
ASIAN J. MATH. c© 2020 International Press
Vol. 24, No. 3, pp. 369–416, June 2020 001

RIEMANNIAN AND KÄHLERIAN NORMAL COORDINATES∗

TILLMANN JENTSCH† AND GREGOR WEINGART‡

Abstract. In every point of a Kähler manifold there exist special holomorphic coordinates
well adapted to the underlying geometry. Comparing these Kähler normal coordinates with the
Riemannian normal coordinates defined via the exponential map we prove that their difference is a
universal power series in the curvature tensor and its iterated covariant derivatives and devise an
algorithm to calculate this power series to arbitrary order. As a byproduct we generalize Kähler
normal coordinates to the class of complex affine manifolds with (1, 1)–curvature tensor. Moreover
we describe the Spencer connection on the infinite order Taylor series of the Kähler normal potential
and obtain explicit formulas for the Taylor series of all relevant geometric objects on symmetric
spaces.
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1. Introduction. Situated at the crossroads of differential and algebraic ge-
ometry the geometry of Kähler manifolds is a very attractive topic of research, in
particular both analytical and algebraic tools and ideas have been brought to bear
on the topic. The main motivation of the article at hand is to understand the in-
terrelationship between the Taylor series of infinite order of several objects relevant
for Kähler geometry. Philosophically our study of Kähler manifolds is thus based
in the jet calculus of differential geometry, a calculus which in contrast to tensor or
exterior calculus tries to avoid taking actual derivatives at all cost. Instead of taking
derivatives jet calculus focuses on the algebraic constraints satisfied by the jets of all
relevant objects, ideally then these algebraic constraints are sufficient to determine all
the jets by multiplication, which at higher orders is much simpler than differentiation.

Not to the least the success of this strategy depends on our ability to isolate the
objects to which it can be applied in the first place. In affine geometry for example the
relevant object turns out to be the backward parallel transport Φ−1, which encodes
the differential of the exponential map and describes the Taylor series of all covariantly
parallel tensors. The parallel transport equation proved in Lemma 3.1 of this article
is the algebraic constraint

N(N + 1)Φ−1 = R Φ−1 +N(T Φ−1)

on the Taylor series of the backward parallel transport, whose solution Φ−1 is easily
found by multiplication. In passing we remark that in the torsion free case the Tay-
lor series of Φ−1 was calculated by several authors before using either implicitly or
explicitly properties of iterated covariant derivatives. The novelty in our argument is
that the parallel transport equation appears directly as an integrability condition for
the Jacobi equation.

In order to find the relevant objects for the study of Kähler geometry we recall an
observation originally due to Bochner [Bo]: Riemannian normal coordinates on Kähler
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manifolds are not complex coordinates unless the manifold is flat. Bochner found
remedy to this nuisance in singling out complex coordinates centered in an arbitrary
point p of a Kähler manifold M , which are unique up to unitary transformations.
Their lack of uniqueness is easily fixed by thinking of Kähler normal coordinates as
anchored coordinates, local diffeomorphisms

kncp : TpM −→M, X �−→ kncpX

mapping the origin to p with differential (kncp)∗,0 = idTpM under the usual identifi-
cation T0(TpM) ∼= TpM . The difference element K := exp−1

p ◦kncp and its inverse
K−1 are “hidden” relevant objects in Kähler geometry, because their Taylor series
relate to commonly considered objects like the Kähler potential. Inevitably then a
pivotal role in this article is played by the proof of the following statement about the
Taylor series of K and K−1:

Theorem 4.6 (Universality of Kähler Normal Coordinates). Every term in the
Taylor series of the difference element K = exp−1

p ◦kncp and its inverse K−1 in the
origin of Kähler normal coordinates is a universal polynomial, independent of the
manifold and its dimension, in the complex structure Ip, the curvature tensor Rp and
its iterated covariant derivatives (∇R)p, (∇2R)p, . . . evaluated at p ∈M .

Of course the theorem in itself can hardly be called surprising, its validity for
example is implicitly taken for granted without even a fleeting comment in [Hi]. The
rigorous proof in Section 4 however allows us to draw several conclusions about the
nature of Kähler normal coordinates, for example Kähler normal coordinates are in-
herited by totally geodesic complex submanifolds according to Corollary 4.9. Moreover
the proof of Theorem 4.6 provides us with a simple recursion formula for the Taylor
series of the difference element K−1.

Perhaps the most striking insight however to be taken from the proof of Theorem
4.6 is that Kähler normal coordinates, very much like their Riemannian counterpart,
do only depend on the complex affine geometry and not on the metric structure,
despite the fact that their characterization apparently involves the metric in form of
the potential. In fact Kähler normal coordinates generalize to the much more general
class of balanced complex affine manifolds: Complex manifolds M endowed with a
torsion free connection ∇ on their real tangent bundle TM such that the associated
almost complex structure is parallel ∇I = 0 and the curvature tensor is a (1, 1)–form
in the sense RIX, IY = RX,Y for all X, Y .

Using the recursion formula for K−1 formulated in Remark 4.10 in analogy to the
parallel transport equation we calculate the initial terms of the Taylor series of K−1,
of the Kähler normal potential and the Riemannian distance to the origin. Actually
the recursion formula is simple enough to be readily programmed in a computer
algebra system, the problem is to standardize the numerous terms cropping up in the
process. An interesting conclusion from these calculations is in any case that the total
holomorphic sectional curvature

Stotal(X) :=
∑
k≥ 4

1

(k − 4)!
g((∇k−4

X, ..., XR)X, IXIX, X) ∈ Γ(Sym
≥(2,2)

T ∗M)

written as a sum of its bihomogeneous components Sκ, κ of degrees κ, κ ≥ 2 is
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congruent

θ(X) ≡ g(X, X)−
∑

κ, κ≥ 2

1

2κ (κ− 1)κ (κ− 1)
Sκ, κ(X) (1)

dist2g(p, kncpX) ≡ g(X, X)−
∑

κ, κ≥ 2

1

2(κ+ κ− 1) (κ− 1) (κ− 1)
Sκ, κ(X) (2)

to the Kähler normal potential θ and the Riemannian distance to the origin mod-
ulo terms at least quadratic in the curvature tensor and all its iterated covariant
derivatives. A simple induction based on these congruences implies that the total
holomorphic sectional curvature, the Kähler normal potential and the Riemannian
distance to the origin all parametrize the underlying Kähler geometry uniquely up to
covering.

For the time being the Kähler normal potential is certainly the most convenient
of these three parameters, because the covariant derivative of the Kähler normal
potential considered as a section θ ∈ Γ(SymT ∗M) can be calculated using the concept
of holomorphically extended vector fields. More precisely we find in Lemma 4.11 an
explicit formula of the form

∇Zθ = pr≥(2,2) (Z � θfree)− pr[ 1](Z � θcrit) • θfree

where • is a simple bilinear operation, while θfree and θcrit denote the sums of all
bihomogeneous components of θ at least or exactly quadratic respectively in the
holomorphic or antiholomorphic coordinates. Note that this result is best thought
of as describing the so called Spencer connection on the parameter vector bundle

Sym
≥(2,2)

T ∗M .
Specializing from general Kähler manifolds to concrete examples we study the lo-

cally symmetric Kähler manifolds, usually called hermitean locally symmetric spaces,
in the second part of this article. In general the Lie theoretic setup [He] [Ber] makes
many calculations like the determination of the Taylor series of the difference ele-
ment K and its inverse K−1 feasible for symmetric spaces, making good use this
simplification we obtain the formula:

Theorem 5.3 (Difference Elements of Hermitean Symmetric Spaces). For every
hermitean locally symmetric space the difference element K := exp−1

p ◦ kncp measur-
ing the deviation between the Riemannian and Kählerian normal coordinates reads:

KX =
artanh( 12 ad IX)

1
2 ad IX

X K−1X =
tanh( 12 ad IX)

1
2 ad IX

X.

Although the arguments and statements in this second part are formulated for her-
mitean locally symmetric spaces, all results except of course Corollary 5.4 hold true
for the locally symmetric among the balanced complex affine spaces, for which Kähler
normal coordinates are defined. Unfortunately complex symmetric spaces are never
balanced unless they are flat, nevertheless there certainly exist balanced complex affine
manifolds, which are symmetric, but not even pseudo–hermitean symmetric spaces.

In Section 2 we briefly recall several important definitions for Kähler manifolds
with a view towards the parametrization of Kähler geometry by a single power series
in the parameter bundle Sym≥(2,2)T ∗M . In Section 3 we prove the parallel transport
equation and discuss the notion of exponentially extended vector fields. Difference
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elements and their relation with other objects relevant for Kähler geometry are the
topic of Section 4, in which we prove Theorem 4.6 and describe the Spencer connection
for the potential in Lemma 4.11. In the very rigid context of locally symmetric spaces
the characteristic power series for Kähler normal coordinates are calculated in the final
Section 5. Appendix A details explicit calculations for the four families of compact
hermitean symmetric spaces undertaken by the authors to vindicate the formula of
Theorem 5.3 and verify Corollaries 4.9 and 5.5.

Acknowledgements. The first author would like to thank the Institute of Math-
ematics at Cuernavaca of the National Autonomous University of Mexico for its hospi-
tality during two prolonged stays. The second author is similarly indebted to U. Sem-
melmann for many fruitful mathematical discussions about Kähler and quaternionic
Kähler manifolds as well as for his benevolence and generosity in numerous visits to
the University of Stuttgart.

2. Kähler manifolds and Kähler normal coordinates. Kähler geometry is a
classical topic of Differential Geometry and blends the metric structure characteristic
for Riemannian geometry with the complex structure making complex analytical tools
available. Every Kähler manifold is real analytic, hence the infinite order Taylor series
of the metric and the complex structure in an arbitrary point determine the manifold
completely up to coverings. In this section we briefly recall the definition of Kähler
manifolds and then establish a parametrization of these two Taylor series by a single

power series in the parameter vector bundle Sym
≥(2,2)

T ∗M using two independent
arguments. Excellent introductory texts to Kähler geometry are the recent textbooks
[Ba] and [M].

A Kähler manifold is a smooth manifold M endowed with a Riemannian met-
ric g and an orthogonal almost complex structure I ∈ Γ(End TM) satisfying the
rather strong integrability condition that I is parallel with respect to the Levi–Civita
connection ∇ for g:

∇XI = 0 (3)

Pseudo–Kähler manifolds generalize Kähler manifolds by weakening the positive–
definiteness of the Riemannian metric g in the definition to non–degeneracy. Every
Kähler manifold M is actually a complex manifold, because the integrability condi-
tion implies the vanishing of the Nijenhuis tensor and so the Theorem of Newlander–
Nierenberg applies. A powerful tool to study the topological properties of (pseudo)
Kähler manifolds is the Hodge decomposition

Λ T ∗M =
⊕
k≥ 0

ΛkT ∗M ⊗R C =
⊕

κ, κ≥ 0

Λκ, κT ∗M

of complex–valued differential forms on M into the eigenspaces of the derivation

(DerIη)(X1, X2, . . . , Xk) := η(IX1, X2, . . . , Xk) + · · ·+ η(X1, X2, . . . , IXk) (4)

extending the complex structure I, more precisely

Λκ,κT ∗ := {η ∈ Λκ+κT ∗ ⊗R C | DerIη = i (κ− κ) η}

is the eigenspace of DerI for the eigenvalue i(κ − κ). In passing we remark that
DerI = −I� agrees up to sign with the representation of the Lie algebra bundle
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End TM on forms. Replacing alternating by symmetric forms on T we obtain the
analoguous decomposition

SymT ∗M ⊗R C =
⊕
k≥ 0

SymkT ∗M ⊗R C =
⊕

κ, κ≥ 0

Symκ, κT ∗M (5)

into the eigenspaces of DerI for the eigenvalues i (κ−κ) ∈ C on Symκ+κT ∗M⊗RC. The
conjugation of the value of a complex valued symmetric multilinear form clearly com-
mutes with DerI and thus induces isomorphisms Symκ, κT ∗M −→ Symκ, κT ∗M, η �−→
η, for all κ, κ ≥ 0. In particular a real valued symmetric form η = η has conjugated
bihomogeneous components in Symκ, κT ∗M and Symκ, κT ∗M respectively. Bihomo-
geneous real valued symmetric forms η = η exist only for κ = κ and are characterized
by DerIη = 0.

With the complex structure I being parallel on a Kähler manifoldM the curvature
tensor R of the Levi–Civita connection ∇ associated to the Riemannian metric g
commutes with I

RX,Y IZ = I RX,Y Z

in addition to the standard symmetries of a Riemannian curvature tensor, namely

g(RX,Y Z, W ) = −g(RY,XZ, W ) = −g(RX,Y W, Z)
!
= +g(RZ,WX, Y )

and of course the first Bianchi identity RX,Y Z + RY, ZX + RZ,XY = 0. Combining
these standard identities with the characteristic commutativity of Kähler geometry
we obtain

g(RX,Y IU, IV ) = g(RX,Y U, V ) = g(RIX, IY U, V ) (6)

and conclude that RX, IY = RY, IX is symmetric in X, Y . Via polarization the curva-
ture tensorR of a Kähler manifoldM is thus completely determined by the biquadratic
polynomial TpM × TpM −→ R, (X,Y ) �−→ −g(RX,IXY, IY ), called the biholomor-
phic sectional curvature of M in order to distinguish it from the holomorphic sectional
curvature:

Definition 2.1 (Holomorphic Sectional Curvature Tensor). The holomorphic
sectional curvature tensor of a Kähler manifold M with Riemannian metric g and
orthogonal complex structure I is the section S ∈ Γ(Sym4T ∗M) defined by:

S(X, Y, U, V ) := 8
(
g(RX, IY IU, V ) + g(RX, IUIV, Y ) + g(RX, IV IY, U)

)
The holomorphic sectional curvature is the associated quartic polynomial on TM de-
fined by:

S : TM −→ R, X �−→ 1

4!
S(X, X, X, X) = g(RX, IXIX, X)

In passing we observe that the symmetries (6) of the curvature tensor R of a Kähler
manifold M imply that S is actually symmetric in all its four arguments, in particular
it is completely determined by the associated quartic polynomial on TM , this is the
holomorphic sectional curvature. In a similar vein we may deduce DerIS = 0 via
polarization from the identity:

(DerIS)(X,X,X,X) = 4S(IX,X,X,X) = 96g(RIX, IXIX, X) = 0
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Geometrically DerIS = 0 is equivalent to the statement that the holomorphic sectional
curvature S is constant along the fibers of the Hopf fibration from the unit sphere
S(TpM) to the set P(TpM) of complex lines in TpM with respect to the complex
structure Ip.

Lemma 2.2 (Description of Curvature Tensor). The curvature tensor R of a
Kähler manifold M is determined by the holomorphic sectional curvature tensor S ∈
Γ(Sym2,2T ∗M) and can be reconstructed from S by means of:

g(RX,Y U, V ) =
1

32

(
S(X, IY, IU, V )− S(X, IY, U, IV )

)
The proof of this lemma is completely straightforward: Expanding the definition of S

+S(X, IY, IU, V ) = 8g(RX,Y U, V )− 8g(RX,UIV, IY )− 8g(RX,IV Y, IU)

−S(X, IY, U, IV ) = 8g(RX,Y IU, IV ) + 8g(RX,IUV, IY )− 8g(RX,V Y, U)

adding and using the first Bianchi identity twice we obtain 4·8 g(RX,Y U, V ) as claimed.
In particular we can calculate the sectional curvature of a Kähler manifold M for an
arbitrary plane span{X,Y } ⊂ TpM from the holomorphic sectional curvatures:

g(RX,Y Y, X) =
1

32

(
S(X,X, IY, IY )− S(IX,X, IY, Y )

)
=

1

64

(
3S(X,X, IY, IY )− S(X,X, Y, Y )

)
In the second equality we have replaced S(IX,X, IY, Y ) using the argument

−4S(X,X, Y, Y ) + 4S(X,X, IY, IY ) + 8S(IX,X, IY, Y ) = 0

which follows directly from DerIS = 0 by expanding (Der2IS)(X,X, Y, Y ) = 0. Gener-
alizing the holomorphic curvature tensor to higher orders to incorporate information
about the iterated covariant derivatives ∇R, ∇2R, . . . of the curvature tensor R as
well we arrive at:

Definition 2.3 (Higher Holomorphic Sectional Curvature Tensors). For all
k ≥ 4 the higher holomorphic sectional curvature Sk ∈ Γ(SymkT ∗M) is defined by:

Sk(X) =̂
1

k!
Sk(X, . . . , X) :=

1

(k − 4)!
g((∇k−4

X, ..., XR)X, IXIX, X)

Calculating DerISk we observe that the last four summands expected from the defi-
nition of DerI all vanish by the symmetries (6) of curvature tensors of Kähler type.
In consequence the bihomogeneous components Sκ, κ ∈ Γ(Symκ, κT ∗M ⊗R C) of the
higher order holomorphic sectional curvature tensor Sk vanish unless −k+4 ≤ κ−κ ≤
k − 4, this is to say:

Stotal :=
⊕
k≥ 4

Sk =
⊕

κ, κ≥ 2

Sκ, κ ∈ Γ(Sym
≥(2,2)

T ∗M) (7)

Of course the bihomogeneous components Sκ, κ and Sκ, κ are conjugated, because the

higher holomorphic sectional curvature tensor Sk ∈ Γ(SymkT ∗M) is a real valued
polynomial by definition. In light of Lemma 2.2 we may replace the curvature tensor
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R with S = S4, similarly we may identify S5 with the covariant derivative ∇R in the
following way:

Corollary 2.4 (Covariant Derivative of Curvature). The first higher holomor-
phic sectional curvature S5 ∈ Γ(Sym5T ∗M) of a Kähler manifold M describes the
covariant derivative ∇R of the curvature tensor by means of the formula:

g((∇XR)Y, ZU, V ) =
1

192

(
+S5(X, Y, IZ, IU, V )− S5(X, Y, IZ, U, IV )

+S5(X, IY, Z, U, IV )− S5(X, IY, Z, IU, V )
)
.

