ≡ 0 (mod 2) and i �= 0 are proved in a similar way. Since Z is dense
in Z2, the result follows by a simple continuity argument.

By Lemma 6 and (23), it follows that

G(us − 1, χ) =
∑

σ2∈R2

κs(σ2)Γ
(i−1)
D

∑
σ1∈R1

χ−1(σ1)να◦σ
(
pts− 1

)
. (24)

Note that {κs(σ2) : σ2 ∈ R2} corresponds to the set of power series {(1 + w)j : j =
0 . . . , pt − 1}. Using this, from (24), it follows that

G(w,χ) =

pt−1∑
j=0

(1 + w)jG(i−1)

(
(1 + w)p

t

upt − 1, D
∑

σ1∈R1

χ−1(σ1)να ◦ σ
)
. (25)

We will now explain how, in order to prove that μ(G(w,χ)) = 0, it suffices to show
that the μ-invariant of any summand in the right hand side of (25) is zero. For this,
we will use the following general lemma, which is also proved in [Gil 1, Lemma 2.10.2],
but we redo the proof here for the convenience of the reader.

Lemma 7. For every j = 0, . . . , pt − 1, let fj(w) ∈ Dp[[w]] be a power series and
consider the series

f(w) =

pt−1∑
j=1

(1 + w)jfj((1 + w)p
t − 1).

Then one has μ(f(w)) ≤ μ(fj((1 + w)p
t − 1)), for any j = 0, . . . , pt − 1.

Proof. For every j = 0, . . . , pt − 1, we let ν̃j denote the measure associated with
fj and we also denote by ν̃ the measure associated with f . We first notice that∫

Zp

(1 + w)j+ptxdν̃j(x) = (1 + w)jfj((1 + w)p
t − 1).
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On the other hand, there exists a bijection between Zp and j + ptZp, and under this
bijection, the measure ν̃j corresponds to a measure νj on j + ptZp. One then has the
equality ∫

Zp

(1 + w)j+ptxdν̃j(x) =

∫
j+ptZp

(1 + w)xdνj(x).

In particular, this shows that for every j, the series (1+w)jfj((1+w)p
t−1) corresponds

to a measure supported on j + ptZp.
Moreover, we note that if π′ divides the power series associated to the measure

ν̃, it must divide the power series associated to restriction of ν̃ to j + ptZp for any j,
which by above is exactly νj . This completes our proof.

By taking

fj((1 + w)p
t − 1) = G(i−1)

(
(1 + w)p

t

upt − 1, D
∑

σ1∈R1

χ−1(σ1)να ◦ σ
)
,

it follows from Lemma 7 and (25) that if for σ2 = 1 one has

μ

(
G(i−1)

(
(1 + w)p

t

upt − 1, D
∑

σ1∈R1

χ−1(σ1)να ◦ σ
))

= 0, (26)

then μ (G(w,χ)) = 0.
To prove (26) for σ2 = 1, we will need the following important result, which

is essentially [Sch, Theorem I]. We recall that βv(w) ∈ Ip[[w]] is the isomorphism
βv : Ĝm → Êv defined in Lemma 3.

Theorem 7. Let λ : Zp → Dp be a measure whose associated power series is of
the form R(βv(w)), for some rational function R on E with coefficients in a finite
extension of O(Fv). Let W be the group of roots of unity contained in K. Then

μ
(
Γ
(i)
λ (s)

)
= μ

(∑
v∈W

ωi(v)λ∗ ◦ (v)
)
,

where λ∗ denotes the measure λ|Z×
p
.

The work done by Schneps in [Sch] has a great degree of generality, which makes
the arguments easy to adapt to our situation. For convenience of the reader, we will
redo the main arguments from her proof (following the same notations as in [Sch] as
much as possible) and also discuss the cases p = 2, 3 that are left out from her work,
but can be easily included. Given that up to these minor modifications our proof is
exactly the same as the one done in [Sch, Theorem I], we provide the details in the
Appendix and we now proceed with the proof of Theorem 6.