This formula for∇R is a direct corollary of the description of R in Lemma 2.2, because

1

4!
S5(Y, X, X, X, X) = g((∇Y R)X, IXIX, X) + 4g((∇XR)Y, IXIX, X)

implies via the second Bianchi identity:

1

4!
S5(Y, X, X, X, X) +

1

4!
S5(Y, IX, IX, IX, IX)

= 2g((∇Y R)X, IXIX, X) + 4g((∇XR)Y, IXIX, X) + 4g((∇IXR)X,Y IX, X)

= 6g((∇Y R)X, IXIX, X)

=
6

4!
(∇Y S4)(X, X, X, X).

In consequence of Lemma 2.2 and Corollary 2.4 every Kähler geometry can be con-
structed up to covering from the total holomorphic sectional curvature Stotal defined
in (7), in particular all iterated covariant derivatives ∇R, ∇2R, . . . and thus the in-
finite order Taylor series of both g and I in exponential coordinates are determined
by Stotal. For the time being however this reconstruction is a theoretical possibility
based on counting the free parameters in the sequence R, ∇R, . . . using the formal
theory of partial differential equations [BCG]. En nuce the problem addressed in this
article is that we are lacking the explicit formulas needed for this reconstruction to
work in practice. Moreover Stotal is not the only power series with the correct num-
ber of parameters, another interesting candidate parametrizing Kähler geometry by

a section of the parameter bundle Sym
≥(2,2)

T ∗M arises from a suitable potential:

Definition 2.5 (Local Potential Functions). A local potential function for a
Kähler manifold M with Riemannian metric g and complex structure I is a smooth
function θloc : U −→ R defined on an open subset U ⊂ M , which is a preimage of
the Kähler form ω(X,Y ) := g(IX, Y ) in the sense of the ∂∂–Lemma

ω =
i

2
∂∂ θloc

where ∂ and ∂ are the (1, 0) and (0, 1)–components of the exterior derivative d :=
∂ + ∂. Note that ω ∈ Γ(Λ2T ∗M) is parallel under the Levi–Civita connection and so
is closed.

A local potential function is never unique as it can always be modified θloc � θloc +
Re f by adding the real part of a holomorphic function f : U −→ C. Instead of the
Kähler form ω we may employ the hermitean form h := g+ i ω associated to a Kähler



376 T. JENTSCH AND G. WEINGART

geometry on a manifold M in the equation characterizing a local potential function
θloc

h(X, Y ) := g(X, Y ) + i ω(X, Y ) = (Hess θloc)(pr0,1X, pr1,0Y ) (8)

where pr1,0 := 1
2 (id − iI) and pr0,1 := 1

2 (id + iI) are the I–eigenprojections, or
alternatively:

g(X, Y ) =
1

4

(
(Hess θloc)(X, Y ) + (Hess θloc)(IX, IY )

)
(9)

In both equations the Hessian D ◦ d can actually be taken with respect to an arbitrary
torsion free connection D on the tangent bundle making I parallel, it is not necessary
to use the Levi–Civita connection ∇ for this purpose. In fact the difference AXY :=
DXY − D̂XY of two such connections is symmetric AXY = AY X with AXIY =
IAXY and thus automatically satisfies AXY + AIXIY = 0 = Apr0,1Xpr1,0Y . The
liberty granted by this observation is very useful in verifying equations (8) and (9)
directly in local holomorphic coordinates (z1, . . . , zn), because we may simply choose
D to be the trivial connection arising from the local trivialization of the complexified
tangent bundle by the Wirtinger vector fields

∂

∂zμ
:=

1

2

( ∂

∂xμ
− i

∂

∂yμ

) ∂

∂zμ
:=

1

2

( ∂

∂xμ
+ i

∂

∂yμ

)
where (x1, y1, . . . , xn, yn) are the real and imaginary parts of (z1, . . . , zn). The
Riemannian metric g is completely determined by its mixed components gμ ν :=
g( ∂

∂zμ ,
∂

∂zν ) in holomorphic coordinates, because the eigensubbundles T 1,0M and
T 0,1M of the complexified tangent bundle TM ⊗R C under the skew symmetric en-
domorphism I are isotropic, so that all pure components gμ ν = 0 = gμ ν vanish. In
holomorphic coordinates we thus find the following local expansions of the metric, the
Kähler and the hermitean form:

g =
∑
μ ν

gμ ν dz
μ · dzν ω = i

∑
μ ν

gμ ν dz
μ ∧ dzν h = 2

∑
μ ν

gμ ν dz
ν ⊗ dzμ

Comparing the expansion for ω with the analoguous local expansion of i
2 ∂∂ θloc we

find

∂ ∂ θloc =
∑
μ ν

∂2 θloc

∂zμ∂zν
dzμ ∧ dzν =⇒ gμ ν =

1

2

∂2

∂zμ∂zν
θloc

and reinserting this relation between θloc and the mixed components of g into the
expansions of the hermitean form h we verify equation (8) and in turn equation (9)
for the Hessian D ◦ d associated to the local trivial connection D ∂

∂zμ = 0 = D ∂
∂zν .

The concept of local potentials for Kähler geometries allows us to single out special
holomorphic coordinates charts (z1, . . . , zn) on a Kähler manifold by requiring that
the local potential, after adding the real part of a holomorphic function, takes as
simple a form as possible. Uniqueness of these holomorphic coordinates is usually
stipulated modulo unitary transformations only, in order to remove this ambiguity
we borrow from the Riemannian exponential map the idea of anchored coordinates
centered in a point p ∈ M . An anchored local coordinate chart is a smooth map
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ϕ : TpM −→ M , which is a diffeomorphism of some neighborhood of 0 ∈ TpM to a
neighborhood of ϕ(0) = p such that the differential

ϕ∗, 0 : TpM ∼= T0(TpM) −→ TpM, Z �−→ Z

equals idTpM under the natural identification T0(TpM) ∼= TpM . Actually we do
not insist on TpM to be the domain of ϕ, hence it may not be defined outside a
neighborhood of 0.

Theorem 2.6 (Kähler Normal Coordinates and Normal Potentials [Bo]). In
every point p ∈ M of a Kähler manifold M there exist unique anchored local holo-
morphic coordinates kncp : TpM −→ M centered in p and a unique local potential
function θlocp such that the infinite order Taylor series θp of the pull back of θlocp along
kncp is congruent

θlocp (kncpX) ∼
X→ 0

θp(X) ≡ gp(X, X) mod Sym
≥(2,2)

T ∗pM

to the norm square function on TpM modulo a power series, which is at least quadratic
in both holomorphic and antiholomorphic coordinates. Due to their uniqueness the
holomorphic coordinates kncp are called Kähler normal coordinates with normal po-
tential θlocp =̂ θp.

The double uniqueness statement in this theorem implies in particular that for given
anchored local holomorphic coordinates ϕ : TpM −→ M the existence of a power
series potential θp ∈ SymT ∗pM satisfying the normalization congruence is sufficient to

conclude that θp is the Taylor series of the normal potential θlocp and that ϕ = kncp are
the Kähler normal coordinates, this argument will be used in explicit examples in Ap-
pendix A. The original account [Bo] of Bochner contains a very readable, elementary
proof of Theorem 2.6, for this reason we will not discuss Theorem 2.6 independently
of Theorem 4.6 below.

3. Affine Exponential Coordinates. In the study of the geometry of Rieman-
nian or more generally affine manifolds the exponential map provides an indispensable
tool in both explicit calculations and theoretic considerations. Classically Jacobi vec-
tor fields are used to describe the differential of the exponential map, alternatively
the forward and backward parallel transport defined in this section can be used for
this purpose. In particular we will use Jacobi vector fields to give an apriori proof of
the parallel transport equation, which describes the Taylor series of parallel tensors,
without calculating its solution first. Moreover we will introduce the concept of ex-
ponentially extended vector fields for general affine manifolds, which generalize the
left invariant vector fields on Lie groups and the transvection Killing vector fields on
symmetric spaces.

Affine linear spaces are characterized by the presence of a distinguished family of
curves, the family of straight lines. The choice of a connection∇ on the tangent bundle
TM of a manifold M replaces this distinguished family by the family of geodesics,
the solutions γ : R −→ M to the geodesic equation associated to the choice of
connection. According to the Theorem of Picard–Lindelöf a unique solution γ to
the geodesic equation ∇

dt γ̇ = 0 exists for all initial values so that we may define the
exponential map centered in a point

expp : TpM −→ M, X �−→ γX(1)
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by sending a tangent vector X to the value γX(1) of the unique geodesic γX with
initial values γX(0) = p and γ̇X(0) = X. Constant reparametrizations of geodesics are
geodesics γλX(t) = γX(λt), hence the image of the ray t �−→ tX under exponential
coordinates is the geodesic t �−→ γtX(1) = γX(t) we started with. The parallel
transport along this ray geodesic PT∇(X) := PT∇γX (1) is by construction a linear
isomorphism of tangent spaces:

PT∇(X) : TpM
∼=−→ Texpp XM

This isomorphism allows us to describe the differential of exponential coordinates
expp centered in p ∈M , either by using the forward parallel transport defined as the
composition

Φ(X) : TpM
PT∇(X)−→ Texpp XM

(expp)
−1
∗,X−→ TXTpM

∼=−→ TpM

wherever the exponential map expp is a local diffeomorphism, or the backward trans-
port

Φ−1(X) : TpM
∼=−→ TXTpM

(expp)∗,X−→ Texpp XM
PT∇(X)−1

−→ TpM

defined for all X ∈ TpM under the rather mild assumption that M is a complete
affine manifold. The infinite order Taylor series of Φ−1 in the origin 0 ∈ TpM is an
explicitly known power series in the curvature tensor R of M and its iterated covariant
derivatives ∇R, ∇2R, . . . evaluated at p. More precisely the Taylor series of Φ−1 in
the origin equals the unique power series solution Φ−1 ∈ Sym T ∗pM ⊗ End TpM to a
formal differential equation with initial value Φ(0) = id involving the number operator
N on power series:

Lemma 3.1 (Parallel Transport Equation). The infinite order Taylor series of
the backward parallel transport Φ−1 : TpM −→ End TpM in the center 0 ∈ TpM of
exponential coordinates of an affine manifold M is characterized as a formal power
series Φ−1 ∈ SymT ∗pM ⊗ End TpM by the formal differential equation

N (N + 1)Φ−1 = R Φ−1 +N(T Φ−1)

in which N denotes the number operator on power series and the power series R and
T reflect the infinite order Taylor series of the curvature and the torsion respectively:

R(X)Y :=
∑
k≥0

1

k!
(∇k

X,...,XR)X,Y X T (X)Y :=
∑
k≥0

1

k!
(∇k

X,...,XT )(X, Y )

Proof. In order to prove the lemma we want to study the standard Jacobi equation
for a vector field J ∈ Γ(γ∗TM) along a geodesic γ in a manifold M with respect to an
affine, not necessarily torsion free connection ∇ on the tangent bundle with curvature
R and torsion T :

JacγJ :=
∇2

dt2
J +

∇
dt

T (J, γ̇) +RJ, γ̇ γ̇
?
= 0

Multiplying by t2 we obtain for every solution J to this equation the equality:

t
∇
dt

(
t
∇
dt
− 1

)
J = Rt γ̇, J(t γ̇) +

(
t
∇
dt
− 1

)
T (t γ̇, J) (10)
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In particular we are interested in the family of solutions to the Jacobi equation,
which arise naturally in exponential coordinates by varying the geodesic rays. More
precisely we consider for a point p ∈ M and an endomorphism A ∈ End TpM of its
tangent space the geodesic variation (s, t) �−→ expp(t e

sAX) for some tangent vector
X ∈ TpM . This geodesic variation induces a Jacobi field JA(t) along the geodesic ray
γ : t �−→ expp(tX) determined by X:

JA(t) :=
∂

∂s

∣∣∣∣
0

expp(t e
sA X) = (expp)∗, tX(t AX) = tPT∇(tX) Φ−1(tX)AX

Multiplying the Jacobi equation (10) for this Jacobi field byPT∇(tX)−1 and using the
characteristic property of the parallel transport PT∇(tX)−1 ◦ ∇dt = d

dt ◦PT∇(tX)−1

we obtain

t
d

dt
(t

d

dt
− 1)

(
tΦ−1(tX)AX

)
=

(
PT∇(tX)−1R

)
tX,tΦ−1(tX)AX

(tX) (11)

+
(
t
d

dt
− 1

)(
PT∇(tX)−1T

)
(tX, tΦ−1(tX)AX)

where PT∇(tX)−1R for example denotes the parallel transport for the curvature
tensor(

PT∇(tX)−1R
)
U, V

W := PT∇(tX)−1
(
RPT∇(tX)U,PT∇(tX)V PT∇(tX)W

)
the analoguous definition of the parallel transport PT∇(tX)−1T for the torsion tensor
is omitted. In general the derivative of a geodesic like t �−→ expp(tX) is given by the

parallel transport of the initial tangent vector γ̇(t) = (expp)∗, tXX = PT∇(tX)X,
incidentally this argument directly implies the so called Gauß Lemma valid for all
X ∈ TpM and t ∈ R:

Φ−1(tX)X = X = Φ(tX)X (12)

Of course the point in defining the parallel transport for the curvature and torsion
tensor is thatPT∇(tX)−1R andPT∇(tX)−1T are trilinear and bilinear maps on TpM
respectively with values in TpM independent of the argument X ∈ TpM . Hence it
makes sense to talk about their infinite order Taylor series as X approaches 0 ∈ TpM ,
which are given by

PT∇(X)−1R ∼
X → 0

∑
k≥ 0

1

k!
∇k

X, ..., XR PT∇(X)−1T ∼
X → 0

∑
k≥ 0

1

k!
∇k

X, ..., XT (13)

due to the definition of iterated covariant derivatives, a more detailed derivation
of these asymptotic expansions can be found for example in [W2]. Replacing
PT∇(tX)−1R and PT∇(tX)−1T as well as the backward parallel transport Φ−1(tX)
by their respective infinite order Taylor series in equation (11) we obtain the following
identity of power series

t
d

dt
(t

d

dt
− 1)

(
Φ−1(tX)A(tX)

)
= R(tX) Φ−1(tX)A(tX) + (t

d

dt
− 1)

(
T (tX) Φ−1(tX)A(tX)

)
in which every occurrence of the argument X ∈ TpM comes along with a factor t
and vice versa. In turn we may replace the differential operator t d

dt by the number
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operator N on power series in X and evaluate at t = 1 to reduce this power series
identity to:

N (N − 1) (Φ−1(X)AX) = R(X) Φ−1(X)AX + (N − 1) (T (X) Φ−1(X)AX)

Recall now that the endomorphism A ∈ End TpM of the tangent space TpM can be
chosen arbitrarily in this identity. A fortiori the infinite order Taylor series Φ−1 of
the backward parallel transport satisfies the differential equation (N + 1)NΦ−1 =
R Φ−1 +N(T Φ−1) in light of the observation that the following homogeneous linear
map of degree +1

ι : Sym•T ∗ ⊗End T −→ Hom(End T, Sym•+1T ∗ ⊗ T ), Ψ �−→
(
A �−→ Ψ(·)A(·)

)
is injective for every finite dimensional vector space T ; the degree +1 homogeneity of
ι evidently accounts for the shift N � N + 1 in the differential equation for Φ−1.
To justify our observation about the injectivity of ι we specify a linear map ι∗ in the
opposite direction

ι∗ : Hom (End T, Sym•+1T ∗ ⊗ T ) −→ Sym•T ∗ ⊗ End T, F �−→ ι∗F

by summing over a pair {Eμ } and { dEμ } of dual bases for T and T ∗ respectively:

[ι∗F ](X)Y :=
∑
μ

(Eμ �F (dEμ ⊗ Y ))(X)

The injectivity of ι is then a direct consequence of the following identity for ι∗ι:

[ ι∗ιΨ](X)Y =
∑
μ

(
Eμ�(dEμ(·)Ψ(·)Y )

)
(X) = [(N + dimT )Ψ](X)Y.

Perhaps it is a good idea to remind the reader that the parallel transport equation
formulated in Lemma 3.1 is only a formal differential equation for the infinite order
Taylor series Φ−1 of the backward parallel transport. Its formal solution is easily
expanded to arbitrary order in X, but it is much easier to recall the formal differential
equation than its explicit solution. Expanding the solution to order 4 inX for example
we obtain in the torsion free case:

Φ−1(X)Y = Y +
1

6
RX,Y X +

1

12
(∇XR)X,Y X

+
1

40
(∇2

X,XR)X,Y X +
1

120
RX,RX, Y XX +O(X5).

Similarly the parallel transport equation can be solved explicitly for Lie groups. Con-
sider for example the flat connection ∇L on the tangent bundle TG of a Lie group G,
which makes all left invariant vector fields parallel. By construction this connection
is flat RL = 0 and its torsion TL(X,Y ) = −[X, Y ]algebraic is parallel with respect to
∇L so that T L(X) = −adX. Under the ansatz Φ−1(X) = ϕ−1(adX) the parallel
transport equation becomes

(x
d

dx
+ 1)x

d

dx
ϕ−1(x) = x

d

dx
(−xϕ−1(x)) ϕ−1(0) = 1
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with unique solution ϕ−1(x) = e−x−1
−x , in turn we find the well–known explicit solution:

Φ−1(X) =
e−adX − id

−adX Φ(X) =
−adX

e−adX − id
.

The parallel transport equation for symmetric spaces can be solved using a similar
ansatz.

Corollary 3.2 (Taylor Series of Parallel Tensors). The unique power series
solution Φ−1 ∈ SymT ∗pM ⊗ End TpM to the parallel transport equation N (N +
1)Φ−1 = R Φ−1 + N (T Φ−1) determines the Taylor series of every tensor parallel
with respect to ∇ in exponential coordinates. For a purely covariant parallel tensor
η say the resulting Taylor series reads for X ∈ TpM and A1, . . . , Ar ∈ TX(TpM) ∼=
TpM :

(taylor0(exp
∗
p η))X(A1, . . . , Ar) = ηp(Φ

−1(X)A1, . . . , Φ
−1(X)Ar).

Of course the restriction of a tensor η parallel with respect to ∇ on all of M is parallel
along every radial geodesic t �−→ expp(tX), with this in mind we find the relation

(exp∗p η)X(A1, . . . , Ar) = ηexpp X((expp)∗, XA1, . . . , (expp)∗, XAr)

= ηp(PT∇(X)−1(expp)∗, XA1, . . . , PT∇(X)−1(expp)∗, XAr)

and so the definition of Φ−1 implies the Corollary. For mixed co– and contravariant
tensors the formulas become slightly more complicated, but the argument in itself
remains valid.

A notion closely related to the construction of the forward and backward parallel
transport is the notion of exponentially extended vector fields, which in a sense de-
scribe the covariant derivative of the exponential map. The exponentially extended
vector field associated to a tangent vector Z ∈ TpM is the smooth vector field defined
on the domain of the exponential map expp in TpM as the derivative of the following
family of diffeomorphisms of TpM

Zexp :=
d

dt

∣∣∣∣
0

(
TpM

PT∇γ (t)−→ Tγ(t)M
expγ(t)−→ M

(expp)
−1

−→ TpM
)
∈ Γ(T (TpM))

where PT∇γ (t) denotes the parallel transport along a curve γ representing Z = d
dt

∣∣
0
γ.

The exponentially extended vector field Zexp does not depend on the curve γ used in
its definition, moreover its value Zexp(0) = Z in the origin equals the tangent vector
we started with under the identification T0(TpM) ∼= TpM . Somewhat more general
the infinite order Taylor series of Zexp in 0 ∈ TpM is determined by a power series Θ
on TpM with values in End TpM via

Zexp(X) ∼
X→ 0

Θ(X)Z Θ ∈ SymT ∗pM ⊗ End TpM

which has a universal expansion in terms of the curvature and the torsion of the
connection ∇ together with all their covariant derivatives. In the torsion free case
T = 0 for example

Zexp(X)

= Z +
1

3
RX,ZX +

1

12
(∇XR)X,ZX +

( 1

60
(∇2

X,XR)X,ZX − 1

45
RX,RX,ZXX

)

+
( 1

360
(∇3

X,X,XR)X,ZX − 1

120
RX,(∇XR)X,ZXX − 1

120
(∇XR)X,RX,ZXX

)
+O(X6)
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reflects the terms of the power series Θ up to order 5. A simple algorithm to calculate
the asymptotic expansion of Θ to arbitrary order is based on the asymptotic expansion

f(expp X) ∼
X→ 0

∑
k≥ 0

1

k!
(∇k

X, ..., Xf)(p) (14)

of the pull back of functions via the exponential map, which is the analogue for
sections f ∈ C∞M of the trivial line bundle of the expansions (13) used in the proof
of Lemma 3.1. According to the definition of the exponentially extended vector field
Zexp the equality

d

dt

∣∣∣∣
0

expγ(t)

(
PT∇(t)X

)
=

d

dt

∣∣∣∣
0

expp

(
X + t Zexp(X)

)
∈ Texpp XM

of tangent vectors holds true for allX ∈ TpM and all curves γ representing Z = d
dt

∣∣
0
γ,

in turn the asymptotic expansion (14) implies an equality of asymptotic expansions
of the form

d

dt

∣∣∣∣
0

f(expγ(t) PT∇(t)X) ∼
X→ 0

d

dt

∣∣∣∣
0

∑
k≥ 0

1

k!
(∇k

PT∇(t)X, ...,PT∇(t)Xf)(γ(t))

=
∑
k≥ 0

1

k!
(∇k+1

Z,X, ..., Xf)(p)

∼
X→ 0

d

dt

∣∣∣∣
0

∑
k≥ 0

1

k!
(∇k

X+tZexp(X), ..., X+tZexp(X)f)(p).

The algorithm to calculate the Taylor series of the exponentially extended vector field
Zexp in 0 ∈ TpM is thus based on calculating the unique power series Θ−1 satisfying
the identity

d

dt

∣∣∣∣
0

∑
k≥ 0

1

k!
∇k

X+tZ, ..., X+tZf =
∑
k≥ 0

1

k!
∇k+1

Θ−1(X)Z,X, ..., Xf

of power series in X ∈ TpM for every function f ∈ C∞M , after formally inverting this
power series we obtain the power series Θ describing the Taylor series of exponentially
extended vector fields via Zexp(X) ∼ Θ(X)Z. The details of this algorithm can be
worked out in analogy to the calculation of the backward parallel transport Φ−1 in
[W1], somewhat hidden in equation (4.8) of the same reference the reader may find
the relatively explicit formula

N (N − 1)Θ = N
(
(id− Φ)Φ∗

)
+ (N Φ−1) ΦΦ∗ (15)

valid in the torsion free case. The power series Φ∗ occurring in this formula is obtained
by expanding the power series Φ in terms of the homogeneous components of the
power series R considered as indeterminates and reverse the order of the factors in all
monomials. Alternatively Φ∗ is the inverse of the unique power series solution Φ−∗

of the wrong sided parallel transport equation N(N + 1)Φ−∗ = Φ−∗R with initial
value Φ−∗(0) = id.
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4. The Taylor Series of the Difference Element. In jet calculus the key idea
is to find the appropriate difference elements and study the algebraic constraints they
satisfy. Following this strategy we devise in this section an algorithm to calculate
the infinite order Taylor series of the difference element K := exp−1 ◦kncp and its
inverse in terms of the curvature tensor and its iterated covariant derivatives proving
universality of the resulting expression on the way. Using this algorithm we calculate
the lowest order terms of the Taylor series of the Kähler normal potential and the
Riemannian distance function. Last but not least we define holomorphically extended
vector fields and use them to determine the Spencer connection for the Kähler normal
potential.

Definition 4.1 (Difference Element for Kähler Normal Coordinates). In order
to compare the unique Kähler normal coordinates kncp : TpM −→ M centered in a
point p ∈ M of a Kähler manifold M with the exponential map expp : TpM −→ M
associated to the Levi–Civita connection ∇ we consider their difference as a smooth
map:

K : TpM −→ TpM, X �−→ exp−1
p

(
kncpX

)
.

The analogue of the backward parallel transport Φ−1 in Riemannian normal coordi-
nates is the Kähler backward parallel transport Ψ−1 ∈ C∞(TpM, End TpM) defined
by means of:

Ψ−1(X)Y := Φ−1(KX) DK(X) Y := Φ−1(KX)
d

dt

∣∣∣∣
0

K(X + t Y ).

Recall that the main role of the backward parallel transport Φ−1 in affine exponential
coordinates is to describe the differential of the exponential map in covariant terms.
In complete analogy the Kähler backward parallel transport Ψ−1 describes the differ-
ential of Kähler normal coordinates kncp : TpM −→M as a power series of covariant
tensors. More precisely the implicit form kncp = expp ◦K of the definition of the
difference element K implies (kncp)∗, X = (expp)∗, KX ◦K∗, X on differentials leading
to the commutative diagram

�(kncp)∗, X

�
�
��

K∗, X
�
�
��
(expp)∗, KX

�
∼= �PT∇(KX)−1

�
∼=
�

																


DK(X)

��
��
��
��

��
��
��
��

Φ−1(KX)

TpM TX(TpM) TkncpXM TpM

TKX(TpM)

TpM

which allows us to identify the power series Ψ−1 from Definition 4.1 with the compo-
sition:

Ψ−1(X) : TpM ∼= TX(TpM)
(kncp)∗,X−→ TkncpXM

PT∇(KX)−1

−→ TpM (16)

In particular the pull back of the Riemannian metric g to Kähler normal coordinates
reads:

(knc∗pg)X(A,B) = (exp∗p g)KX(K∗,XA,K∗,XB) = gp(Ψ
−1(X)A, Ψ−1(X)B) (17)
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Combined with equation (9) this description of the Riemannian metric g in Kähler
normal coordinates can be used to calculate the Taylor series θp of the pull back
knc∗pθ

loc
p of the Kähler normal potential θlocp to the tangent space TpM via kncp.

According to our discussion of equation (9) we are free to choose the connection D
among the torsion free connections making I parallel in order to evaluate Hess =
D ◦ d. With kncp : TpM −→ M being holomorphic with respect to the constant
complex structure Ip on TpM we may simply use the trivial connection D for this
purpose and so we are lead to consider the consequence

4 (knc∗pg)X(X, X) = 4 gp(Ψ
−1(X)X, Ψ−1(X)X)

= (Hess θp)X(X, X) + (Hess θp)X(IX, IX)

of equations (9) and (17), which implies that the formal differential equation

[(N2 +Der2I) θp](X) = 4 g(Ψ−1(X)X, Ψ−1(X)X) (18)

is obeyed by the Taylor series θp of the pull back knc∗pθ
loc
p of the normal potential to

the tangent space TpM ; in fact the Hessian with respect to the trivial connection D
satisfies

(Hess ψ)X(X , X) = [N (N − 1) ψ](X)

(Hess ψ)X(IX, IX) = [(Der2I +N)ψ](X)

for every polynomial ψ on TpM . Besides determining the pull backs of the Rieman-
nian metric g and the Kähler normal potential θloc respectively to Kähler normal
coordinates via equations (17) and (18) the difference element K offers a very di-
rect description of the square of the Riemannian distance function in Kähler normal
coordinates as well:

Remark 4.2 (Distance Function in Kähler Normal Coordinates). In Riemannian
geometry the exponential map is a radial isometry in the sense that the Riemannian
distance between p ∈ M and expp X equals dist2g(p, expp X) = gp(X, X) for X suffi-
ciently small. In Kähler normal coordinates this property of the distance becomes:

dist2g(p, kncpX) = dist2g(p, expp(KX)) = gp(KX, KX).

Let us now come to the more difficult task of finding an efficient method to calculate
the Taylor series of the difference elements K and K−1. For that purpose we recall the
fact that a vector field X ∈ Γ(TM) on a manifold M with integrable almost complex
structure I is the real part of a holomorphic vector field in the sense that the map
X − iIX : M −→ T 1,0M between complex manifolds is actually holomorphic, if and
only if

LieXI = 0

compare for example [Ba] and [M]. In order to construct a resolution for the symbolic
differential operator L corresponding to this complex Killing equation in the formal
theory of partial differential equations [BCG], [W3] we need the concept of special
alternating forms:

Definition 4.3 (Special Alternating Forms). Consider the graded vector space
Λ◦T ∗⊗T of alternating forms on a real vector space T with values in T . The choice of
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a complex structure I ∈ End T on T singles out the graded subspace Σ◦ ⊂ Λ◦T ∗ ⊗ T
of special alternating forms defined in all degrees k ∈ N0 by:

Σk := { F ∈ ΛkT ∗ ⊗ T | (DerI ⊗ I)F = k F }.
Alternatively a special alternating k–form F : T × . . .× T −→ T is characterized by

I F (X1, . . . , Xk) = −F (IX1, X2, . . . , Xk)

in particular Σ1 ⊂ T ∗ ⊗ T is simply the subspace of endomorphisms anticommuting
with I:

prΣ1 : T ∗ ⊗ T −→ Σ1, F �−→ 1
2 (F + I F I).

The link between the complex Killing equation and special alternating forms is es-
tablished directly by rewriting the definition of the Lie derivative LieXI in terms of
a torsion free connection ∇ on the tangent bundle making I parallel ∇I = 0. On a
Kähler manifold M we take for example the Levi–Civita connection and find for the
Lie derivative of the orthogonal complex structure I in the direction of a vector field
X ∈ Γ(TM):

(LieXI)Y =
(
∇X(IY )−∇IY X

)
− I

(
∇XY −∇Y X

)
= I

(
∇Y X + I∇IY X

)
= 2 I prΣ1(∇X) Y.

Hence the real parts of holomorphic vector fields are precisely the sectionsX ∈ Γ(TM)
in the kernel of the differential operator Ldiff defined as the composition of the co-
variant derivative ∇ with the projection prΣ1 to the subbundle Σ1M ⊂ End TM

Ldiff : Γ(TM)
∇−→ Γ(T ∗M ⊗ TM)

prΣ1−→ Γ(Σ1M), X �−→ − 1

2
I LieXI (19)

of endomorphisms anticommuting with I. From the definition of Ldiff as the com-
position prΣ1 ◦ ∇ we read off its principal symbol and in turn the associated symbol
comodule [W3]:

H • := ker
(
L : Sym•T ∗⊗Σ0 Δ−→ Sym•−1T ∗⊗ (T ∗⊗T )

id⊗prΣ1−→ Sym•−1T ∗⊗Σ1
)

The symbolic differential operator L defining the comodule H extends to a complete
resolution of the comodule H by free comodules using an adjoint pair of boundary
operators:

Definition 4.4 (Symbolic Differential Operators). Consider a real vector space
T endowed with a complex structure I ∈ End T . On the bigraded vector space
Sym•T ∗⊗Σ◦ ⊂ Sym•T ∗⊗Λ◦T ∗⊗T of special alternating forms on T with polynomial
coefficients we define two bigraded boundary operators L ∗ and L by:

[ L ∗F ]X(Z2, . . . , Zr) := FX(X, Z2, . . . , Zr)

[ L F ]X(Z0, . . . , Zr) :=
1

2

r∑
μ=0

(−1)μ
(
(Zμ �F )X(Z0, . . . , Zr) + I (IZμ�F )X(Z0, . . . , Zr)

)

In order to clarify this definition we recall the convention adopted in this article
concerning the identification of a symmetric k–multilinear form F = SymkT ∗ on T
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with a homogeneous polynomial on T of degree k ∈ N0: The polynomial corresponding
to F is defined by F (X) := 1

k!F (X, . . . ,X) so that the operation Z � of inserting

the first argument agrees with the directional derivative ∂
∂Z of the polynomial in

direction Z. With this convention in place we may alternatively define the boundary
operators L ∗ and L in terms of the tensor product decomposition Sym•T ∗ ⊗ Σ◦ ⊂
Sym•T ∗ ⊗ Λ◦T ∗ ⊗ T as sums

L ∗ :=
∑
μ

dEμ · ⊗Eμ � ⊗ id

L :=
1

2

∑
μ

(
Eμ � ⊗ dEμ ∧ ⊗ id + IEμ � ⊗ dEμ ∧ ⊗ I

)
over a dual pair of bases {Eμ } and { dEμ } of T and T ∗. Alternatively we could
complexify the domain Sym•T ∗ ⊗Λ◦T ∗ ⊗ T of the boundary operator L and choose
a complex basis {Fα } of the subspace T 1,0 ⊂ T ⊗R C with dual basis { dFα } of
T 1,0∗ ⊂ T ∗ ⊗R C to rewrite

L :=
∑
α

(
Fα � ⊗ dFα ∧ ⊗ pr0,1 + Fα � ⊗ dFα ∧ ⊗ pr1,0

)
with the eigenprojections pr1,0 := 1

2 (id− iI) and pr0,1 := 1
2 (id + iI) to T 1,0 and T 0,1,

in this alternative formulation the operator L evidently preserves the subspace of
special alternating forms with polynomial coefficients. The reader is invited to use
this description of the operator L in order to provide a more enlightening proof of
Corollary 4.5 below. Staying in the real domain we calculate the anticommutator
{L , L ∗ } of the boundary operators L and L ∗ using the canonical commutation
and anticommutation relations