In view of (26), we note that

μ

(
G(i−1)

(
(1 + w)p

t

upt − 1, D
∑

σ1∈R1

χ−1(σ1)να ◦ σ
))

= μ

(
G(i−1)

(
w,D

∑
σ1∈R1

χ−1(σ1)να ◦ σ
))

.
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To see this, note that (1+w)p
t

upt
− 1 is a distinguished polynomial because u ≡ 1

(mod p). Thus, if we let G(i−1)
(
w,D

∑
σ1∈R1

χ−1(σ1)να ◦ σ) = π′mP (w)U(w) for
a distinguished polynomial P (w) and a unit U(w), it follows that the polynomial

P ( (1+w)p
t

upt
− 1) is again distinguished and U( (1+w)p

t

upt
− 1) is again a unit. Hence the

two μ-invariants match.
Using Theorem 7 and the above observation, we are left to prove that

μ

(∑
v∈W

ω(i−1)(v)λ∗ ◦ (v)
)
= 0, where λ = D

∑
σ1∈R1

χ−1(σ1)να ◦ σ1.

Let C′ ⊂ C0 be such that

{χ(σa) : a ∈ C′} = {χ(σ1) : σ1 ∈ R1}.

Then, by the definition of να, one has

λ =
∑
a∈C′

χ(σa)Dνα,a.

We now have all the ingredients required to prove Theorem 6.

Proof of Theorem 6. By construction, DBα,a corresponds to the rational function
on E given by

1

p
Ωv

d

dz
log

(
ξα,σa

(η(a)(P ⊕Q)p

ξα,σaσp
(η(ap)(P ⊕Q))

)
.

Since

ξα,σa
(η(a)(P ⊕Q)) =

∏
R∈Ea

ξα,e(P ⊕Q⊕R),

it follows that

1

p
Ωv

d

dz
log

(
ξα,σa

(P ⊕Q)p

ξα,σaσp
(η(ap)(P ⊕Q))

)
= A(P )−B(P ),

where

A(P ) =
1

2p
Ωvp

⎛⎝ ∑
R∈Ea

∑
M∈Eα\{0}

x′(P ⊕Q⊕R)

x(P ⊕Q⊕R)− x(M)

⎞⎠ ,

and

B(P ) =
1

2p
Ωv

⎛⎝ ∑
R∈Eap

∑
M∈Eα\{0}

x′(P ⊕Q⊕R)

x(P ⊕Q⊕R)− x(M)

⎞⎠ .

We first study the term A(P ). The possible poles are at points P satisfying

P ∈ {M �R�Q : M ∈ Eα, R ∈ Ea},
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where for two points S, T on the elliptic curve, we denoted by S�T the point S⊕(�T ),
where �T denotes the inverse of T with respect to ⊕.

To compute the residues, we note that the t-expansions of x and y are

x =
1

t2
− c1

t
− c2 +O(t), y =

−1
t3

+
d1
t2
+

d2
t
+ d3 +O(t),

for some constants c1, c2, d1, d2, d3 (see [Sil 1, p. 113]). It follows that the residue at
P = �Q�R is equal to

1

2p
Ωv · p (N(α)− 1) (−2) = −Ωv (N(α)− 1) .

When p | N(α)− 1, which for example always happens for p = 2 due to the condition
(α, 6) = 1, this residue vanishes when reduced modulo π′. However, when M �= O,

the Laurent expansion of x′(P⊕Q⊕R)
x(P⊕Q⊕R)−x(M) around M �Q� R has leading coefficient

1. Using the symmetry of the x-function, it follows that the residue at a point of the
form M � Q � R with M �= O is Ωv, and Ωv is coprime to p, so this residue never
vanishes modulo π′.

We now turn our attention to B(P ). We claim that this term does not have poles.
To see this, note that B(P ) is obtained from a Dp-valued measure supported on qZp.
Since all its possible poles have integral residues and every point in Ep reduces to O,
the restriction of these residues modulo π′ vanishes, and the claim follows.

Let us now go back to the sum

∑
v∈W

ω(i−1)(v)

(∑
a∈C′

χ(σa)Dνα,a

)
◦ (v).