{L , L ∗} = 1

2

∑
μ ν

(
[Eμ�, dEν ·]⊗ dEμ ∧ Eν�⊗ id + dEν · Eμ�⊗ {dEμ∧, Eν�} ⊗ id

+ [IEμ�, dEν ·]⊗ dEμ ∧ Eν�⊗ I + dEν · IEμ�⊗ {dEμ∧, Eν�} ⊗ I
)

=
1

2
(id ⊗ N ⊗ id +N ⊗ id ⊗ id + id ⊗ DerI ⊗ I +DerI ⊗ id ⊗ I)

where N denotes the number operator either on polynomials or on forms depending
on context. The equality of linear maps DerI ⊗ I = N ⊗ id defining the subspace
of special alternating forms Σ◦ ⊂ Λ◦T ∗ ⊗ T allows us to write this identity in the
simpler form:

Δ := {L , L ∗} = id ⊗ N ⊗ id +
1

2
(N ⊗ id ⊗ id + DerI ⊗ id ⊗ I). (20)

A short inspection reveals that the formal Laplace operator Δ acts diagonalizable on
the space Sym•T ∗⊗Σ◦ of special alternating forms with polynomial coefficients with
eigenspaces

(Symκ, κT ∗⊗ΛdT 0,1∗⊗T 1,0) ⊕ (Symκ, κT ∗⊗ΛdT 1,0∗⊗T 0,1) ⊂ (Sym•T ∗ ⊗ Σd) ⊗RC

and eigenvalues d + κ parametrized by κ, κ ≥ 0 and d ≥ 0 with • = κ + κ. With
Δ being diagonalizable we conclude from Hodge theory that the homology of the L –
complex equals the homology of the eigensubcomplex kerΔ, because 1

λL ∗ is a zero



RIEMANNIAN AND KÄHLERIAN NORMAL COORDINATES 387

homotopy for the eigensubcomplexes ker (Δ− λ id) for all eigenvalues λ �= 0. On the
other hand kerΔ equals

(Sym•, 0T ∗ ⊗ T 1,0) ⊕ (Sym0, •T ∗ ⊗ T 0,1) = H • ⊗R C ⊂ (Sym•T ∗ ⊗ T ) ⊗R C

and so L = 0 vanishes on kerΔ for trivial reasons. Summarizing this argument we
conclude:

Corollary 4.5 (Free Resolution of Holomorphic Vector Fields). The total pro-
longation comodule H • associated to the principal symbol prΣ1 : T ∗ ⊗ T −→ Σ1 of
the differential operator Ldiff characterizing the real parts of holomorphic vector fields
in complex dimension n := 1

2 dimT has a resolution by free comodules of the form:

0 −→ H • ⊂−→ Sym•T ∗ ⊗ Σ0 L−→ Sym•−1T ∗ ⊗ Σ1 L−→ . . .

. . .
L−→ Sym•−nT ∗ ⊗ Σn −→ 0.

An important property of the real parts of holomorphic vector fields needed below
is that they can be reconstructed up to a linear term from their closure, their image
under the map

cl : Sym•T ∗ ⊗ T −→ Sym•+1T ∗, Z �−→ clZ (21)

from vector fields to polynomials defined by (clZ)(X) := g(Z(X), X). Since the
eigenspaces T 1,0 and T 0,1 of I are isotropic subspaces of T ⊗R C, the closure of the
real part of a holomorphic vector field lies in the vector space Sym•[1]T

∗ := ker((N −
2)2 +Der2I) of polynomials linear in the holomorphic or antiholomorphic coordinates
with complexification:

Sym•[1]T
∗ ⊗R C =

⊕
κ, κ≥ 0

κ=1 or κ=1

Symκ, κT ∗. (22)

Restricted to the real parts of holomorphic vector fields cl induces in fact an exact
sequence

0 −→ δ•=1 u(T, g, I)
⊂−→ H • cl−→ Sym•+1

[1] T ∗ −→ 0 (23)

in which u(T, g, I) denotes the vector space of linear vector fields on T corresponding
to infinitesimal unitary transformations with respect to the hermitean form h = g+iω.

Coming back to our original aim to derive recursion formulas for the infinite order
Taylor series of the difference elements K and K−1 we recall that multilinear maps
on a vector space with values in this vector space can be composed to produce new
multilinear forms

(A ◦μ B)(X1, . . . , Xa+b+1)

:= A(X1, . . . , , Xμ−1, B(Xμ, . . . , Xμ+b), Xμ+b+1, . . . , Xa+b+1)

for some position μ = 1, . . . , a. We will call a multilinear form arising from a fixed set
of basic multilinear forms by iterated compositions in arbitrary positions a composi-
tion polynomial in the selected set of basic multilinear forms. In particular we will
consider composition polynomials in the complex structure Ip, the curvature tensor
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Rp and its iterated covariant derivatives (∇R)p, (∇2R)p, . . . on the tangent space
TpM of a Kähler manifold M in a point p ∈M . In general multilinear forms on TpM
are bigraded by degree and weight: The degree of a multilinear form is the number
of arguments it takes minus 1 to make the degree additive under composition, while
its weight is the eigenvalue for the weight operator:

(δA)(X1, . . . , Xk) := I A(X1, . . . , Xk)− (DerIA)(X1, . . . , Xk). (24)

The weight qualifies as a grading, because the weight operator is a derivation for
composition

δ (A ◦μ B) = (δA) ◦μ B +A ◦μ (δB)

as the term A(X1, . . . , Xμ−1, IB(Xμ, . . . , Xμ+b), Xμ+b+1, . . . , Xa+b+1) appears twice
with different sign in the expansion of the right hand side. The curvature tensor R of
the Kähler manifold M for example is a degree 2 multilinear form on TpM of weight 0

(δR)X,Y Z = RX,Y IZ −RI2X, IY Z −RX, IY Z −RX,Y IZ = 0

in consequence its iterated covariant derivatives ∇rR decompose after complexifica-
tion into a sum of multilinear forms of degree r+2 and weight −ri, . . . , +ri. As both
degree and weight are additive under composition a quadratic composition polynomial
in the curvature tensor and its iterated covariant derivatives needs to have at least
degree r+4 to decompose similarly into multilinear forms of weight −ri, . . . , +ri and
so on. The possible combinations of degree and weight of multilinear forms in gen-
eral and composition polynomials in the curvature tensor and its iterated covariant
derivatives can be read off from the diagram:

�weight

�

degree

id

I

R

R2

R3

�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
��

�
�
�
�
�
��

�
�
�

�
�
�

� � �

� � � � �

� � � � �

� � � � � �

� � � � �

� � � � � �

� � � � �

� � � � �

� � �

(25)

These considerations play a crucial role in the proof of the following theorem:

Theorem 4.6 (Universality of Kähler Normal Coordinates). Every term in the
Taylor series of the difference elements K = exp−1

p ◦kncp and K−1 in the origin 0 ∈
TpM is a universal composition polynomial in the complex structure I, the curvature
tensor R and its iterated covariant derivatives ∇R, ∇2R, . . . evaluated in p ∈M .

In this context universality refers to the statement that these composition polynomials
can be chosen without taking the Kähler manifold M or its dimension into account.



RIEMANNIAN AND KÄHLERIAN NORMAL COORDINATES 389

Universality does not imply uniqueness of course, and actually uniqueness wouldn’t
make sense anyhow:

Remark 4.7 (Non–Uniqueness of Composition Polynomials). Composition poly-
nomials in the complex structure, the curvature tensor and its covariant derivatives
I, R, ∇R, . . . are in general not unique due to additional identities arising from Ricci
type constraints. The following identity for example is valid on Kähler manifolds M

(∇2
X, IXR)X, IX − (∇2

IX,XR)X, IX = [RX, IX , RX, IX ]−RRX, IXX, IX −RX,RX, IXIX

= − 2RRX, IXX, IX

for all X ∈ TM and implies RX,RX, IXIX = 0 on hermitean locally symmetric spaces.

Proof of Theorem 4.6. Both expp and kncp are anchored coordinates for a Kähler
manifold M , hence the differential of K in 0 ∈ TpM equals the identity. In turn the
decomposition of the infinite order Taylor series of K into homogeneous components
reads

KX = X +K2X +K3X + . . . Kn ∈ SymnT ∗pM ⊗ TpM = H n ⊕ H n⊥

where the complement H n⊥ to H n = kerΔ is simply the direct sum of all eigenspaces
of 2Δ = (N⊗id+DerI⊗I) with non–vanishing eigenvalue and thus the proper domain
of:

(N ⊗ id + DerI ⊗ I)−1 : H n⊥ −→ H n⊥. (26)

Essentially the proof consists in verifying by induction on the degree n that the
characteristic normalization constraint imposed on the Kähler normal potential θ is
actually equivalent to the normalization constraint Kn ∈ H n⊥ for all n ≥ 2.

In a first step we want to analyse the implications of the holomorphicity of Kähler
normal coordinates kncp on the difference element K = exp−1

p ◦ kncp. On a Kähler
manifold the complex structure I is a parallel tensor and so Corollary 3.2 implies for
the infinite order Taylor series for its pull back exp∗p I to the tangent space under the
exponential map

(exp∗p I)X ∼
X→ 0

Φ(X) ◦ Ip ◦ Φ−1(X)

whereas the holomorphicity of kncp is equivalent to the statement (knc∗pI)X = Ip
for all X ∈ TpM . Hence the differential K∗, X : TX(TpM) −→ TKX(TpM), which
becomes DK(X) under the identification of both domain and target with TpM , in-
tertwines Ip with (exp∗p I)KX :

Φ(KX) ◦ Ip ◦ Φ(KX)−1 ◦ DK(X) = DK(X) ◦ Ip.

Dropping the explicit mention of the point p ∈ M on I = Ip we may write this
equation

[I, Φ−1(KX) ◦ DK(X)] = 0 = [I, DK−1(X) ◦ Φ(X)] (27)

where we replaced X by K−1X in the second equality. Note that this result
is compatible with the interpretation of the Kähler backward parallel transport
Ψ−1(X) := Φ−1(KX) ◦ DK(X) as the differential of the Kähler normal coordinates
kncp.
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For a moment let us forget that K is a diffeomorphism and think of it as a
vector field with Taylor series K ∈ SymT ∗pM ⊗ TpM . By construction the symbolic
differential operator L equals LK = prΣ1(DK) on vector fields, whereas L ∗K = 0.
Applying the anticommutator Δ = {L , L ∗ } to the vector field K we thus obtain
the decisive formula

ΔK = L ∗ prΣ1

(
DK

)
= L ∗ prΣ1

(
(id− [Φ−1 ◦K])DK

)
(28)

where [Φ−1 ◦ K] ◦ DK commutes with I and thus vanishes under prΣ1 according
to (27). The resulting formula is actually a recursion formula, which allows us to
calculate the term Kn in the Taylor series of K from the terms K2, . . . , Kn−2 up to
addition by an element of kerΔ, because id− Φ−1(KX) = − 1

6 RX, ·X +O(X3) is at
least quadratic in X.

In the ensuing induction on the degree n ≥ 2 it is more convenient to begin with
the inductive step. By induction hypothesis we may thus assume that for some n ≥ 3
all the terms K2, . . . , Kn−1 are universal composition polynomials in the complex
structure I, the curvature tensor and its iterated covariant derivatives R, ∇R, . . ..
Under this assumption the homogeneous term of degree n in X on the right hand
side of the recursion formula (28) is a universal composition polynomial in these
generators and so then is the corresponding term on the left hand side. The formal
Laplace operator 2Δ = (N ⊗ id + DerI ⊗ I) on the other hand has only finitely
many non–zero eigenvalues for fixed degree N = n so that its partial inverse (26)
can be written as a polynomial in DerI ⊗ I. In consequence the partial inverse maps
composition polynomials in I, R, ∇R, . . . to composition polynomials and so

Kn = Hn + composition polynomial in I, R, ∇R, ∇2R, . . .

for some Hn ∈ H n. Incidentally the same conclusion is valid in the special case n = 2
forming the base of our induction, because the right hand side of the recursion formula
(28) is at least cubic in X as L ∗ raises the degree by 1 and id−Φ−1(KX) = O(X2).

In order to verify the base of induction and complete the induction step we need
to show Hn = 0 for all n ≥ 2. For this purpose we calculate the term homogeneous
of degree n in X in the Kähler backward parallel transport observing DK(X)X =
(NK)X:

[Ψ−1(X)X]n = [Φ−1(KX)DK(X)X]n

= nHnX + composition polynomial in I, R, ∇R, ∇2R, . . .

Inserting this expression into equation (18) we obtain the expansion

[(N2 +Der2I) θ]n+1(X) = 8n g(HnX, X) + . . . (29)

for the homogeneous term of degree n+1 in X in the Kähler normal potential, where
the ellipsis denotes a finite sum of homogeneous polynomials of degree n+ 1 in X of
the form g(A, B) with composition polynomials A and B in the complex structure I,
the curvature tensor R and its iterated covariant derivatives. For every polynomial of
this form we find

DerI [g(A, B)] = g(δA, B) + g(A, δB)

because the two additional terms g(IA,B)+ g(A, IB) on the right hand side obtained
upon expanding δ cancel out by the skew symmetry of I. Of course A and B can not
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be composition polynomials in I only, since we would not get a polynomial of degree
n+1 ≥ 3, hence at least one of A or B is at least linear in R, ∇R, ∇2R, . . .. Diagram
(25) thus tells us the possible combinations of degree and weight of the polynomial
g(A,B), from which we deduce:

g(A, B) ≡ 0 mod Sym≥(2,2)T ∗pM

In consequence equation (29) is a congruence modulo Sym≥(2,2)T ∗pM , which we may
write

[(N2 +Der2I) θ]n+1 ≡ 8n (clHn)

in light of the definition (21) of the closure map. The normalization constraint imposed
on the Kähler normal potential implies on the other hand the congruence [(N2 +

Der2I) θ]n+1 ≡ 0 modulo Sym≥(2,2)T ∗pM for all n + 1 �= 2 so that clHn = 0 and a
fortiori Hn = 0 due to the exactness of the sequence (23).

Although the preceeding proof of Theorem 4.6 takes the existence of Kähler nor-
mal coordinates stipulated in Theorem 2.6 for granted, it is easily rearranged to prove
existence on the fly alongside the induction. In this setup we start with arbitrary
anchored holomorphic coordinates knc(1)p : TpM −→M thought of as a first approx-
imation to the Kähler normal coordinates we want to construct and use the flow of
the real part H2 of a quadratic holomorphic vector field to modify knc(1)p to the better

approximation knc(2)p characterized by H2 = 0. In turn we use the real part H3 of

a cubic holomorphic vector field to find an even better approximation knc(3)p charac-
terized by H2 = 0 = H3 and so on. The advantage of this modified proof is that it
applies verbatim to a wider class of complex affine manifolds:

Definition 4.8 (Balanced Complex Affine Manifolds). A complex affine mani-
fold is a smooth manifold M endowed with a torsion free connection ∇ on its tangent
bundle and an almost complex structure I, which is parallel ∇I = 0 and thus integrable
by the Theorem of Newlander–Nierenberg. A complex affine manifold M is balanced
provided the curvature tensor R of the connection ∇ is a (1, 1)–form in the sense:

RI · , I · = R · , · ⇐⇒ δR = 0.

In every point p ∈ M of a balanced complex affine manifold M there thus exist
unique anchored holomorphic coordinates kncp : TpM −→ M characterized by the
congruence

K := exp−1
p ◦ kncp ≡ id mod H ⊥

imposed directly on the infinite order Taylor series of the difference element K. In
consequence this Taylor series is given by the very same universal composition power
series in I, R, ∇R, . . . we found in the Kähler case. Although originally formulated
in terms of the potential and so apparently depending on the metric structure of a
Kähler manifold, the concept of Kähler normal coordinates turns out to arise from the
underlying complex affine structure! The following corollary about totally geodesic
submanifolds, whose proof is left to the reader, is a nice illustration of this dependence
on the affine structure:

Corollary 4.9 (Totally Geodesic Complex Submanifolds). For every totally
geodesic complex submanifold N ⊂ M of a Kähler manifold M the restriction of the
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Kähler normal coordinates kncp : TpM −→M in a point p ∈ N to the vector subspace
TpN ⊂ TpM are the Kähler normal coordinates for the Kähler manifold N .

Instead of using the difference elementK we may consider using its inverse in the proof
of Theorem 4.6. Lacking an analogue of equation (18) it is more difficult to relate
the normalization constraint imposed on K−1 = knc−1

p ◦ expp to the normalization
constraint imposed on the potential θ, however the choice of K−1 allows us to use the
Gauß Lemma to simplify the analogue of the recursion formula (28). Mimicking the
argument we find

(N ⊗ id + DerI ⊗ I) K−1 = 2 {L , L ∗ } K−1 = 2L ∗ prΣ1

(
DK−1 ◦ (id− Φ)

)
since DK−1 ◦ Φ still commutes with I according to (27). Inserting the definitions
of the projection prΣ1 and the boundary operator L ∗ we find that the right hand
side simplifies due to the Gauß Lemma (12) written in the form (id − Φ(X))X = 0,
moreover we may replace the cumbersome notation involving DK−1 by the deriva-
tion extension of the endomorphism F := (id − Φ(X)) ◦ I using the identity
(DerFK

−1)(X) = DK−1(X)FX:

Remark 4.10 (Explicit Version of Recursion Formula). The Taylor series of the
inverse difference element K−1 satisfies the recursion formula:[

(N ⊗ id + DerI ⊗ I)K−1
]
(X) = I

[
Der(id−Φ(X)) IK

−1
]
(X)

= +
∑
k≥ 0

k + 1

(k + 3)!
(∇k

X, ..., XR)X, IXIX + O(R2)

where O(R2) signifies composition polynomials at least quadratic in R, ∇R, ∇2R, . . ..

The relatively simple recursion formula for K−1 allows us to calculate the lowest
order terms of the Taylor series for all relevant objects on a Kähler manifold like the
difference element

K−1X = X +
1

12
RX, IXIX +

1

96

(
3 (∇XR)X,IXIX − (∇IXR)IX,XX

)
+

1

960

(
7 (∇2

X,XR)X,IXIX + 2 (∇2
IX,XR)X,IXX + 2 (∇2

X,IXR)X,IXX

−(∇2
IX,IXR)X,IXIX

)
− 1

120
RX,RX,IXXIX − 1

96
RX,RX,IXIXX +O(X6)

which provides the expansion of K by formal inversion. Equation (18) can be used to
expand

θ(X) = g(X, X)− 1

8
g(RX,IXIX,X)− 1

24
g((∇XR)X,IXIX,X)

− 1

576

(
5 g((∇2

X,XR)X,IXIX,X)− g((∇2
IX,IXR)X,IXIX,X)

)
+

1

48
g(RX,IXX,RX,IXX) +O(X7)

the Kähler normal potential and Remark 4.2 to expand the Riemannian distance
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function:

dist2g(p, kncpX) = g(X,X)− 1

6
g(RX,IXIX,X)− 1

16
g((∇XR)X,IXIX,X)

− 1

480

(
7 g((∇2

X,XR)X,IXIX,X)− g((∇2
IX,IXR)X,IXIX,X)

)
+

23

720
g(RX,IXX,RX,IXX) +O(X7).

With somewhat more effort one obtains the congruences (1), (2) given in the intro-
duction.

Before closing this section we want to discuss the analogue of the exponentially
extended vector fields Z � Zexp defined in relation with the forward and backward
parallel transport in Section 3. Replacing the affine exponential map expp : TpM −→
M used in this construction with Kähler normal coordinates kncp : TpM −→ M we
can define for every tangent vector Z ∈ TpM the holomorphically extended vector
field Zknc on TpM by choosing a representative curve γ : ]− ε, +ε [−→M for Z with

associated parallel transport PT∇γ (t):

Zknc :=
d

dt

∣∣∣∣
0

(
TpM

PT∇γ (t)−→ Tγ(t)M
kncγ(t)−→ M

(kncp)
−1

−→ TpM
)
∈ Γ(T (TpM)).

By construction Zknc is actually the real part of a holomorphic vector field on TpM ,

because the parallel transport PT∇γ (t) : TpM −→ Tγ(t)M intertwines the complex
structures Ip and Iγ(t) and thus can be thought of as a biholomorphism between TpM

and Tγ(t)M considered as complex manifolds, in consequence Zknc is the derivative
of a family of biholomorphisms. Expanding the composition defining this family of
biholomorphisms in order to bring the properties of the difference element K to bear
we end up with the alternative formulation

Zknc :=
d

dt

∣∣∣∣
0

K−1
p ◦

(
exp−1

p ◦ expγ(t) ◦PT∇γ (t)
)
◦
(
PT∇γ (t)−1 ◦Kγ(t) ◦PT∇γ (t)

)
in which the stipulated derivative in t = 0 leads to the rather simple formula:

Zknc(X) = K−1
∗, KX

(
Zexp(KX) + (∇ZK)X

)
. (30)

The vector field Zknc thus reflects the covariant derivative of the difference element
K in the direction of Z ∈ TpM modified by adding the exponentially extended vector
field Zexp. On the other hand Zknc reflects the covariant derivative of the pull back
θp := θlocp ◦ kncp:

(Zkncθp)(X) =
d

dt

∣∣∣∣
0

θp

(
knc−1

p (kncγ(t) PT∇γ (t)X)
)

=
d

dt

∣∣∣∣
0

(
θlocp − θlocγ(t)

)(
kncγ(t) PT∇γ (t)X

)
+

d

dt

∣∣∣∣
0

θγ(t)

(
PT∇γ (t)X

)
= real part of holomorphic function + (∇Zθ)p(X).

Recall at this point that the difference of the two local potentials θlocp and θlocγ(t) is the

real part of a holomorphic function and so then is the derivative d
dt

∣∣
0
(θlocp − θlocγ(t)).
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A little consideration reveals that the only possible candidate for this real part is a
multiple of Z� and hence:

Zknc θp = 2Z� + (∇Zθ)p. (31)

Decomposing this equation into its bihomogeneous components (5) it can be solved
simultaneously for the vector field Zknc on TpM and the covariant derivative (∇Zθ)p of
the Kähler normal potential. For this purpose let us decompose the normal potential
into three parts

θp = 2 gp + θfreep = 2 gp + (θcritp + θrestp )

where θrestp ∈ Sym
≥(3,3)

T ∗pM and the critical part θcritp comprises all bihomoge-
neous components of θp, which are exactly quadratic in the holomorphic or an-
tiholomorphic coordinates. The irritating notation for the quadratic polynomial
(2gp)(X) = gp(X,X) is certainly a drawback of our convention relating symmetric
forms with polynomials.

Lemma 4.11 (Spencer Connection on Kähler Potential). The directional deriva-
tive Z � θcrit of the critical part θcrit of the Kähler normal potential θ in the direction
of a tangent vector Z ∈ TpM in a point p ∈M decomposes into the sum

Z � θcrit = pr[1](Z � θcrit) + pr≥(2,2)(Z � θcrit)

where pr≥(2,2)(Z � θcrit) is a power series at least quadratic in both the holomorphic

and antiholomorphic coordinates and pr[1](Z � θcrit) ∈ Sym[1]T
∗
pM is the closure of

the real part of a holomorphic vector field essentially equal to the holomorphically
extended vector field:

Zknc = Z − 1

2
cl−1

(
pr[1](Z � θcrit)

)
.

Moreover the covariant derivative of the Kähler normal potential is given by a projec-
tion

∇Zθ = pr≥(2,2)

(
Z � θfree

)
− 1

2
cl−1

(
pr[1](Z � θcrit)

)
θfree

of its formal derivative Z � θfree and a term depending bilinearly on θcrit and θfree.

In order to justify Lemma 4.11 let us solve equation (31) with respect the holomor-
phically extended vector field Zknc associated to a tangent vector Z ∈ Tp. Equation
(30) together with the explicit expansions of Zexp and K immediately imply that
Zknc(X) = Z + O(X2) has no linear term and thus can be reconstructed without
ambiguity from its closure, which implicitly appears on the left hand side of the equa-
tion considered. In fact the decomposition of power series into their bihomogeneous
components (5) is parallel and hence the right hand side of equation (31) agrees with

∇Zθ = ∇Zθ
free ∈ Γ(Sym

≥(2,2)
T ∗M) up to the linear term 2Z�. Decomposing the left

hand side Zkncθ analoguously into a linear term, a term in Γ(Sym
≥(2,2)

T ∗M) and a
necessarily vanishing remainder term we find

(Zkncθ)(X) = 2 g(Z,X) +
(
2 g(Zrest(X), X) + pr[1](Z � θcrit)(X)

)
+
(
prrest(Z � θcrit)(X) + (Z � θrest)(X) + (Zrest θfree)

)
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where Zrest = − 1
2 cl

−1 pr[1](Z � θcrit) denotes all non–constant components of the

holomorphically extended vector field Zknc = Z + Zrest. Taking on the other hand
a closer look at Definition 2.3 we observe that for all k ≥ 4 the bihomogeneous
component of the higher holomorphic sectional curvature tensor Sk ∈ SymkT ∗pM of
bidegree (k − 2, 2) equals:

Sk−2, 2(X) =
1

(k − 4)!
g((∇pr1,0X, pr1,0X, ..., pr1,0XR)X, IXIX, X).

In turn the congruence (1) implies the following explicit formula for the critical part

θcrit(X) = −1

8
g(RX, IXIX, X)−

∑
k> 4

1

4 (k − 2) (k − 3)

(
Sk−2, 2(X) + S2, k−2(X)

)

= −1

8
g(RX, IXIX, X)−

∑
k> 4

1

2 (k − 2)!
Re g

(
(∇pr1,0X, ..., pr1,0XR)X, IXIX, X

)

of the Kähler normal potential, from which the closure pr[1](Z � θcrit) of the holomor-

phically extended vector field −2Zknc associated to a tangent vector Z ∈ TpM is
easily calculated:

Corollary 4.12 (Holomorphically Extended Vector Fields). The Taylor series
of the holomorphically extended vector field Zknc on TpM associated to Z ∈ TpM
depends linearly on the curvature tensor Rp and its iterated covariant derivatives:

Zknc(X) = Z +
∑
k≥ 4

1

2k−3 (k − 2)!
Re

(
(∇k−4

X−iIX, ..., X−iIXR)Z+iIZ, IX(IX + iX)
)
.

5. Hermitean Symmetric Spaces. In differential geometry locally symmetric
spaces form an important laboratory to test new concepts and ideas for plausibility,
because the characteristic vanishing ∇R = 0 of the covariant derivative of the cur-
vature tensor R on a symmetric space sets up a Lie theoretic framework for doing
calculations, which are infeasible or even impossible to do on general affine manifolds.
In this section we use this framework to derive formulas for the difference elements,
the normal potential and the holomorphically extended vector fields on hermitean
symmetric spaces, although all results except Corollary 5.4 are valid for all symmetric
among the balanced complex affine spaces. A standard reference for the Lie theoretic
framework, albeit for Riemannian symmetric spaces only, is [He].

The starting point of our discussion of hermitean symmetric spaces is the affine
Killing equation for a vector field on an affine manifold M endowed with a torsion
free connection ∇ on its tangent bundle. In terms of the Lie derivative of connections
this equation reads

0
?
= (LieX∇)Y Z := [X, ∇Y Z]−∇[X,Y ]Z −∇X [Y, Z] = RX,Y Z +∇2

Y, ZX

its solutions X ∈ Γ(TM) are called affine Killing fields. The extended affine Killing
field Xext := X ⊕ X with X := ∇X associated to a solution satisfies the extended
equation

∇Y X = XY ∇Y X = −RX,Y (32)
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the extended affine Killing field is thus a parallel section ∇Killing
Y (X ⊕X) = 0 of the

vector bundle End TM ⊕ TM with respect to the Killing connection defined by:

∇Killing
Y (X ⊕ X) := (∇Y X+RX,Y ) ⊕ (∇Y X − XY ). (33)

A direct consequence of this construction is that the Lie subalgebra of affine Killing
vector fields aff(M, ∇) ⊂ Γ(TM) is a vector space of dimension dim aff(M, ∇) ≤
m2 +m on every connected manifold M of dimension m with equality only on affine
spaces. Straightforward, but slightly tedious calculations result in an explicit formula
for the curvature

RKilling
Y, Z (X ⊕ X) =

(
(∇XR)Y, Z − (X � R)Y, Z

)
⊕ 0

!
= (LieXR)Y, Z ⊕ 0

of the Killing connection, the relation with the Lie derivative of the curvature tensor R
in the second equality requires X = ∇X. Due to torsion freeness the Lie bracket of two
affine Killing fields X, Y ∈ aff(M, ∇) can be calculated via [X, Y ] = YX −XY from
their associated extended affine Killing fieldsXext, Y ext ∈ Γ(End TM⊕ TM). Taking
the covariant derivative and using (32) we find that the C∞M–bilinear “algebraic”
bracket [

X ⊕ X, Y ⊕ Y
]
alg

:= ([Y, X]−RY,X) ⊕ (YX − XY ) (34)

on the vector bundle End TM ⊕ TM reduces to [Xext, Y ext]alg = [X, Y ]ext for ex-
tended affine Killing fields. In general this algebraic bracket does not satisfy the
Jacobi identity and thus does not define a fiberwise Lie algebra structure on the vec-
tor bundle End TM ⊕ TM , the degree of failure of the Jacobi identity is however
measured by the cyclic sum:

[X ⊕ X, [Y ⊕ Y, Z ⊕ Z]alg]alg + cyclic permutations

=
(
(X � R)Y, Z + (Y � R)Z,X + (Z � R)X,Y

)
⊕ 0.

Last but not least we remark that the covariant derivative of [, ]alg under ∇Killing

equals:

(∇Killing
Z [, ]alg)(X⊕X, Y⊕ Y ) =

(
(∇ZR)X,Y + (X � R)Y, Z − (Y � R)X,Z

)
⊕ 0.

Let us now specify the preceeding equations to a hermitean locally symmetric space,
this is a Kähler manifold M with covariantly parallel curvature tensor ∇R = 0. In
this case the joint stabilizer of the parallel Riemannian metric g, complex structure I
and curvature tensor R defines a subbundle parallel with respect to the Levi–Civita
connection ∇

gM := stab(g, I, R) ⊕ TM ⊂ End TM ⊕ TM (35)

which is moreover parallel under the Killing connection ∇Killing defined in equation
(33), because the curvature tensor R takes values in the joint stabilizer stab(g, I, R)
of the parallel sections g, I and R. On the subbundle gM the algebraic bracket [, ]alg
satisfies the Jacobi identity and is parallel with respect to the Killing connection,
thus gM becomes a bundle of Z2–graded Lie algebras endowed with the flat algebra
connection ∇Killing, moreover the odd subbundle is exactly the tangent bundle TM .
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In passing we remark that the Lie algebra structure (34) on gpM encodes the Jacobi
operators of the Riemannian metric with

(ad2X)A =̂ [0 ⊕ X, [0 ⊕ X, 0 ⊕ A]] = 0 ⊕ RX,AX =̂ RX,AX (36)

for all X, A ∈ TpM . Under the ansatz Φ−1(X) = ϕ−1(adX) suggested by this
identity the parallel transport equation of Lemma 3.1 becomes the ordinary differential
equation

x
d

dx
(x

d

dx
+ 1)ϕ−1(x) = x2 ϕ−1(x) ϕ−1(0) = 1

for the unknown power series ϕ−1(x) ∈ Q[[x]] with unique solution ϕ−1(x) = sinh x
x or:

Φ−1(X) =
sinh adX

adX
Φ(X) =

adX

sinh adX
. (37)

For hermitean locally symmetric spaces we will use in addition the following specific
identity:

Lemma 5.1 (Fundamental Commutator Identity). The Jacobi operator (ad2X) :
TpM −→ TpM, A �−→ RX,AX, associated to a tangent vector X ∈ TpM commutes
on every hermitean symmetric space M with the Jacobi operator ad2IX associated to
the tangent vector IX ∈ TpM . For general Kähler manifolds the commutator of these
Jacobi operators is a linear combination of iterated covariant derivatives of R:

3[RX, ·X, RIX, ·IX]A

= 1
2 (∇2

X, IXR−∇2
IX,XR)X, IXA+ (∇2

X, IXR−∇2
IX,XR)A,XIX

+ (∇2
A,XR−∇2

X,AR)X, IXIX + (∇2
A, IXR−∇2

IX,AR)X, IXX.

Proof. Although a Lie theoretic argument is significantly shorter we prefer to
prove the general formula for arbitrary Kähler manifolds. It is rather difficult to
believe though that such a complicated argument could be made up without knowledge
of the Lie theoretic background. Using the first Bianchi identity three times we obtain
the identity

+RRA,UV,WZ −RRA, V U,WZ −RRA,WU, V Z +RRA,WV, UZ

−RRA,ZU, V W +RRA,ZV, UW +RRA,ZW,UV −RRA,ZW,V U

= −RRU, V A,WZ + (RA,WR)U, V Z − [RA,W , RU, V ]Z

+(RA,ZR)U, V W − [RA,Z , RU, V ]W −RU, V RA,ZW

= +(RU, V R)A,WZ +RA,RU, V WZ + (RA,WR)U, V Z

+(RA,ZR)U, V W −RA,ZRU, V W

= −RRU, V W,ZA+ (RU, V R)A,WZ + (RA,WR)U, V Z + (RA,ZR)U, V W

for arbitrary tangent vectors A and U, V, W, Z. Expressing the action of the curvature
on curvature (RU,V R)A,WZ = (∇2

U,V R−∇2
V,UR)A,WZ by skew symmetrized iterated

covariant derivatives and specifying U = X = W and V = IX = Z we conclude:

3 [RX, ·X, RIX, ·IX]A

= −RRX, IXX, IXA+ (∇2
X, IXR−∇2

IX,XR)A,XIX

+(∇2
A,XR−∇2

X,AR)X, IXIX + (∇2
A, IXR−∇2

IX,AR)X, IXX.
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In light of Remark 4.7 the latter identity implies the formula in question.