We established that the set of poles of Dνα,a always contains the set

Pa = {M �Q�R : M ∈ Eα \ {O}, R ∈ Ea}.
The key property that we will use is that the reduction modulo p is injective on Pa

for every a, and thus also on the set

P :=
⋃
a∈C′

Pa.

Since W consists of the roots of unity in K, a simple check shows that for any distinct
v1, v2 ∈ W one has

{v1 · P : P ∈ P} ∩ {v2 · P : P ∈ P} = ∅.
Indeed, if

v1 (M1 �Q�R1) = v2 (M2 �Q�R2) ,

for some M1,M2 ∈ Eα, R1 ∈ Ea1 , R2 ∈ Ea2 , then we can choose non-zero elements
β1 ∈ a1 and β2 ∈ a2 such that

β1R1 = β2R2 = O.

It then follows that v1αβ1β2Q = v2αβ1β2Q. Since Q is a primitive f -torsion point
and (αβ1β2, f) = 1, it follows that v1 ≡ v2 (mod f). But since ωf = 1, we deduce that
v1 = v2.
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We conclude that the expression
∑

v∈W

ω(i−1)(v)

( ∑
a∈C′

χ(σa)Dνα,a

)
◦ (v) has poles

at every point of the form v ·P for v ∈ W , P ∈ P. If P is of the form P =M �Q�R
with M �= O and R �= O, then the residue at v · P is ωi−1(v−1)χ(σa)Ωv, for some
a ∈ C′. Since the expression ωi−1(v−1)χ(σa)Ωv is non-zero modulo π′, it follows that
our sum ∑

v∈W

ω(i−1)(v)

(∑
a∈C′

χ(σa)Dνα,a

)
◦ (v)

has non-trivial poles when it is reduced modulo π′ and thus its μ-invariant must be
0. This completes the proof of the fact that

μ (Lp,f(s, χ)) = 0,

and hence, of Theorem 6.

4. Proof of the main theorem. For every n ≥ 2, we let M(Fn) denote the
maximal p-abelian extension of Fn unramified outside the primes in Fn lying above p
and we denote byH(Fn) the p-Hilbert class field of Fn. Since Fn is an abelian extension
of an imaginary quadratic field, Leopoldt’s conjecture holds for the field Fn and thus
M(Fn)/F∞ is a finite extension. Since we fixed an isomorphism Gal(F∞/K) ∼= H×Γ′,
we can regard Gal(M(F∞)/F∞) as a module over Zp[[Γ

′]]. We also recall that t ≥ 0
is defined by

H(K) ∩K∞ = Kt,

where H(K) stands for the Hilbert class field of K. Then, if we denote Γ :=

Gal(F∞/L), it follows that the image of Γ in Γ′ under restriction to K∞ is Γ′pt

. With
these notations, one has the following formula of Iwasawa, valid for all sufficiently
large n:

ordp ([M(Fn) : F∞]) = pn+t−e−1μ+ (n− 1− e)λ+ c, (27)

where μ (resp. λ) is the μ-invariant (resp. λ-invariant) of X(F∞) as a Zp[[Γ
′]]-module,

c is a constant independent of n and e is equal to 1 if p = 2 and e = 0 otherwise.
For the purpose of the following result, we will work with some fixed n ≥ 2. For a

prime P in Fn lying above p, we let Un,P denote the group of principal units in Fn,P ,
the localization of Fn at P. We also let

Un =
∏
P|p

Un,P , Φn =
∏
P|p

Fn,P .

There exists a canonical embedding Ψ : Fn ↪→ Φn. Let En denote group of units in
Fn which are 1 modulo every prime P lying above p. Notice that if e ∈ O(Fn)

×, then
eNFn/Q(P)−1 ∈ En, so En has finite index in O(Fn) and this index is coprime to p.
Then Ψ(En) ⊂ Un and we let En denote the closure of En in Un.

Since the prime p = 2 plays a special role, we will use the same notations as
before, letting q = p when p is odd and q = 4 when p = 2. With this notation,
we let Dn be the Zp-submodule of Un generated by En and (1 + q). To compute
ordp ([M(Fn) : F∞]), we will need several results from class field theory. Our main
reference for the following exposition is [Co-Wi 1].
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Let Cn denote the idéle class group of Fn and

Yn :=
⋂

m≥n

NFm/Fn
(Cm).

By class field theory, there exists an isomorphism of Zp-modules

(Yn ∩ Un) /En
∼= Gal (M(Fn)/H(Fn) · F∞) .

Since the extension F∞/Fn is totally ramified above p, it follows that the field H(Fn)∩
F∞ = Fn, and therefore, in view of the above isomorphism, one obtains that

ordp ([M(Fn) : F∞]) = ordp
(
h(Fn) ·

[
Yn ∩ Un : En

])
,

where h(Fn) denotes the class number of Fn. It is proved in [Co-Wi 1, Lemma 5] that

one has Yn∩Un = ker
(
NΦn/Kp

∣∣
Un

)
. It is also not difficult to show thatNΦn/Kp

(Un) =

1 + qpn−1O(Kp) (see [Co-Wi 1, Lemma 6]). It follows that NΦn/Kp
(En) = 1. Using

this, it follows that NΦn/Kp
(Dn) = 1 + qpn+d−1O(Kp), where d := ordp ([F : K]). It

follows that the diagram

1 En Dn 1 + qpn+d−1O(Kp) 1

1 Yn ∩ Un Un 1 + qpn−1O(Kp) 1

NΦn/Kp

NΦn/Kp

has exact rows and the vertical maps are injective. It follows that[
Yn ∩ Un : En

]
=
[Un : Dn]

pd
.

Using the same methods as in the proof of [Co-Wi 1, Lemma 9], one can show that

ordp ([Un : Dn]) = ordp

⎛⎝ qpn+d−1Rp(Fn)

ω(Fn) ·
√
Δp(Fn/K))

·
∏
P|p

(
NFn/Q(P)

)−1

⎞⎠ ,

where ω(Fn) denotes the number of roots of unity in Fn, Rp(Fn) is the p-adic regulator
of Fn and Δp(Fn/K) is the p-part of the relative discriminant of the extension Fn/K.

It will be convenient for further purposes to express the p-adic valuation of(
NFn/Q(P)

)−1
in terms of the one of 1− 1

NFn/Q(P) . But this is straightforward, since

for any prime ideal P in Fn lying above p one has that NFn/Q(P)− 1 is coprime to p,
so the two valuations we are interested in are equal.

Putting everything together, we obtain the following result, which is a simple
extension of [Co-Wi 1, Theorem 11].

Proposition 2. With the notations as above, one has

ordp ([M(Fn) : F∞]) = ordp

⎛⎝qpn−1h(Fn)Rp(Fn)

ω(Fn)
√
Δp(Fn/K)

∏
P|p

(
1− 1

NFn/Q(P)
)⎞⎠ .

Combining Proposition 2 with (27), one immediately deduces the following (see
also [dS, Chapter III, Corollary 2.8]).
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Corollary 1. If F ∈ Zp[[Γ
′]] is a characteristic power series for the Galois

group Gal(M(F∞)/F∞), then for all sufficiently large n one has

μ(F )pt+n−e−2 + λ(F )

= 1 + ordp

[
h (Fn)Rp (Fn)

ω (Fn)
√
Δp (Fn/K)

/ h (Fn−1)Rp (Fn−1)

ω (Fn−1)
√
Δp (Fn−1/K)

]
.

The rest of this section is dedicated to showing how this formula relates to special
values of our p-adic L-function. Consider the isomorphism Dp[[Γ

′]] ∼= Dp[[w]], and

for ρ any character of Γ′ of finite order, we write level(ρ) = m if ρ
(
(Γ′)p

m
)
= 1,

but ρ
(
(Γ′)p

m−1
)
�= 1. We will need the following simple result, which is proved for

example in [dS, Chapter III, Lemma 2.9].