The most important consequence of Lemma 5.1 is that we may evaluate a doubly
even power series in two variables in the commuting Jacobi operators ad2X and
ad2IX associated to a vector X ∈ TpM tangent to a hermitean symmetric space M .
In particular the technical Lemma 5.2 is formulated in terms of the endomorphisms
F (adX, ad IX) ∈ End TpM associated to tangent vectors X ∈ TpM and a power
series F ∈ Q[[x, x]], which is doubly even in the sense F (−x, x) = F (x, x) = F (x,−x).
More specifically we are interested in doubly even power series F ext ∈ Q[[x, x]] arising
from even power series F ∈ Q[[x]] via:

F ext(x, x) :=
1

2x

(
(x+ x)F (x+ x) + (x− x)F (x− x)

)
. (38)

With F being even the expression (x + x)F (x + x) + (x − x)F (x − x) vanishes at
x = 0 so that F ext ∈ Q[[x, x]] is indeed a well–defined power series with doubly even
expansion

F ext(x, x) :=
∑
k≥ 0

k∑
μ=0

(
2k + 1

2μ

)
F2k (x2)k−μ(x2)μ (39)

in terms of the coefficients (F2k)k≥0 of F . Usually it is simpler to calculate F ext

directly from its definition (38), for the even power series
tanh x

2
x
2

∈ Q[[x]] for example

we find:( tanh x
2

x
2

)ext

(x, x) =
1

x

(ex+x − 1

ex+x + 1
+

ex−x − 1

ex−x + 1

)
=

2

x

(e2x − 1) ex

(ex+x + 1) (ex + ex)
= 4

sinh x

x

ex ex

(ex+x + 1) (ex + ex)
.

In passing we remark that the power series F ext ∈ Q[[x, x]] satisfies the congruences

F ext(x, x) ≡ F (x) mod (x2) F ext(x, x) ≡
(
x

d

dx
+ 1

)
F (x) mod (x2) (40)

modulo the ideals generated respectively by x2 and x2. Both congruences can be read
off from expansion (39) or are readily derived from definition (38) using L’Hôpital’s
Rule.

Lemma 5.2 (Technical Lemma). Consider an even formal power series F ∈ Q[[x]]
in one variable and its associated doubly even extension F ext ∈ Q[[x, x]] defined in
equation (38). For every hermitean locally symmetric space M the evaluation of F ext

at the commuting Jacobi operators ad2X and ad2IX associated to X ∈ TpM results
in an endomorphism F ext(adX, ad IX) ∈ End TpM of the tangent space in p, which
makes prominent appearance in the directional derivative:

D
[
F (ad IX)X

]
A :=

d

dt

∣∣∣∣
0

F
(
ad I(X + tA)

)
(X + tA) = F ext(adX, ad IX)A.

Moreover the odd endomorphism ad [F (ad IX)X] of the Z2–graded Lie algebra gpM
defined in equation (35) as stabp(g, I, R) ⊕ TpM can be written in terms of
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F ext(adX, ad IX):

ad
(
F (ad IX)X

)∣∣∣
TpM

= (adX) ◦ F ext(adX, ad IX)

ad
(
F (ad IX)X

)∣∣∣
stabp(g,I,R)

= F ext(adX, ad IX) ◦ (adX).

In consequence the square of this endomorphism restricted to the tangent space TpM
reads:

ad2
(
F (ad IX)X

)
= (ad2 X) F ext(adX, ad IX)2.

Proof. Recall that the even subalgebra stabp(g, I, R) of the Z2–graded Lie algebra
gpM consists of endomorphisms of TpM commuting with I. In consequence the sym-

metries of the curvature tensor R of Kähler type of M imply [IX, IX̂] = RIX, IX̂ =

[X, X̂] and so

[IX, [IX̂, Y]] = [IX, I [X̂, Y]] = [X, [X̂, Y]]

for all X, X̂ ∈ TpM and all Y ∈ stabp(g, I, R). Generalizing this identity we conclude

. . . [IXμ+1, [IXμ, . . . , [X1, Y ] . . .]] . . . = . . . [Xμ+1, [Xμ, . . . , [X1, Y ] . . .]] . . . (41)

for allX1, . . . , Xμ, Xμ+1, . . . in TpM provided μ is even and Y ∈ TpM or alternatively
μ is odd and Y ∈ stabp(g, I, R). A straightforward induction on r or simply the
binomial formula in the universal enveloping algebra generalizes the Jacobi identity
for gpM to:

ad
(
(adrY )Z

)
=

r∑
μ=0

(−1)μ
(
r

μ

)
(adr−μY ) (adZ) (adμY ). (42)

Using this identity together with
∑2k−1

r=μ

(
r
μ

)
=

(
2k
μ+1

)
we calculate for all k ∈ N0:

D
(
(ad2kIX)X

)
A

=
d

dt

∣∣∣∣
0

(
ad2k I(X + tA)

)
(X + tA)

= (ad2kIX)A−
2k−1∑
r=0

(ad2k−r−1IX) [(adrIX)X, IA]

= (ad2kIX)A−
2k−1∑
μ=0

(−1)μ
(

2k

μ+ 1

)
(ad2k−μ−1IX) (adX) (adμIX) IA.

In order to evaluate this sum we treat the summands differently depending on the
parity of the index μ: Identity (41) allows us to remove all I’s to the right of adX
without changing the result provided the index μ is odd, in the opposite case with
even index μ we employ identity (41) to replace (adX)(ad IX) by −(ad IX)(adX)
and then remove all I’s even further to the right without doing any harm. The net
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result of all these modifications reads

D
(
(ad2kIX)X

)
A

= (ad2kIX)A+

2k∑
μ=0
μ odd

(
2k

μ+ 1

)
(ad2IX)k−

μ+1
2 (ad2X)

μ+1
2 A

+
2k∑
μ=0

μ even

(
2k

μ+ 1

)
(ad2IX)k−

μ
2 (ad2X)

μ
2 A

= (ad2kIX)A+

k∑
ν=0

(( 2k

2ν + 1

)
+

(
2k

2ν

)
− δν=0

)
(ad2IX)k−ν (ad2X)ν A

=
k∑

ν=0

(
2k + 1

2ν + 1

)
(ad2IX)k−ν (ad2X)ν A = (x2k)ext(adX, ad IX) A

where ν = μ
2 or ν = μ+1

2 depending on the parity of μ and the Kronecker delta
δν=0 is needed to cancel the non existent summand with μ = −1 after switching to
ν = 0. With the directional derivative being linear we deduce the validity of the first
statement of the lemma for all even power series F ∈ Q[[x]] from its validity on the
basis (x2k)k∈N0

.
The argument for the other two statements follows this line of reasoning very

closely, the starting point for both statements is to use identity (42) to expand
ad [(ad2kIX)X] into:

ad [(ad2kIX)X] =

2k∑
μ=0

(−1)μ
(
2k

μ

)
(ad2k−μIX) (adX) (adμIX).

In this situation making a case distinction on the parity of the index μ is not sufficient
to employ identity (41) and so we have to restrict this endomorphism of gpM either to
the tangent space TpM or to stabp(g, I, R). Restriction to TpM allows us to remove
all I to the left of adX without changing the result provided μ is even, for odd μ we
have to replace (ad IX)(adX) by −(adX)(ad IX) first using (41) before removing all
I further to the left. In analogy we remove all I to the right of adX on stabp(g, I, R)
provided μ is even, otherwise we replace (adX)(ad IX) = −(ad IX)(adX) first and
proceed as before.

Theorem 5.3 (Difference Elements of Hermitean Symmetric Spaces). For ev-
ery hermitean locally symmetric space M the difference element K := exp−1

p ◦ kncp
measuring the deviation between the Riemannian and Kählerian normal coordinates
reads:

KX =
artanh ( 12 ad IX)

1
2 ad IX

X K−1X =
tanh( 12 ad IX)

1
2 ad IX

X.

Proof. Before verifying the recursion formula (4.10) for K−1 let us first use the
technical Lemma 5.2 to show that K and K−1 are actually composition inverses of
each other. In order to simplify the exposition of this argument we consider the
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general case of two even power series F, F̂ ∈ Q[[x]] parametrizing power series on
TpM with values in TpM via

F (X) := F (ad IX) X
!
= − I F (adX) IX (43)

the second equality rises from equation (41) in the form [IX, [IX, Y ]] =
−I [X, [X, IY ]] valid for all X, Y ∈ TpM . The technical Lemma 5.2 implies for the
composition:

F (F̂ (X)) = − I F

(√
ad2[F̂ (ad IX)X]

)
I F̂ (ad IX)X

= − I F

(√
(ad2X) F̂ ext(adX, ad IX)2

)
F̂ (adX) IX

= − I F (“(adX) F̂ (adX)”) F̂ (adX) IX = − I (F ◦ F̂ )(adX) IX

where (F ◦ F̂ )(x) := F (xF̂ (x)) F̂ (x). For the series corresponding to K and K−1 we
find

tanh x
2

x
2

◦ artanh x
2

x
2

=
tanh 1

2 (2 artanh
x
2 )

1
2 (2 artanh

x
2 )

artanh x
2

x
2

= 1

and conclude K−1(KX) = X, mutatis mutandis we obtain K(K−1X) = X as well.
Recall now that the difference element K−1 on a locally symmetric space is a compo-
sition polynomial in the curvature tensor alone as ∇R = 0 and all iterated covariant
derivatives vanish, thus it has weight 0 in the sense δK−1 = 0. Rewriting the defini-
tion (24) of the weight operator

δ := id ⊗ I −DerI ⊗ id
!
= (id ⊗ I) (DerI ⊗ I + id)

we conclude (DerI ⊗ I)K−1 = −K−1 so that the recursion formula of Remark 4.10
becomes: [

(N − 1)K−1
]
(X) = I DK−1(X) (id− Φ(X)) IX. (44)

In order to verify that the stipulated power series K−1X =
tanh 1

2 ad IX
1
2 ad IX

X satisfies

this formal differential equation characterizing the difference element let us consider
the power series

F (x) := x
d

dx

( tanh x
2

x
2

)
=

1

cosh2 x
2

− tanh x
2

x
2

= − tanh x
2

x
2

(1− x

sinhx
)

where we have used the addition theorem 1
cosh2 x

2
=

tanh x
2

(cosh x
2 )(sinh

x
2 )

=
tanh x

2
1
2 sinh x

for the

hyperbolic sine in the second equality. Conveniently using the swap identity (43) we
conclude

[(N − 1)K−1](X) = F (ad IX)X = − I F (adX) IX

= I
tanh 1

2adX
1
2adX

(
id− adX

sinh adX

)
IX

where the shift from N − 1 to x d
dx reflects the fact that x d

dx counts all arguments but
one of the power seriesK−1. On the other hand the technical Lemma 5.2 and equation
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(37) for the forward parallel transport Φ(X) = adX
sinh adX on symmetric spaces allow

us to write the right hand side of the formal differential equation (44) for K−1X =
tanh 1

2 ad IX
1
2 ad IX

X in the form

I DK−1(X) (id− Φ(X)) IX = I
( tanh x

2
x
2

)ext

(adX, ad IX)
(
id− adX

sinh adX

)
IX

= I
tanh 1

2adX
1
2adX

(
id− adX

sinh adX

)
IX

where we may reduce (
tanh x

2
x
2

)ext modulo the ideal (x2) according to the congruences

(40), because ad2IX commutes with the power series adX
sinh adX in ad2X and kills its

argument IX. Comparing the results for the left and right hand sides we conclude
that the stipulated power series K−1 satisfies in fact the formal differential equation
(44) uniquely characterizing the difference element K−1 = knc−1

p ◦ expp as claimed.

Corollary 5.4 (Kähler Potential on Symmetric Spaces). On every hermitean
locally symmetric space M the normal potential takes the form:

θp(X) = gp

(
X,

log(id− 1
4 ad

2IX)

− 1
4 ad

2IX
X
)
.

Proof. Essentially the proof consists of a calculation of the expression Ψ(X)X
on hermitean locally symmetric spaces using again the key technical Lemma 5.2. In
a prelude to the proof we remark that the power series identity 2 artanhx = log 1+x

1−x

is a direct consequence of the differential equation artanh′x = 1
1−x2 . The second

congruence in (40) thus becomes

(artanh x
2

x
2

)ext

(x, x) ≡
(
x

d

dx
+ 1

) artanh x
2

x
2

=
1

1− (x2 )
2

modulo the ideal generated by x2. In consequence the formula (37) for the backward
parallel transport on symmetric spaces and the technical Lemma 5.2 allow us to
expand the definition Ψ−1(X) = Φ−1(KX)K∗,X of the Kähler backward parallel
transport to the effect that

Ψ−1(X)X =
sinh adKX

adKX

(artanh x
2

x
2

)ext

(adX, ad IX)X

=
( ∑

k≥ 0

1

(2k + 1)!
ad2kKX

)(
1− 1

4 ad
2IX

)−1

X =
(
1− 1

4 ad
2IX

)−1

X

because ad2X kills the eventual argument X in the first line and so then does

ad2KX = (ad2X) ◦
(artanh x

2
x
2

)ext

(adX, ad IX)

in the second. On the other hand we know that the Kähler normal potential θ on a
hermitean locally symmetric space is necessarily of weight 0 in the sense DerIθ = 0,
because it is essentially a composition polynomial in the curvature tensor alone. With
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the Jacobi operator ad2IX = RIX, ·IX being a symmetric endomorphism we thus
simplify equation (18) to:

[N2 θ](X) = 4 g(Ψ−1(X)X, Ψ−1(X)X) = 4 g(X, (1− 1
4 ad

2IX)−2 X)

The corollary now follows from the identity (x d
dx )

2 log(1 − x2) = −4x2 (1 − x2)−2,
no additional shift is needed in this argument between the number operator N and
x d
dx .

Before closing this section we want to verify equation (31) describing the Spencer
connection for the Kähler normal potential on hermitean locally symmetric spaces. In
light of the explicit formulas for the forward and backward parallel transport (37) it
seems justified to make the ansatz Θ(X) = θ(adX) for the power series Θ describing
the exponentially extended vector fields on symmetric spaces with an unknown even
power series θ ∈ Q[[x]] as parameter. Under this ansatz the equation (15) for Θ
becomes the ordinary differential equation

x
d

dx

(
x
d

dx
− 1

)
θ(x) = x

d

dx

(
(1− x

sinhx
)

x

sinhx

)
+
(
x
d

dx

sinhx

x

)( x

sinhx

)2

= −x
d

dx

( x

sinhx

)2

with initial value θ(0) = 1, the simplication in the second line is due to the standard
identity (x d

dxf
−1) f2 = −x d

dxf valid for every invertible, commutative power series
f . Hence(

x
d

dx
− 1

)
θ(x) = −

( x

sinhx

)2

+ integration constant θ(0) = 1

where the initial value θ(0) = 1 forces the integration constant to vanish. The unique
even power series solving the latter ordinary differential equation equals θ(x) = x

tanh x
due to tanh′ x = 1

cosh2 x
, hence exponentially extended vector fields on symmetric

spaces read:

Zexp(X) = Θ(X)Z =
adX

tanh adX
Z. (45)

Incidentally this formula is exactly the formula describing the unique Killing vector
field with vanishing covariant derivative and value Z ∈ TpM in a point p ∈ M in
exponential coordinates [He]. With the difference element K being parallel ∇K = 0
on locally symmetric spaces formula (30) tells us that the holomorphically extended
vector fields are simply these transvection Killing vector fields written alternatively
in Kähler normal coordinates:

Corollary 5.5 (Holomorphically Extended Vector Fields). In accordance with
Corollary 4.12 the holomorphically extended vector field Zknc associated to a tangent
vector Z ∈ TpM of a hermitean symmetric space equals the quadratic vector field

Zknc(X) = Z − 1

4

(
RZ,XX −RZ, IXIX

)
on the tangent space TpM . In particular all Killing vector fields on a hermitean
symmetric space become at most quadratic vector fields when written in Kähler normal
coordinates.
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Proof. Recall first of all that the curvature tensor of a locally symmetric space is
covariantly constant ∇R = 0 and so then is the difference element K. In consequence
equation (30) describing the Taylor series of holomorphically extended vector fields
becomes

Zknc(X) = K−1
∗, KX Zexp(KX) = DK−1(KX)

adKX

tanh adKX
Z (46)

in light of the formula (45) for exponentially extended vector fields. Using the technical
Lemma 5.2 and the swap identity (43) we may rewrite ad2(KX) and ad2(IKX) in
the form

ad2(KX ) = (adX)2
(artanh x

2
x
2

)ext

(adX, ad IX)2 = F 2(ad X, ad IX)

ad2(IKX) = − I ◦ (ad2KX) ◦ I = F 2(ad IX, ad X)

defining the power series F ∈ Q[[x, x]] in two variables arising in this way as:

F (x, x) := x
(artanh x

2
x
2

)ext

(x, x) =
1

2

(
log

2 + x+ x

2− x− x
+ log

2 + x− x

2− x+ x

)
.