Lemma 8. For any power series F ∈ Dp[[w]] and all sufficiently large n, one has

μ (F ) pn+t−1(p− 1) + λ(F ) = ordp

⎧⎨⎩ ∏
level(ρ)=t+n

ρ(F )

⎫⎬⎭ ,

where ρ(F ) means that the action of ρ is extended to Dp[[Γ
′]] by linearity and ordp is

the valuation on Cp normalized by taking ordp(p) = 1.

We will also need the following result, proved in [dS, Chapter III, Proposition
2.10].

Proposition 3. For any ramified character ε of Gal(F∞/K), we let g be the
conductor of ε and g the least positive integer in g∩Z. We define G(ε) as in Theorem 3
and we define Sp(ε) by

Sp(ε) = − 1

12gωg

∑
σ∈Gal(K(g)/K)

ε−1(σ) logϕg(σ).

Let An be the collection of all ε for which n is the exact power of p dividing their
conductor. Then for all sufficiently large n one has

ordp

( ∏
ε∈An

G(ε)Sp(ε)

)

= ordp

[
h (Fn)Rp (Fn)

ω (Fn)
√
Δp (Fn/K)

/ h (Fn−1)Rp (Fn−1)

ω (Fn−1)
√
Δp (Fn−1/K)

]
.

Let now χ be a character of H and recall that

Lp(s, χ) =

∫
Gal(K(gχp∞)/K)

χ−1κsdν(gχ) if χ �= 1;

Lp(s, χ) =

∫
Gal(K(p∞)/K)

χ−1κs(1− γ)dν(1) if χ = 1.



THE SPLIT PRIME μ-CONJECTURE 297

We define F (w,χ) ∈ Dp[[w]] to be the corresponding Iwasawa function. Then, using
Theorem 5, for a character ρ of Γ′ of sufficiently large finite order, one has

ρ(F (w,χ−1)) ∼
{
G(χρ)Sp(χρ) if χ �= 1;

(ρ(γ0)− 1)G(χρ)Sp(χρ) if χ = 1,

where u ∼ v denotes the fact that u/v is a p-adic unit. Let

F =
∏
χ∈Ĥ

F (w,χ).

It follows that for all sufficiently large n one has∏
level(ρ)=t+n

ρ(F ) ∼ p
∏
ε=χρ

level(ρ)=t+n

G(ε)Sp(ε), (28)

since in the product on the right hand side we range over all χ (including χ = 1) and∏
level(ρ)=t+n

(ρ(γ0)− 1) = p.

Proof of Theorem 1. Using (28), Corollary 1, Lemma 8 and Proposition 3, it
follows that

μ(F ) = μ (Gal(M(F∞)/F∞)) .

In Theorem 6 we proved that μ (Lp(s, χ)) = 0. It follows that

μ (Gal(M(F∞)/F∞)) = 0,

which completes the proof of the main theorem of this article.

Acknowledgements. This manuscript is part of the first author’s (VC) Ph.D.
thesis. We are very grateful to Prof. John Coates for giving us this problem and for
his support.

5. Appendix: proof of Schneps’ theorem. For the proof of Theorem 7, we
will need two independence results (Theorem II and Theorem III in [Sch]). These
two theorems are the ‘hard work’ in adapting Sinnott’s independence result from the
cyclotomic case (see Section 3 from [Si]). To state what these results are, we need in
turn some additional notations.

We begin by noting that if r = |W |, then r = 2 except for K = Q(i) and
K = Q(i

√
3) when we have r = 4 and r = 6, respectively. Note that in the two

exceptional cases we cannot have p = 2 or p = 3 since these primes do not split in
either field.

For the proof, we will distinguish between the cases p = 2 and p > 2. The
following notations are used for p > 2. Let m = (p − 1)/r and α1, . . . , αn be a basis
for the OK-module generated by the (p− 1)th roots of unity in Zp. For 1 ≤ j ≤ m we
choose representatives εj for the (p − 1)th roots of unity modulo W . It follows that
there exist aij ∈ OK such that

εj =

n∑
i=1

aijαi, 1 ≤ j ≤ m. (29)
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Let β̃v(w) ∈ Fp be the reduction of β
v(w) modulo π and we let ε̂ be the formal

group of Ẽ, the reduction of E modulo π. We fix an indeterminate T and extend
the field of definition of Ẽ to the field of fractions of B := Fp[[T ]]. From now on, we

will also view B as the underlying set for Ĝm in characteristic p. With this setup,

it follows that β̃v converges to a value on ε̂ whenever the image of w lies in (T ), the
maximal ideal of B.

For every α ∈ Zp there exists a unique power series [α](t) such that [α](t) ≡ αt

(mod deg 2) and [α](t) is an endomorphism of Ê (see Proposition I.1.5 in [dS]). We

will write [̃α](t) for the reduction of [α](t) modulo π.
With the positive integer n defined as above, we consider

En := E × E × · · · × E︸ ︷︷ ︸
n times E

and let t1, . . . , tn be the copies of the parameter t arising from the coordinate projec-
tions En → E. Let F(En) be the field of rational functions on this abelian variety,
written as Laurent expansions at t1, . . . , tn, and define

D := F(En) ∩ Dp[[t1, . . . , tn]].

Analogously, we let Ẽn be the product of n copies of Ẽ, and we also define D̃ =
F(Ẽn) ∩B[[t1, . . . , tn]].

We can now state the aforementioned independence results.

Proposition 4. For 1 ≤ j ≤ m, let Φj : Ẽ
n → Ẽ be the map given by

Φj(P1, . . . , Pn) =

n∑
i=1

aijPi,

and assume that r1, . . . , rm are rational functions on Ẽ with the property that

m∑
j=1

rj (Φj(x)) = 0, for all x ∈ Ẽn.

Then each rj is a constant function on Ẽ.

Proposition 5. Let Θ : B[[t1, . . . , tn]]→ B[[t]] be the map given by

Θ(ti) = [̃αi](t).

Then the restriction of Θ to D̃ is injective, i.e. if r ∈ D̃ is such that

r
(
[̃αi](t), . . . , [̃αn](t)

)
= 0,

then r ≡ 0.

We will also need the following auxiliary lemma, which is the content of the
Proposition proved on page 25 in [Sch].

Lemma 9. If C is any compact-open set in Zp, then for λ as in the statement of
Theorem 7 one has that the power series associated with λ|C has the form RC (β

v(w)),
where RC is also a rational function on E.
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Armed with the above results, we can proceed to the proof of Theorem 7.

Proof of Theorem 7. We treat first the case p ≥ 3. For every 0 ≤ i ≤ p − 2 we
define a measure

κi =
∑
ζ∈W

ωi(ζ)λ∗ ◦ (ζ).

By Lemma 9, λ∗ is associated with a rational function R∗ (βv(w)), hence λ∗ ◦ (ζ) is
associated with R∗ ([ζ−1] (βv(w))

)
. It follows that κi is associated with a rational

function in βv(w) on E. Furthermore, one has

Γ(i)
κi
(s) =

∑
ζ∈W

ωi(ζ)

∫
Z∗
p

〈x〉sωi(x)dλ∗ ◦ (ζ)

=
∑
ζ∈W

ωi(ζ)

∫
Z∗
p

〈
ζ−1x

〉s
ωi
(
ζ−1x

)
dλ∗

=
∑
ζ∈W

ωi(ζ)ωi(ζ−1)

∫
Z∗
p

〈x〉sωi(x)dλ

= rΓ
(i)
λ (s).

Since we are in the case p ≥ 3 and r ∈ {2, 4, 6}, with r �= 6 when p = 3, it follows that

μ
(
Γ
(i)
λ (s)

)
= μ

(
Γ(i)
κi
(s)
)
.

It therefore suffices to prove that

μ(κi) = μ
(
Γ(i)
κi
(s)
)
.

First notice that if the power series associated with κi is divisible by π′, then so is the
power series associated with

∑
ε∈V

εiκi ◦ ε|U (see (18)), hence Γ
(i)
κi (s) is also divisible by

π′.
Conversely, assume that π′ divides the power series associated with the measure∑

ε∈V

εiκi ◦ ε|U . By (17), it follows that π′ divides the power series associated with the

measure

r
m∑
j=1

ε−i
j κi|(ε−1

j U) ◦
(
ε−1
j

)
.