The identity 2 artanh x
2 = log 2+x

2−x can be used conveniently to arrive at the extension
(38) needed in the second equality. In turn the description (46) of holomorphically
extended vector fields expands with the help of the technical Lemma 5.2 into the
power series

Zknc(X) = DK−1(KX)
adKX

tanh adKX
Z = H(ad2X, ad2IX)Z (47)

in ad2X and ad2IX alone, where the doubly even power series H ∈ Q[[x, x]] reads

H(x, x) :=
( tanh x

2
x
2

)ext

(F (x, x), F (x, x))
F (x, x)

tanh F (x, x)

= 4 cosh F (x, x)
eF (x, x)+F (x, x)

(eF (x, x)+F (x, x) + 1) (eF (x, x) + eF (x, x))

the exemplary calculation of (
tanh x

2
x
2

)ext following definition (38) has been used here

in the second line. In order to simplify the power series F (x, x) and F (x, x) in this
formula we change variables from x, x to the new variables a := x+x

2 and b := x−x
2

and obtain:

F (x, x) =
1

2

(
log

1 + a

1− a
+ log

1 + b

1− b

)
F (x, x) =

1

2

(
log

1 + a

1− a
+ log

1− b

1 + b

)
.

Inserting these expressions into the power series H simplifies it drastically, namely we
find

H(x, x) = 2
( 1+a
1−a )

(√
1+a
1−a

√
1+b
1−b +

√
1−a
1+a

√
1−b
1+b

)
( 1+a
1−a + 1)

(√
1+a
1−a

√
1+b
1−b +

√
1+a
1−a

√
1−b
1+b

)
=

(1 + a)
√

1+b
1−b + (1− a)

√
1−b
1+b√

1+b
1−b +

√
1−b
1+b

= 1 + ab = 1 +
1

4
(x2 − x2)
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by using the identity
√
t√

t+
√
t−1

= t
t+1 twice. Reinserting this result into our description

of holomorphically extended vector fields (47) on hermitean symmetric spaces we get
eventually

Zknc(X) = H(ad2X, ad2IX)Z = Z +
1

4

(
(ad2X)Z − (ad2IX)Z

)
which converts via equation (36) or (ad2X)Z = −RZ,XX into the first statement
of the Lemma. The second statement follows from the fact that the complementary
Killing vector fields with vanishing value in p are linear vector fields in Kähler normal
coordinates.

Having established Corollary 5.5 about holomorphically extended vector fields on
hermitean locally symmetric spaces we can eventually verify the important equation
(31). According to Corollary 5.4 the Kähler normal potential on hermitean locally
symmetric spaces can be written in the form θ(X) = g(X, F (ad IX)X) with the even
power series:

F (x) :=
log(1− (x2 )

2)

−(x2 )2
=

∑
k≥ 0

1

k + 1
(
x

2
)2k.

Recall now that the Jacobi operators ad2X = −R·, XX and ad2IX are commuting
symmetric endomorphisms and so then is F ext(adX, ad IX). Using the technical
Lemma (5.2) we find

d

dt

∣∣∣∣
0

θ(X + t Z) = g
(
Z,

[
F (ad IX) + F ext(adX, ad IX)

]
X
)

= 2 g(Z, (id− 1
4 ad

2IX)−1X)

for every fixed direction Z ∈ TpM in light of the congruence of power series

F (x) + F ext(x, x) ≡ (x
d

dx
+ 2) F (x) = 2

(
1− (

x

2
)2
)−1

mod (x2)

in the variables x, x modulo the ideal generated by x2, the equality in this congruence
is most easily deduced from the power series expansion of F . In consequence we obtain:

(Zkncθ)(X) = 2 g(Z + 1
4 (ad

2X − ad2IX)Z, (id− 1
4 ad

2IX)−1X)

= 2 g(Z, (id− 1
4 ad

2IX) (id− 1
4 ad

2IX)−1X) = 2 g(Z, X).

Appendix A. Kähler Normal Coordinates in Examples. In order to illus-
trate the concept of Kähler normal coordinates we want to describe these coordinates
and the associated normal potentials for a couple of examples in this appendix, namely
the four infinite series of compact hermitean symmetric spaces: The complex Grass-
mannians, which include the complex projective spaces as a special case, the real
Grassmannians of oriented planes and the real and quaternionic twistor spaces. A
classical reference for formulas pertaining to Riemannian symmetric spaces like the
relation between the curvature tensor and the Lie algebra structure on the Lie alge-
bra of Killing vector fields exploited in Section 5 is certainly [He]. From among these
formulas we will use in particular the description of the Riemannian exponential map
in terms of matrix exponentials.
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Probably the most prominent examples of Kähler manifolds besides flat Cn are the
complex projective spaces, which we will discuss in the context of complex Grassmann
manifolds in the first part of this appendix. The Kähler metric of choice on the
complex Grassmannian GrkV of k–dimensional subspaces of a complex vector space
V is a generalization of the Fubini–Study metric on the set PV = Gr1V of lines
defined in terms of a positive definite hermitean form h : V × V −→ C on V and the
associated identification of the vector space

Hom (P, P⊥)
∼=−→ TPGrkV, X �−→ d

dt

∣∣∣∣
0

im (id + tX : P −→ V )

tangent to GrkV in a point P ∈ GrkV with h–orthogonal complement P⊥ ⊂ V .
Under this identification the complex structure I becomes the multiplication by i in
Hom (P, P⊥) and

hFS : Hom (P, P⊥) × Hom(P, P⊥) −→ C, (X, Y ) �−→ trP (X
∗Y )

defines the hermitean Fubini–Study metric with Riemann metric gFS := RehFS and
Kähler form ImhFS, where X∗ ∈ Hom(P⊥, P ) denotes the adjoint of X with respect
to h. In order to calculate the exponential map we apply the matrix exponential
exp : End V −→ GLV to the Lie algebra element X −X∗ ∈ suV corresponding to
the tangent vector X

exp

(
0 −X∗

X 0

)
=

(
cos
√
X∗X ∗

X sin
√
X∗X√

X∗X
∗

)
in which the ill–defined square root never materializes, because both cos x and sin x

x
are even power series in x. The Riemannian exponential is now covered by the matrix
exponential in the isometry group for symmetric spaces like GrkV , see for example
[He], in consequence the exponential map expP : TPGrkV −→ GrkV for the Grass-
mannians can be written:

expP : Hom (P, P⊥) −→ GrkV, X �−→ im
(
v �−→ cos

√
X∗X v +X

sin
√
X∗X√

X∗X
v
)
.

Based on this description we simply make the following guess for Kähler normal
coordinates

kncP : Hom (P, P⊥) −→ GrkV, X �−→ im (v �−→ v +Xv) (48)

which we will verify in due course by calculating the normal potential. In any case
the image of these Kähler normal coordinates is exactly the big cell consisting of
all subspaces transversal to P⊥, since these big cells form the coordinate charts in
the standard holomorphic atlas for GrkV the proposed map kncP : TPGrkV −→
GrkV is certainly holomorphic. Whenever the operator norm of the tangent vector
X ∈ Hom(P, P⊥) satisfies ||X || < π

2 , then the linear map cos
√
X∗X ∈ End P is

invertible and the resulting equality

im
(
v �−→ cos

√
X∗X v +X

sin
√
X∗X√

X∗X
v
)
= im

(
v �−→ v +X

tan
√
X∗X√

X∗X
v
)

implies the following explicit formulas for the difference element K and its inverse

K−1X = X
tan

√
X∗X√

X∗X
⇐⇒ KX = X

arctan
√
X∗X√

X∗X
(49)
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because in this way kncP (K
−1X) = expP X. To calculate the pull back of the Fubini–

Study metric gFS on GrkV to TpM via kncP we embed GrkV isometrically into the
real vector space of self adjoint endomorphisms of V with respect to the hermitean
form h

ι : GrkV −→ End hermV, P̂ �−→ prP̂ (50)

where prP̂ = pr∗
P̂
is the orthogonal projection onto P̂ , in turn the composition ι◦kncP

reads

ι
(
im (v �−→ v +X v)

)
=

(
id
X

) (
id +X∗X

)−1 (
id X∗) = (

Q QX∗

X Q X QX∗

)
with Q := (id+X∗X)−1. In passing we observe that the very same calculation implies
that the differential of the embedding ι in the chosen, but arbitrary point P ∈ GrkV
is given by

ι∗, P : Hom (P, P⊥) −→ End hermV, X �−→
(
0 X∗

X 0

)
as Q = id+O(X2), hence ι is an isometric embedding as claimed provided we choose
the positive definite scalar product G(F, F̂ ) := 1

2 trV FF̂ on End hermV . Using the
standard formula δM = −M (δM−1)M for the variation of inverses we may calculate
the differential

(ι ◦ kncP )∗, XA

=

(
0
A

)
Q
(
id X∗)− (

id
X

)
Q(A∗X +X∗A)Q

(
id X∗)+ (

id
X

)
Q
(
0 A∗

)
of the composition ι ◦ kncP : TPGrkV −→ End hermV and find after a rather lengthy
calculation better done separately for the 9 summands and simplifyingQ (id+X∗X) =
id:

(knc∗P gFS)X(A, B)
!
= ((ι ◦ kncP )∗G)X(A, B)

= 1
2 trV ((ι ◦ kncP )∗, XA (ι ◦ kncP )∗, XB)

= 1
2 trP (QA∗B +QB∗A−QA∗XQX∗B −QX∗AQB∗X).

Note that the peculiar arrangement of the factors in the third and fourth summand
make the result real as the trace of sums of hermitean matrices. Having calculated the
pull back of the metric we are in the position to verify that the anchored holomorphic
coordinates kncP : TPGrkV −→ GrkV proposed in equation (48) are actually the
unique Kähler normal coordinates in the point P ∈ GrkV . For this purpose we define
θP ∈ C∞(TPGrkV ) by

θP (X) = trP log(id +X∗X) = log detP (id +X∗X) (51)

and observe that for given tangent vectors A, B ∈ TPGrkV ∼= Hom(P, P⊥)

∂2

∂A∂B
θP (X) =

∂

∂A
trP (Q (B∗X +X∗B))

= trP (Q (B∗A+A∗B)−Q (A∗X +X∗A)Q (B∗X +X∗B))
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due to the standard logarithmic derivative δ log(detM) = tr(M−1δM) of the deter-
minant and the definition Q := (id +X∗X)−1 of Q. Comparing this result with the
formula for the pull back knc∗P gFS of the Fubini–Study metric from GrkV to TPGrkV
we conclude

(knc∗P gFS)X(A, B) =
1

4

( ∂2

∂A∂B
θP (X) +

∂2

∂IA∂IB
θP (X)

)
because the troublesome terms with either none or both of A or B starred drop out
in averaging over A, B and IA, IB. In consequence the function θP is some poten-
tial function for the Riemannian metric knc∗P gFS on TPGrkV and since it evidently
satisfies the normalization constraint imposed on the unique normal potential it is
actually equal to this potential, in turn kncP : TPGrkV −→ GrkV are Kähler normal
coordinates as claimed.

Although the formula for the difference element of the complex Grassmannians
obtained in this way is quite explicit, it is more useful to recast it in terms of the cur-
vature of GrkV . According to our discussion of the Lie algebra of Killing vector fields
on symmetric spaces the curvature of the complex Grassmannians can be calculated
from the Lie algebra of Killing vector fields on GrkV by means of equation (36), more
precisely we find

RU, V W = − [[U − U∗, V − V ∗], W −W ∗] = U V ∗W − V U∗W −W U∗V +W V ∗U

for all U, V, W ∈ Hom(P, P⊥) with adjoints U∗, V ∗, W ∗ ∈ Hom(P⊥, P ). The com-
plex structure on the Grassmannians GrkV is now defined by declaring the isomor-
phism TPGrkV ∼= Hom(P, P⊥) of real vector spaces to be complex linear IX := iX
and so the formula for the curvature becomes for the arguments U = IX = W and
V = X (X∗X)k

(ad2IX)
(
X (X∗X)k

)
:= RiX,X(X∗X)k iX = − 4X (X∗X)k+1

for all k ≥ 0. In consequence equation (49) can be written in the form:

KX =
arctan(− 1

4 ad
2IX)

1
2

(− 1
4 ad

2IX)
1
2

X =
artanh( 12 ad IX)

1
2 ad IX

X. (52)

This calculation was the motivation for the authors to look for a proof of Lemma 5.3
describing the difference element for arbitrary hermitean symmetric spaces by exactly
this formula. In the same vein the normal potential for the complex Grassmannians
can be rewritten in terms of the Lie algebra structure in order to reflect Corollary 5.4:

(knc∗P θP )(X) = trP log(id +X∗X)
!
= gP

(
X,

log(id− 1
4 ad

2IX)

− 1
4 ad

2IX
X
)
. (53)

The second family of examples of Kähler manifolds discussed in this appendix
are the real Grassmannians of oriented planes in a real vector space V , the universal
covering spaces of the standard real Grassmannians Gr2V of planes in V , elements
of Gror2 V are thus 2–dimensional subspaces P ⊂ V endowed with an orientation
determining the sense of counterclockwise rotation. Choosing a positive definite scalar
product g : V × V −→ R we may identify the vector space tangent to Gror2 V in an
oriented plane P ∈ Gror2 V with the vector space

Hom (P, P⊥)
∼=−→ TPGror2 V, X �−→ d

dt

∣∣∣∣
0

im (id + tX : P −→ V )
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of linear maps from P to its orthogonal complement P⊥ and define the Fubini–Study
metric

gFS : Hom (P, P⊥) × Hom(P, P⊥) −→ R, (X, Y ) �−→ trP (X
∗Y )

in complete analogy to the complex Grassmannians, where X∗ is now the adjoint of
X with respect to the scalar product g. In difference to the complex Grassmannians
however Hom (P, P⊥) is not a priori a complex vector space so that it is impossible
to define an almost complex structure I on Gror2 V simply by multiplication with i.
Nevertheless every oriented plane P ⊂ V carries a unique isometry J ∈ O(P, g)
satisfying J2 = −idP , namely the rotation by +90◦. In turn the tangent space
TPGror2 V = Hom(P, P⊥) to the Grassmannian of oriented planes in V becomes a
complex vector space by precomposing

I : Hom (P, P⊥) −→ Hom(P, P⊥), X �−→ XJ

with J ∈ O(P, g), moreover this complex structure on Hom (P, P⊥) is orthogonal with
respect to the Fubini–Study metric gFS(IX, IY ) = trP (J

∗X∗Y J) = gFS(X,Y ) due to
J∗ = J−1 = −J . Evidently no similar construction exists for the real Grassmannians
of oriented or unoriented subspaces of V of dimensions other than 2.

Leaving the question of integrability of the almost complex structure I on Gror2 V
aside for the moment we recall that the complex bilinear extension of the scalar
product g to the complexification VC := V ⊗RC of the real vector space V defines the
complex quadric

Qg(V ) := { [p] ∈ PVC | v isotropic vector with g(p, p) = 0 } ⊂ PVC

of isotropic lines in VC, which is a smooth complex submanifold of PVC and thus
a Kähler manifold itself endowed with the restriction of the Fubini–Study metric
associated to the positive definite hermitean form h : VC × VC −→ C, (v, w) �−→
g(v, w), arising from g and the real structure on VC.

Evidently the real and imaginary part of every vector p = (Re p) + i(Im p) ∈ VC

representing an isotropic line [p] ∈ Qg(V ) are orthogonal vectors of the same length in
V and vice versa. In this way the Grassmannian Gror2 V of oriented planes in V embeds
canonically into a complex projective space and becomes the quadric Qg(V ) ⊂ PVC

of isotropic lines. More precisely the canonical embedding sends an oriented plane
P ⊂ V to the isotropic line spanned by the vector p := e1− ie2 encoding an oriented
orthonormal basis e1, e2 for P :

ι : Gror2 V −→ Qg(V ) ⊂ PVC, P �−→ [p].