Let Fj(β
v(w)) be the power series corresponding to the measure ε−i

j κi|(ε−1
j U). It

follows that

m∑
j=1

Fj (β
v ((1 + w)εj − 1)) ≡ 0 (mod π′Dp[[w]]).

If we let F̃j be the reduction of Fj modulo π′, it follows that

m∑
j=1

F̃j

(
[̃εj ] · β̃v(w)

)
= 0.
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We now define the function Φj : Ẽ
n → Ẽ by

Φj(t1, . . . , tn) =

n∑
i=1

[̃aij ](ti),

where aij ∈ OK are the quantities defined in (29). Then

m∑
j=1

F̃j

(
[̃εj ] · β̃v(w)

)
=

m∑
i=1

F̃j

(
Φj

(
[̃α1](t), . . . , [̃αn](t)

))
= 0.

By Proposition 5, it follows that
m∑
j=1

F̃j ◦ Φj is identically zero on Ẽn, hence, by

Proposition 4, it follows that

m∑
j=1

Fj ≡ 0 (mod π′Dp[[w]]).

By definition, Fj(P ) is the rational function on E corresponding to the measure
ε−i
j κi|(ε−1

j U), so

κi =

m∑
j=1

∑
ζ∈W

ζi κi|(ε−1
j U) ◦ (ζ)

=
∑
ζ∈W

⎛⎝ m∑
j=1

εijζ
iFj(ζP )

⎞⎠ .

It follows that π′ divides κi.
We have thus established that the divisibility of κi by π′ is equivalent to the

divisibility of Γ
(i)
κi (s) by π′, which completes the proof in the case p ≥ 3.

Finally, when p = 2, we saw that we cannot have K = Q(i) or K = Q(i
√
3), hence

r = 2. Following the trick from the proof of Theorem 1 in [Si], we note that it suffices
to prove Theorem 7 when λ = λ∗ and ωi(−1)λ ◦ (−1) = λ (for, if λ corresponds to a
rational function, then so does γ := λ∗ + ωi(−1)λ∗ ◦ (−1) and one has the identities
γ = γ∗, γ ◦ (−1) = ωi(−1)γ, Γ(i)

γ (s) = 2Γ
(i)
λ (s) and γ∗ + ωi(−1)γ∗ ◦ (−1) = 2(λ∗ +

ωi(−1)λ∗ ◦ (−1)). We can also assume that λ is not divisible by π′, since replacing λ
by 1

π′λ (when π′ divides λ) decreases both μ-invariants in the statement of Theorem 7

by 1. We are then left to prove that μ
(
Γ
(i)
λ (s)

)
= 1, i.e. that μ (Lλ,i(w)) = 1, where

Lλ,i(u
s − 1) =

∫
Z×
p

ωi(x)〈x〉sdλ.

We use the same strategy as in the case p ≥ 3. Let G(w) be the power series associated

with λ|1+4Z2
. Using λ = λ∗ and ωi(−1)λ ◦ (−1) = λ, it follows that∫

Z×
p

ωi(x)〈x〉sdλ = 2

∫
1+4Z2

ωi(x)xsdλ = 2G(us − 1).
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Assume by contradiction that μ(G(w)) > 0. But then μ(G ◦ (−1)) > 0, and since
λ = λ∗, it follows that G ◦ (−1) corresponds to λ|−1+4Z2

. Since

λ = λ∗ = λ|1+4Z2
+ λ|−1+4Z2

,

it follows that μ(λ) > 0, contradicting our previous assumption that μ(λ) = 0. This
completes the proof.
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extensions abèliennes, J. Reine Angew. Math., 358 (1985), pp. 76–91.
[Gil 2] R. Gillard, Transformation de Mellin-Leopoldt des fonctions elliptiques, J. Number

Theory, 25:3 (1987), pp. 379–393.
[Go-Sch] C. Goldstein and N. Schappacher, Séries dEisenstein et fonctions L de courbes
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