With P being a plane in V all its oriented orthonormal bases are related by rotations,
thus the representative vector p ∈ VC is only defined up to multiplication by an
element of S1. Independent of this S1–ambiguity in the choice of p ∈ VC the following
identities hold true

g(p, Fp) = trPF

| g(p, Fp) |2 = tr2PF − 4 detPF = 2 trP (F
2)− tr2PF

(54)

for every symmetric endomorphism F ∈ End P as the reader may easily verify using
the matrix coefficients of F in the orthonormal basis e1, e2. In terms of the identifica-
tion of the vector space tangent to PVC in the point ι(P ) = [p] with the vector space
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of complex linear maps from the line Cp to its orthogonal complement { p }⊥ with
respect to the hermitean form h the differential of ι in an oriented plane P ∈ Gror2 V
can be written

ι∗, P : Hom (P, P⊥) −→ Hom(C p, { p }⊥), X �−→ X|
Cp

in fact ι∗, P : d
dt

∣∣
0
im(id + tX) �−→ d

dt

∣∣
0
[p+ tXp]. In particular the embedding ι is

actually an holomorphic embedding with ι∗, P (IX) = XJ |
Cp = iX|

Cp due to Jp = ip
so that the almost complex structure I on Gror2 V is necessarily integrable. However ι
is not an isometric embedding for the Fubini–Study metric gPVC on the target, to be
precise

gPVC

[p] (X|
Cp , Y |

Cp) :=
h(Xp, Y p)

h(p, p)
=

1

2
g(Xp, Y p) =

1

2
trP (X

∗Y )

equals half the Fubini–Study metric 1
2 gFS on Gror2 V . Interestingly this observation

is sufficient to construct the Kähler normal coordinates for the real Grassmannian
Gror2 V by setting:

ι ◦ kncp : Hom (P, P⊥) −→ Qg(V ), X �−→ [p+X p− 1
4 g(Xp,Xp) p].

The S1–ambiguity of the isotropic vector p ∈ VC representing the oriented plane
P ∈ Gror2 V has no bearance on the complex line spanned by the vector p + Xp −
1
4g(Xp,Xp)p, moreover the image vector is isotropic due to Xp ∈ P⊥ ⊗R C and
g(p, p) = 2. Last but not least we observe that the map ι ◦ kncP : Hom (P, P⊥) −→
Qg(V ) is covered by the complex quadratic polynomial Hom (P, P⊥) −→ VC \
{ 0 }, X �−→ p + Xp − 1

4g(Xp,Xp)p, and in turn is holomorphic, recall that after
all we have (IX)p := XJp = i(Xp).

The implicitly defined map kncP : Hom (P, P⊥) −→ Gror2 V arising from ι ◦ kncP
is thus well–defined and holomorphic, to verify that kncP are the Kähler normal
coordinates it thus suffices to find a local Kähler potential for gFS satisfying the
normalization condition of Definition 2.6. For this purpose we pull back the Kähler
normal potential of PVC in the point ι(P ) = [p] back to Hom (P, P⊥) and multiply by
2 to account for the homothety (ι ◦ kncP )∗gPVC = 1

2 gFS. According to our discussion
(53) of the complex Grassmannians

θPVC

[p] ([p+ q]) = log
(
1 +

h(q, q)

h(p, p)

)
is the Kähler normal potential for gPVC whenever q ∈ { p }⊥ holds true, in turn we
conclude

2 (ι ◦ kncP )∗θPVC(X) = 2 θPVC

[p] ([p+X p− 1
4 g(Xp,Xp) p])

= 2 log
(
1 + 1

2 g(Xp,Xp) + 1
16 | g(Xp,Xp) |2

)
= 2 log

(
1 + 1

2 trP (X
∗X) + 1

8 trP (X
∗X)2 − 1

16 tr
2
P (X

∗X)
)

by using h(p, p) = 2 and the identities (54). The result is actually a power series invari-
ant under DerI due to (IX)∗(IX) = −J∗(X∗X)J and thus satisfies the normalization
constraint required by Definition 2.6, in consequence kncP : Hom (P, P⊥) −→ Gror2 V
are the unique Kähler normal coordinates of Gror2 V in the point P ∈ Gror2 V .
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In order to calculate the difference elements K and K−1 for the real Grassman-
nians Gror2 V we still have to compare the formula for kncP established above with
the analoguous formula for the Riemannian exponential map. The calculations can be
done in complete analogy to the case of the complex Grassmannians, because the Rie-
mannian exponential is still covered by a suitable version of the matrix exponential,
and the final results reads:

ι(expP X) =
[
(cos

√
X∗X) p+X

sin
√
X∗X√

X∗X
p
]
. (55)

Solving the equation expP Y = kncPX with respect to the tangent vector Y = KX for
a given argument vector X ∈ Hom(P, P⊥) is thus equivalent to solving the equation[

(cos
√
Y ∗Y ) p+ Y

sin
√
Y ∗Y√

Y ∗Y
p
]
=

[
p+X p− 1

4
g(Xp,Xp) p

]
for points in PVC, which we may decouple into two independent equations

τ
(
(cos

√
Y ∗Y ) p

)
= p− 1

4
g(Xp,Xp) p τ

(
Y

sin
√
Y ∗Y√

Y ∗Y
p
)
= X p (56)

by taking the orthogonal decomposition V = P ⊕ P⊥ into account and introducing a
non–zero slack variable τ ∈ C∗. Applying the complex bilinear scalar product g with
p to the first equation and using the identities (54) we find that τ ∈ R+ is actually
positive

τ (trP cos
√
Y ∗Y ) = g

(
p, p− 1

4
g(Xp,Xp) p

)
= 2

and thus:

X = K−1Y =
2

trP (cos
√
Y ∗Y )

Y
sin

√
Y ∗Y√

Y ∗Y
. (57)

Unluckily we wanted to solve the equation expP Y = kncPX for Y and not for X,
hence we regress to the decoupled equations (56) and read the identities (54) back-
wards to obtain

τ2 (trP sin2
√
Y ∗Y ) = g

(
τ (Y

sin
√
Y ∗Y√

Y ∗Y
) p, τ (Y

sin
√
Y ∗Y√

Y ∗Y
) p

)
= g(X p, X p)

τ2 (trP cos2
√
Y ∗Y ) = g(p− 1

4 g(Xp,Xp) p, p− 1
4 g(Xp,Xp) p)

= 2 + 1
8 | g(Xp, Xp) |2 = 2 + 1

4 trP (X
∗X)2 − 1

8 tr
2
P (X

∗X).

With trP (sin
2
√
Y ∗Y +cos2

√
Y ∗Y ) = 2 and g(Xp,Xp) = trP (X

∗X) we can solve for
τ :

τ = τ(X) =
(
1 + 1

2 trP (X
∗X) + 1

8 trP (X
∗X)2 − 1

16 tr
2
P (X

∗X)
) 1

2

.

Incidentally we observe that this expression is exactly the argument of the logarithm
in the formula (knc∗P θ

FS
P )(X) = 4 log τ(X) for the Kähler normal potential of the real
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Grassmannian Gror2 V . In any case we conclude by solving the second of the equations
(56) that:

Y = KX =
X

τ(X)

arcsin
√

X∗X
τ2(X)√

X∗X
τ2(X)

. (58)

Although this formula has little to no resemblance to the formula of Theorem 5.3, it
can be shown by explicit power series expansion that both formulas actually amount
to the same.

In the last part of this appendix we want to discuss Kähler normal coordinates for
a particularly interesting family of hermitean symmetric spaces: The twistor spaces
of orthogonal complex structures on real vector spaces of even dimension and the
closely related twistor spaces of quaternionic linear orthogonal complex structures on
quaternionic vector spaces. Starting with the former we consider a real vector space V
of even dimension 2n endowed with a positive definite scalar product g : V ×V −→ R

and define its twistor space as:

T(V, g) := {J ∈ End V | J orthogonal endomorphism with J2 = −idV }.
Since an endomorphism squaring to −idV is orthogonal, if and only if it is skew
symmetric with respect to g, the twistor space is actually a submanifold T(V, g) ⊂
so(V, g) of the Lie algebra of skew symmetric endomorphisms of V . In particular we
may identify the tangent space TJT(V, g) ⊂ so(V, g) of the twistor space in a point
J ∈ T(V, g) with the vector space

Σ1
skew(J) := {X ∈ so(V, g) | X skew symmetric and XJ + JX = 0}

of skew symmetric endomorphisms X of V anticommuting with J by differentiation:

TJT(V, g)
∼=−→ Σ1

skew(J),
d

dt

∣∣∣∣
0

Jt �−→ J̇0.

In fact J̇0 ∈ Σ1
skew(J) anticommutes with J = J0, because J2

t = −idV for all t. The
Riemannian metric of choice on T(V, g) ⊂ so(V, g) is simply the restriction of the
standard scalar produce g(X,Y ) = − 1

2 trV (XY ) on so(V, g), moreover the almost
complex structure on T(V, g) in a point J ∈ T(V, g) is the right multiplication with J
on the tangent space

IJ : Σ1
skew(J) −→ Σ1

skew(J), X �−→ X J

because XJ still is skew and anticommutes with J . Since T(V, g) ⊂ so(V, g) is
actually a union of two adjoint orbits the Riemannian exponential is easily seen to be
covered by the matrix exponential for the Lie group SO(V, g), the only subtlety here
is that the Lie algebra element corresponding to the tangent vector X ∈ Σ1

skew(J) is
not X itself, but − 1

2 XJ , due to the identity [− 1
2 XJ, J ] = X. In this way we find

the explicit formula

expJ : Σ1
skew(J) −→ T(V, g), X �−→ e−

1
2 XJ J e+

1
2 XJ

for the Riemannian exponential of the twistor space T(V, g), and since X anticom-
mutes with J we may simplify this to read expJ X = e−XJJ = (cosh X)J +(sinh X)
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using the observation (−XJ)2 = X2. In order to establish the integrability of the
almost complex structure I and calculate the Kähler normal coordinates it turns out
to be convenient to identify the twistor space T(V, g) with the Grassmannian of La-
grangian subspaces for the complex bilinear extension of the scalar product g on V
to VC = V ⊗R C, which is a complex submanifold of the Grassmannian GrnVC of
n–dimensional subspaces of VC defined by:

LGrnVC = {L ∈ GrnVC | L isotropic with respect to g}.
Explicitly the diffeomorphism between T(V, g) and LGrnVC reads

ι : T(V, g)
∼=−→ LGrnVC, J �−→ V 1, 0

J

where V 1,0
J ⊂ VC is the eigenspace for the eigenvalue +i of the complex linear exten-

sion of the orthogonal complex structure J ∈ T(V, g) to VC. In passing we remark
that LGrnVC can also be realized as the quadratic projective variety of pure spinors.

The argument demonstrating the surjectivity of ι uses the canonical real structure
on the complexification VC = V ⊗RC in the form of an involution L �−→ L of LGrnVC

satisfying L ∩ L = { 0 }, after all g is positive definite on the real subspace V ⊂ VC.
We may thus associate to every Lagrangian subspace L ∈ LGrnVC the endomorphism
J := iprL − iprL of VC = L ⊕ L, which commutes by construction with the real
structure and thus comes from a complex structure J ∈ End V of the underlying
real vector space V . With its eigenspaces L and L being isotropic subspaces J is
automatically skew symmetric and thus orthogonal with respect to g, moreover we
find V 1,0

J = L so that the orthogonal complex structure J ∈ T(V, g) is a preimage of
the subspace L we started with.

Let us now turn to the calculation of the differential of ι in order to show that it
is an holomorphic embedding T(V, g) −→ GrnVC. For a curve t �−→ Jt of orthogonal
complex structures on V representing a tangent vector X = d

dt

∣∣
0
Jt ∈ Σ1

skew(J) in
J = J0 we find

ι∗, J
( d

dt

∣∣∣∣
0

Jt

)
=

d

dt

∣∣∣∣
0

im
(
V 0,1
J −→ V 0,1

Jt
, v �−→ 1

2
(v − iJtv)

)
=̂ − i

2

d

dt

∣∣∣∣
0

Jt

and hence conclude that the differential of ι : T(V, g) −→ GrnVC reads:

ι∗, J : Σ1
skew(J) −→ Hom(V 1,0

J , V 0,1
J ), X �−→ − i

2
X|V 1,0

J
.

In particular ι∗, J(IX) = − i
2 XJ |V 1,0

J
= i ι∗, J(X) due to J = +i on V 1,0

J making ι a

holomorphic embedding as claimed, necessarily then the almost complex structure I
on the twistor space T(V, g) is integrable. Moreover the pull back of the Fubini–Study
metric on GrnVC via ι equals 1

4 times the chosen Riemannian metric on T(V, g) ⊂
so(V, g), because

(ι∗gFS)J(X, Y ) = Re trV 1,0
J

((− i
2X)∗(− i

2Y )) = − 1
8 trV (XY ) (59)

recall here that X∗ = −X is skew symmetric and that trV 1,0
J

F = trV 0,1
J

F for every

endomorphism F ∈ End V of the underlying real vector space V .
For the next step we need to discuss another characterization of symmetric spaces

as manifolds endowed with a binary operation ∗ generalizing in a sense the multipli-
cation of a Lie group, [Ber] is a very good reference for this point of view. The binary
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operation ∗ : GrnVC × GrnVC −→ GrnVC associated to the complex Grassmannian
GrnVC is most easily defined in terms of a suitable modification of the embedding
(50) used previously

inv : GrnVC −→ End hermVC, P̂ �−→ 2 prP̂ − id

which identifies GrnVC with the set of self adjoint involutions of VC with zero trace,
to wit

inv(P ∗ P̂ ) := inv(P ) ◦ inv(P̂ ) ◦ inv(P )

where the right hand side is still a self adjoint involution with zero trace. For obvious
reasons the composition inv ◦ ι : T(V, g) −→ End hermVC maps J to inv(V 1,0

J ) = −iJ
so that ι is actually a homomorphism of symmetric spaces in the sense:

ι(J) ∗ ι(Ĵ) = inv−1((−iJ) (−iĴ) (−iJ)) = ι(J ∗ Ĵ) := ι(J Ĵ−1 J).

Like every other homomorphism of symmetric spaces ι is thus a totally geodesic
embedding, in turn Corollary 4.9 tells us that the Kähler normal coordinates for the
twistor space T(V, g) are simply the restriction of the Kähler normal coordinates of
the complex Grassmannian:

ι ◦ kncJ : Σ1
skew(J) −→ LGrnVC, X �−→ kncV 1,0

J
(ι∗, JX).

In fact it is easily verified that the image subspace

kncV 1,0
J

(− i
2X) = im

(
id− i

2X : V 1,0
J −→ VC

)
!∈ LGrnVC

is actually a Lagrangian subspace of VC. It remains to find the orthogonal complex
structure corresponding to this image subspace. For this purpose we recall that the
square X2 of the skew symmetric endomorphism X ∈ Σ1

skew(J) is diagonalizable with
non–positive eigenvalues so that the endomorphisms id ± 1

2XJ are always invertible
due to:

4 (id + 1
2 XJ) (id− 1

2 XJ) = 4− (XJ)2 = 4−X2.

Hence we may write the image of id − i
2X : V 1,0

J −→ VC as the image of the endo-
morphism

(id− i
2 X) ◦ prV 1,0

J
= 1

2 (id− i
2 X) (id− i J)

= 1
2 (id− i [(J + 1

2X) (id− 1
2XJ)−1]) ◦ (id− 1

2 X J)

= prV 1,0
kncJX

◦ (id− 1
2 X J)

of VC where the orthogonal complex structure kncJX ∈ T(V, g) is given explicitly by:

kncJX = 4
(J + 1

2X) (id + 1
2XJ)

4−X2
=

4 +X2

4−X2
J +

4X

4−X2
. (60)

The reader may find it amusing to verify the slightly surprising statement kncJX ∈
T(V, g) directly. Comparing this result with the formula for the exponential map of
the twistor space

expJ(KX) = (cosh KX) J + (sinh KX)
!
=

4 +X2

4−X2
J +

4X

4−X2
= kncJX
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we find exp(KX) = cosh KX + sinh KX = (2+X) (2+X)
(2+X) (2−X) and thus conclude:

KX = log
2 +X

2−X
= 2artanh( 12X) ⇐⇒ K−1X = 2 tanh( 12X). (61)

Last but not least the normal potential of the twistor space equals the restriction of
the Kähler potential of the complex Grassmannian GrnVC to the Kähler submanifold
LGrnVC

∼= T(V, g)

θJ(X) = 4 trV 1,0
J

log
(
id + (− i

2X)∗(− i
2X)

)
= 2 trV log

(
id− 1

4 X
2
)

where the factor 4 accounts for the homothety ι∗gFS = 1
4 g. Needless to say this

formula for the potential is compatible with the description gJ(X,X) = − 1
2 trV (X

2)
of the Riemannian metric induced on the union T(V, g) ⊂ so(V, g) of two adjoint
orbits.

The discussion of the last family of hermitean symmetric spaces considered in this
appendix, the quaternionic twistor spaces, can be kept very short, because we may
interprete a quaternionic vector space endowed with a positive definite quaternionic
hermitean form h as a real vector space V of dimension 4n endowed with a scalar
multiplication H× V −→ V by quaternions and a compatible positive definite scalar
product g = Reh in the sense g(qv, w) = g(v, qw) for all q ∈ H and all v, w ∈ V .
Under this reinterpretation the quaternionic twistor space of all orthogonal complex
structures on V commuting with H

TH(V, g) := {J ∈ End HV | J orthogonal endomorphism with J2 = −idV }

becomes a symmetric subspace TH(V, g) ⊂ T(V, g) of the real twistor space associated
to V , because J ∗ Ĵ commutes with the scalar multiplication by H, whenever so do
J, Ĵ ∈ TH(V, g). In consequence the quaternionic twistor space is a totally geodesic
Kähler submanifold and all the formulas pertaining to T(V, g) apply verbatim to
TH(V, g).
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